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Abstract. In 2013, Mao initiated the study of stabilization of continuous-
time hybrid stochastic differential equations (SDEs) by feedback control based

on discrete-time state observations. In recent years, this study has been further

developed while using a constant observation interval. However, time-varying
observation frequencies have not been discussed for this study. Particularly

for non-autonomous periodic systems, it’s more sensible to consider the time-

varying property and observe the system at periodic time-varying frequencies,
in terms of control efficiency. This paper introduces a periodic observation

interval sequence, and investigates how to stabilize a periodic SDE by feedback

control based on periodic observations, in the sense that, the controlled system
achieve Lp-stability for p > 1, almost sure asymptotic stability and pth moment

asymptotic stability for p ≥ 2. This paper uses the Lyapunov method and
inequalities to derive the theory. We also verify the existence of the observation

interval sequence and explains how to calculate it. Finally, an illustrative

example is given after a useful corollary. By considering the time-varying
property of the system, we reduce the observation frequency dramatically and

hence reduce the observational cost for control.

1. Introduction. In the past decades, stochastic differential equations have been
playing an important role in many areas such as engineering, finance and population
ecology. Hybrid SDEs (SDEs with Markovian switching) have been widely used for
modelling systems that may undergo abrupt changes in structures and parameters,
which can be caused by environmental disturbances or accidents. Automatic control
and stability analysis of SDEs have been studied by many authors (e.g. [2, 5, 7, 8,
9, 13, 14, 17, 18, 19, 21, 26, 30, 32]).
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Consider a continuous-time hybrid SDE in the Itô sense

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (1)

on t ≥ 0, where x(t) ∈ Rn is the system state, B(t) = (B1(t), · · · , Bm(t))T is
an m-dimensional Brownian motion, r(t) is a Markov chain (please see Section
2 for formal definitions) which represents the system mode. If system (1) is not
stable and need to be stabilized by a feedback control, a traditional (or regular)
choice u(x(t), r(t), t) requires continuous-time observations of state x(t) and mode
r(t), which is unrealistic as the observations are often of discrete-time and can be
expensive for implementation.

As a result, Mao [16] initiated the study of stabilization of (1) by feedback
control based on discrete-time state observations. Later, the observation inter-
val was increased, more stabilities and uncertain systems were also investigated
([6, 20, 33, 34]). Recently, observation of system mode has also been discretized
([10, 12, 25]) and the controlled system regarding to (1) becomes

dx(t) =[f(x(t), r(t), t) + u(x([t/τ ]τ), r([t/τ ]τ), t)]dt+ g(x(t), r(t), t)dB(t), (2)

where τ is a positive number representing observation interval, [t/τ ] denotes the
integer part of t/τ . So the controller u needs observations of x and r only at time
points 0, τ, 2τ, 3τ, · · · .

Although such a type of feedback control based on discrete-time observations is
more realistic and costs less than the traditional one, it fails to consider the time-
varying property of the system. If the controlled system is non-autonomous (i.e.,
f or g or u depends on time explicitly), then a time-varying observation frequency
obviously makes more sense than the constant one. Intuitively, when the system
state or mode change rapidly, we should observe them very frequently and vice
versa.

A particular interest for a time-varying system is its periodicity. Periodic phe-
nomena are all around us, such as satellite orbit, seasons, wave vibration, etc.
Stochastic models involving periodicity have been studied by many authors (see
e.g. [1, 3, 22, 23, 27, 28, 29, 31]) due to their wide applications in many areas.
In addition, a simple generalization of the existing analysis techniques cannot be
applied to the time-varying observations, for stabilization of periodic SDEs.

Motivated by above discussion, this paper investigates how to stabilize a non-
autonomous periodic1 SDE with or without Markovian switching, by a periodic
feedback control based on periodic discrete-time observations, to achieve Lp(Ω ×
R+;Rn)-stability, pth moment asymptotic stability for p ≥ 2, and almost sure
asymptotic stability.

If the system coefficients and controller are all periodic, then it makes sense to
use periodic observations. As we know, the observation interval is the time length
between two observations. Define our periodic observation interval sequence to be
{τj}j≥1 such that

τkM+j = τj

for a positive integer M , ∀k = 0, 1, 2, · · · and j = 1, 2, · · · ,M . This means the
system is observed at time points 0, τ1, τ1 + τ2, τ1 + τ2 + τ3, · · · .

1We say an SDE is non-autonomous periodic if its coefficients change with time explicitly
periodically.
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Note that for any t ≥ 0, there is a positive integer k such that

k∑
j=1

τj ≤ t <
k+1∑
j=1

τj ,

then we can define a step function

δt :=

k∑
j=1

τj . (3)

Consequently, our controlled system regarding to (1) has the form

dx(t) =[f(x(t), r(t), t) + u(x(δt), r(δt), t)]dt+ g(x(t), r(t), t)dB(t). (4)

Similarly, given an unstable periodic SDE in the Itô sense

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), (5)

we can design a feedback control u and make the controlled system

dx(t) = [f(x(t), t) + u(x(δt), t)]dt+ g(x(t), t)dB(t) (6)

stable with appropriate observation frequencies.
By considering the time-varying property into the analysis, we increase the ob-

servation intervals. In other words, we reduce the observation frequency and the
cost of control.

The remainder of this paper is organised as follows. Section 2 explained the
notations. Sections 3 and 4 establish the theory for hybrid SDEs and single-mode
SDEs respectively. Before the conclusion in Section 6, Section 5 presents a numerical
example for illustration.

2. Notation. Let (Ω,F , {Ft}t≥0,P) be a complete probability space with filtra-
tion {Ft}t≥0 which is increasing and right continuous with F0 contains all P-null
sets. Let ∅ denote the empty set. Let R+ denote the set of all non-negative
real numbers [0,∞). We write the transpose of a matrix or vector A as AT .
Denote the m-dimensional Brownian motion defined on the probability space by
B(t) = (B1(t), · · · , Bm(t))T . For a vector x, |x| means its Euclidean norm. For

a matrix Q, its trace norm |Q| =
√

trace(QTQ) and its operator norm ‖Q‖ =
max{|Qx| : |x| = 1}. For a real symmetric matrix Q, λmin(Q) and λmax(Q) mean
its smallest and largest eigenvalues respectively. For a subset A of Ω, denote by IA
its indicator function; namely IA(ω) = 1 when ω ∈ A and 0 otherwise. Denote by
Lp(Ω;Rn) the family of Rn-valued random variables x such that E|x|p < ∞. For
a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Let r(t) for t ≥ 0 be a right-continuous Markov chain on the probability space
taking values in a finite state space S = {1, 2, · · · , N} with generator matrix Γ =
(γij)N×N , whose elements γij are the transition rates from state i to j for i 6= j and
γii = −

∑
j 6=i γij . We assume the Markov chain r(·) is independent of the Brownian

motion w(·). Define a positive number γ := −mini∈S γii.

For any t ∈ [
∑k
j=1 τj ,

∑k+1
j=1 τj), define a step function κt := τk+1. This means

δt ≤ t < δt + κt. For example, when t ∈ [0, τ1), we have δt = 0 and κt = τ1; when
t ∈ [τ1, τ1 + τ2), we have δt = τ1 and κt = τ2; when t ∈ [τ1 + τ2, τ1 + τ2 + τ3), we
have δt = τ1 + τ2 and κt = τ3; · · · . Obviously κt is a periodic step function of time.
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Define two positive parameters depending on the moment order p:

ρ =

{
( 32
p )

p
2 for p ∈ (1, 2),

[p(p−1)2 ]
p
2 for p ≥ 2.

and

ξ =

( 32
p )

p
2 for p ∈ (1, 2),(
pp+1

2(p−1)p−1

) p
2

for p ≥ 2.

3. SDEs with Markovian switching. Consider an n-dimensional periodic hy-
brid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (7)

on t ≥ 0, with initial values x(0) = x0 ∈ Lp(Ω;Rn) for p > 1 and r(0) = r0 ∈ S.
Here

f : Rn × S× R+ → Rn and g : Rn × S× R+ → Rn×m.

The given system may not be stable and our aim is to design a feedback control
u : Rn × S× R+ → Rn for stabilization.

The controlled system corresponding to (7) has the form

dx(t) =[f(x(t), r(t), t) + u(x(δt), r(δt), t)]dt+ g(x(t), r(t), t)dB(t). (8)

Assumption 3.1. Assume that f(x, i, t), g(x, i, t) and u(x, i, t) are all periodic
with respect to time t. Assume f , g, u and κt have a common period T .

The assumption that T is a period of κt means κt = κt+kT for k = 0, 1, 2, · · ·
and

∑M
j=1 τj = T .

Assumption 3.2. Assume that the coefficients f(x, i, t) and g(x, i, t) are both
locally Lipschitz continuous on x (see e.g. [19]), and they both satisfy the following
linear growth condition

|f(x, i, t)| ≤ K1(t)|x| and |g(x, i, t)| ≤ K2(t)|x| (9)

for all (x, i, t) ∈ Rn × S × R+, where K1(t) and K2(t) are periodic non-negative
continuous functions with period T .

Note (9) implies that

f(0, i, t) = 0 and g(0, i, t) = 0 (10)

for all (i, t) ∈ S× R+.

Assumption 3.3. Assume

|u(x, i, t)− u(y, i, t)| ≤ K3(t)|x− y| (11)

for all (x, y, i, t) ∈ Rn × Rn × S × R+, where K3(t) is a periodic non-negative
continuous function with period T . Moreover, we also assume

u(0, i, t) = 0 (12)

for all (i, t) ∈ S× R+.
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Assumption 3.3 implies that u(x, i, t) is globally Lipschitz continuous on x and
satisfies the following linear growth condition

|u(x, i, t)| ≤ K3(t)|x| (13)

for all (x, i, t) ∈ Rn × S× R+.
Let

K1 = max
0≤t≤T

K1(t), K2 = max
0≤t≤T

K2(t) and K3 = max
0≤t≤T

K3(t).

Denote the largest observation interval maxj≥1 τj by τmax. For stabilization
purpose, we define the following initial values

x(s) = x0, r(s) = r0, f(x, i, s) = f(x, i, 0),

u(x, i, s) = u(x, i, 0) and g(x, i, s) = g(x, i, 0)

for all (x, i, s) ∈ Rn × S× [−τmax, 0).
Notice that the controlled system (8) can be written as a stochastic differential

delay equation

dx(t) =
[
f(x(t), r(t), t) + u

(
x(t− η(t)), r(t− η(t)), t

)]
dt+ g(x(t), r(t), t)dB(t),

where η(t) = t − δt ∈ [0, τmax) is a Borel measurable function. Then the Lipschitz
condition and linear growth condition required by Assumptions 3.2 and 3.3 guar-
antees the existence and uniqueness of the solution and E|x(t)|p < ∞ for all t ≥ 0
and p > 1 (see e.g. Theorem 7.3 and page 304 in [19]).

Let V (x, i, t) be a Lyapunov function periodic with respect to t, and we require
V ∈ C2,1(Rn × S× R+;R+). Then define LV : Rn × S× R+ → R by

LV (x, i, t) =Vt(x, i, t) + Vx(x, i, t)[f(x, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, i, t)Vxx(x, i, t)g(x, i, t)] +

N∑
k=1

γikV (x, k, t). (14)

We impose an assumption on the Lyapunov function.

Assumption 3.4. Assume that there is a Lyapunov function V (x, i, t) and a pos-
itive continuous function λ(t) which have common period T , constants l > 0 and
p > 1 such that

LV (x, i, t) + l|Vx(x, i, t)|
p

p−1 ≤ −λ(t)|x|p (15)

for all (x, i, t) ∈ Rn × S× [0, T ].

Let λ = min0≤t≤T λ(t).
Let us divide [0, T ] into Z − 1 subintervals, where Z ≥ 2 is an arbitrary integer,

by choosing a partition {Tj}1≤j≤Z with T1 = 0 and TZ = T . Then we define the
following three step functions on t ≥ 0 with periodic T :

K̂1t = sup
Tj≤s≤Tj+1

K1(s) for Tj ≤ t < Tj+1,

K̂2t = sup
Tj≤s≤Tj+1

K2(s) for Tj ≤ t < Tj+1,

K̂3t = sup
Tj≤s≤Tj+1

K3(s) for Tj ≤ t < Tj+1, (16)

where j = 1, · · · , Z − 1.
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Define a periodic function 2

β(t) : = β(κt, t) = λ(t)− 1

p
(
p− 1

pl
)p−1

×
(
Kp

3 (t)23p−2(1− e−γκt) +
2p−1κ

p
2
t K̂

p
3t

1− 8p−1κpt K̂
p
3t

[23p−2(1− e−γκt) + 2p−1]

× [2p−1κ
p
2
t K

p
1 (t) + ρKp

2 (t) + 4p−1κ
p
2
t K

p
3 (t)]

)
. (17)

3.1. Main results.

Theorem 3.5. Fix the moment order p > 1. Let Assumptions 3.1, 3.2, 3.3 and
3.4 hold. Divide [0, T ] into Z − 1 subintervals with T1 = 0 and TZ = T . Choose the
observation interval sequence {τj}1≤j≤M sufficiently small such that κt ≤ Tj+1−Tj
for t ∈ [Tj , Tj+1) 3 where j = 1, 2, · · · , Z − 1 and

β(t) > 0 and κtK̂3t < 8−
p−1
p for ∀t ∈ [0, T ), (18)

where β(t) has been defined in (17). Then the controlled system (8) is Lp(Ω ×
R+;Rn)-stable in the sense ∫ ∞

0

E|x(s)|pds <∞ (19)

for all initial data x0 ∈ Rn and r0 ∈ S.

We will explain why such an observation interval sequence exists and how to
calculate it step by step after the proof.

Proof. Fix any x0 ∈ Rn and r0 ∈ S. Applying the generalized Itô formula to
V (x(t), r(t), t) gives

dV (x(t), r(t), t) =LV (x(t), r(t), t)dt+ dM(t)

for t ≥ 0, where M(s) is a continuous local martingale with M(0) = 0 and

LV (x(t), r(t), t)

=Vt(x(t), r(t), t) + Vx(x(t), r(t), t)[f(x(t), r(t), t) + u(x(δt), r(δt), t)]

+
1

2
trace[gT (x(t), r(t), t)Vxx(x(t), r(t), t)g(x(t), r(t), t)] +

N∑
k=1

γikV (x, k, t). (20)

Since V ∈ C2,1(Rn × S × R+;R+), we can use the generalized Itô formula and
get

EV (x(t), r(t), t) = V0 +

∫ t

0

ELV (x(s), r(s), s)ds, (21)

where V0 = V (x(0), r(0), 0).
We can rewrite LV (x(s), r(s), s) as

LV (x(s), r(s), s)

=LV (x(s), r(s), s)− Vx(x(s), r(s), s)[u(x(s), r(s), s)− u(x(δs), r(δs), s)]. (22)

2It can be seen that T is a period of β(t).
3In other words, the length of the subinterval cannot be shorter than the observation interval.
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By Young’s inequality, we can derive that

− Vx(x(s), r(s), s)[u(x(s), r(s), s)− u(x(δs), r(δs), s)]

≤
[
ε|Vx(x(s), r(s), s)|

p
p−1

] p−1
p

×
[
ε1−p|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

] 1
p

≤l|Vx(x(s), r(s), s)|
p

p−1

+
1

p
(
p− 1

pl
)p−1|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p, (23)

where l = p−1
p ε for ∀ε > 0.

Using the elementary inequality |a+b|p ≤ 2p−1(|a|p+ |b|p) for a, b ∈ R and p > 1,
we have

E|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

≤2p−1E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

+ 2p−1E|u(x(δs), r(s), s)− u(x(s), r(s), s)|p. (24)

According to Lemma 1 in [25], for any t ≥ t0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣∣∣r(t) = i) ≤ 1− e−γv. (25)

By Assumption 3.3, we have

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

=E
[
E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

∣∣∣Fδs)
]

≤E
[
2pKp

3 (s)|x(δs)|pE
(
I{r(s)6=r(δs)}|Fδs

)]
≤22p−1Kp

3 (s)(1− e−γκs)[E|x(s)|p + E|x(δs)− x(s)|p]. (26)

Substituting (26) into (24) gives

E|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

≤23p−2Kp
3 (s)(1− e−γκs)E|x(s)|p

+ [23p−2Kp
3 (s)(1− e−γκs) + 2p−1Kp

3 (s)]E|x(δs)− x(s)|p. (27)

Substitute (27) into (23). Then substitute the result into (22). By Assumption
3.4, we obtain that

ELV (x(s), r(s), s)

≤− [λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γκs)]E|x(s)|p

+
1

p
(
p− 1

pl
)p−1Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(δs)− x(s)|p. (28)

Note that t − δt ≤ κt for all t ≥ 0. By the Itô formula, Hölder’s inequality, the
Burkholder-Davis-Gundy inequality (see e.g. [15, p.40]) and [15, Theorem 7.1 on
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page 39], we obtain that (see e.g. [6])

E|x(t)− x(δt)|p ≤ 2p−1κ
p−2
2

t

× E
∫ t

δt

[
κ

p
2
t |f(x(s), r(s), s) + u(x(δs), r(δs), s)|p + ρ|g(x(s), r(s), s)|p

]
ds. (29)

By Assumptions 3.2 and 3.3, we have that for any s ∈ [δs, δs + κs),

E|x(s)− x(δs)|p

≤2p−1κ
p−2
2

s

∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]E|x(z)|pdz

+ 8p−1κp−1s

∫ s

δs

Kp
3 (z)dz[E|x(s)− x(δs)|p + E|x(s)|p].

Since condition (18) guarantees 8p−1κpsK̂
p
3s < 1, we can rearrange it and get

E|x(s)− x(δs)|p

≤ 8p−1κpsK̂
p
3s

1− 8p−1κpsK̂
p
3s

E|x(s)|p

+
2p−1κ

p−2
2

s

1− 8p−1κpsK̂
p
3s

∫ s

δs

[
2p−1κ

p
2
s K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdz. (30)

Recall τmax = maxj≥1 τj . Let x(s) = x0, r(s) = r0, K1(s) = K1(0), K2(s) =
K2(0) and K3(s) = K3(0) for all (x, i, s) ∈ Rn × S × [−τmax, 0). In addition, note

that for ∀z ∈ [δs, s], we have κz = κs and K3(s) ≤ K̂3s = K̂3z. Since s − κs < δs,
it’s easy to show that for a non-negative bounded function F (t),

∫ t

0

∫ s

δs

F (z)dzds ≤
∫ t

0

∫ s

s−κs

F (z)dzds

≤
∫ t

−κz

F (z)

∫ z+κz

z

dsdz ≤
∫ t

−κs

κzF (z)dz ≤ C +

∫ t

0

κzF (z)dz. (31)

Here we explain the second inequality:
∫ t
0

∫ s
s−κs

F (z)dzds is an integral on domain

{z × s : s − κs ≤ z ≤ s, 0 ≤ s ≤ t}. In other words, z ≤ s ≤ z + κs. Then we can
derive that −κs ≤ s− κs ≤ z ≤ s ≤ t. Notice the integral domain

{z × s : s− κs ≤ z ≤ s, 0 ≤ s ≤ t} ⊂ {z × s : z ≤ s ≤ z + κs,−κs ≤ z ≤ t}.
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Recall that κz = κs, we can obtain the second inequality in (31).
Then ∫ t

0

Kp
3 (s)[23p−2(1− e−γκs) + 2p−1]

2p−1κ
p−2
2

s

1− 8p−1κpsK̂
p
3z

×
∫ s

δs

[2p−1κ
p
2
s K

p
1 (z) + ρKp

2 (z)]E|x(z)|pdzds

≤
∫ t

0

∫ s

δs

K̂p
3z[2

3p−2(1− e−γκz ) + 2p−1]
2p−1κ

p−2
2

z

1− 8p−1κpzK̂
p
3z

×
[
2p−1κ

p
2
z K

p
1 (z) + ρKp

2 (z)
]
E|x(z)|pdzds

≤C +

∫ t

0

2p−1κ
p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

[
23p−2(1− e−γκs) + 2p−1

]
×
[
2p−1κ

p
2
s K

p
1 (s) + ρKp

2 (s)
]
E|x(s)|pds.

where, and in the remaining part of this paper, C denotes a positive constant that
may change from line to line but its special form is not used.

So ∫ t

0

Kp
3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(s)− x(δs)|pds

≤C +

∫ t

0

2p−1κ
p
2
s K̂

p
3s

1− 8p−1κpsK̂
p
3s

[
23p−2(1− e−γκs) + 2p−1

]
×
[
2p−1κ

p
2
s K

p
1 (s) + ρKp

2 (s) + 4p−1κ
p
2
s K

p
3 (s)

]
E|x(s)|pds. (32)

Substitute (32) into (28), then substitute the result into (22). By (17), we have

EV (x(t), r(t), t)

=V0 +

∫ t

0

ELV (x(s), r(s), s)ds

≤C −
∫ t

0

[
λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γκs)
]
E|x(s)|pds

+

∫ t

0

1

p
(
p− 1

pl
)p−1Kp

3 (s)[23p−2(1− e−γκs) + 2p−1]E|x(s)− x(δs)|pds

≤C −
∫ t

0

β(s)E|x(s)|pds.

By definition of the Lyapunov function V , we have that for ∀t ≥ 0,

0 ≤ EV (x(t), r(t), t) ≤ C −
∫ t

0

β(s)E|x(s)|pds.

Then
∫ t
0
β(t)E|x(t)|pdt ≤ C. Let β = inf0≤t<T β(t)(> 0). Then we have

β

∫ ∞
0

E|x(s)|pds ≤
∫ ∞
0

β(t)E|x(t)|pdt ≤ C.

Hence we obtain assertion (19).
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We use the same observation frequency in one subinterval of [0, T ]. Observation
interval sequence can be calculated4 in three steps:

Step 1. The first step is to divide [0, T ] into Z − 1 subintervals and we propose
two ways to do it.
One is simple even division: all Z − 1 subintervals have the same length and Tj =
j−1
Z−1T for 1 ≤ j ≤ Z.

The other way is by an auxiliary function τ̃a(t), which satisfies

0 ≤λ(t)− 1

p
(
p− 1

pl
)p−1

(
Kp

3 (t)23p−2(1− e−γτ̃a(t))

+
2p−1τ̃a

p
2 (t)Kp

3 (t)

1− 8p−1τ̃a
p(t)Kp

3 (t)
[23p−2(1− e−γτ̃a(t)) + 2p−1]

× [2p−1τ̃a
p
2 (t)Kp

1 (t) + ρKp
2 (t) + 4p−1τ̃a

p
2 (t)Kp

3 (t)]
)
. (33)

Notice that, when τ̃a = 0, the right-hand-side of (33) equals to λ(t) and it decreases
as τ̃a(t) increases. To get a low observation frequency (wide observation interval),
we want to set τ̃a(t) as large as possible with (33) holds. Then divide [0, T ] into
Z − 1 subintervals according to the shape of τ̃a(t). We want the supremum and
the infimum of τ̃a(t) in each subinterval are relatively close. This means, if τ̃a(t)
changes slowly over a time interval, then we can set a wide subinterval in this time
interval; otherwise if τ̃a(t) changes rapidly over a time interval, then we need to set
several narrow subintervals in this time interval.

Step 2. For the jth subinterval (i.e., for t ∈ [Tj , Tj+1)), find a function τ̃j(t) ∈
(0, 8−

p−1
p K̂3t) with inft∈[Tj ,Tj+1) τ̃j(t) > 0 such that

inf
t∈[Tj ,Tj+1)

β(τ̃j(t), t) > 0, (34)

where β has been defined in (17).
Find τ̃j(t) for all 1 ≤ j ≤ Z − 1.

Step 3. For the jth subinterval (1 ≤ j ≤ Z − 1), choose a positive integer Nj
such that

Tj+1 − Tj
Nj

< inf
t∈[Tj ,Tj+1)

τ̃j(t).

Then let

κj =
Tj+1 − Tj

Nj
.

So the observation interval is κj and we observe Nj times on the jth subinterval.
In other words, the system is observed at t = Tj , Tj + κj , Tj + 2κj , · · · , Tj +Njκj ,
where Tj +Njκj = Tj+1.
Find Nj and κj for all 1 ≤ j ≤ Z − 1.

Consequently, our observation interval sequence for one period [0, T ) is:
τ1 = κ1, · · · , τN1 = κ1,
τN1+1 = κ2, · · · , τN1+N2 = κ2,
...
τN1+···+NZ−2+1 = κZ−1, · · · , τN1+···+NZ−1

= κZ−1.
Besides, we always observe once at t = kT where k = 0, 1, 2, · · · .

4 Obviously there are other ways to guarantee that the observation interval sequence satisfies

the conditions in Theorem 3.5. Here we only show one method.
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Now let us explain why we can find a positive sequence satisfying condition

(18). When observation interval κt = 0, β(t) = λ(t). When κt < 8−
p−1
p K̂3t , κt,

K1(t), K2(t), K3(t) and γ are all negative related to β(t). Increase of κt leads to
decrease of β(t). Large values of K1(t), K2(t) and large K3(t) would lead to small

κt, to guarantee β(t) > 0 for any 0 ≤ t < T . Notice that increase of K̂3t leads to
decrease of β(t). Then τ̃a(t) defined in (33) is larger than the observation interval.
Specifically,

0 < min
1≤j≤Z−1

κj ≤ min
1≤j≤Z−1

inf
t∈[Tj ,Tj+1)

τ̃j(t) ≤ inf
0≤t<T

τ̃a(t).

Under the condition (18), large K1(t),K2(t) and K3(t) would lead to small κt.
Notice that large values of K1(t),K2(t) and K3(t) indicate large values of coeffi-
cients, which imply rapid change of the system state x(t). In other words, (18)
requires that when system changes fast, observations need to be more frequently.
Similarly, a large γ is corresponding to a small κt, under the condition (18). This
means if the system mode switches rapidly, then observations need to be very fre-
quently.

Theorem 3.6. Fix the moment order p ≥ 2. Under the same assumptions and
conditions of Theorem 3.5, the solution of the controlled system (8) satisfies

lim
t→∞

E|x(t)|p = 0 (35)

and

lim
t→∞

x(t) = 0 a.s. (36)

for any initial data x0 ∈ Rn and r0 ∈ S. In other words, the controlled system (8)
is asymptotically stable in pth moment and almost surely.

Proof. Fix any x0 ∈ Rn and r0 ∈ S. By the Itô formula, Assumptions 3.2 and 3.3,
we have that for any t ≥ 0,

E(|x(t)|p) ≤|x0|p+

∫ t

0

(
pK1E|x(s)|p+pK3E

[
|x(s)|p−1|x(δs)|

]
+θK2

2E|x(s)|p
)
ds,

(37)

where θ = p(p−1)
2 .

By the Young inequality, we get

|x(s)|p−1|x(δs)| ≤
2p−1

pp

[
[(p− 1)p + 2p−1]|x(s)|p + 2p−1|x(s)− x(δs)|p

]
. (38)

Substituting this into (37) gives

E(|x(t)|p) ≤ |x0|p + C

∫ t

0

E|x(s)|pds+ C

∫ t

0

E|x(s)− x(δs)|pds. (39)

Recall that C’s denote positive constants that may change from line to line.
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Denote sup0≤t<T (κtK̂3t) by H, then (18) guarantees 8
p−1
p H < 1. By (30) and

(31), we have∫ t

0

E|x(s)− x(δs)|pds

≤8p−1τpmaxK3
p

1− 8p−1Hp

∫ t

0

E|x(s)|pds

+
2p−1τ

p−2
2

max (2p−1τ
p
2
maxK1

p
+ ρK2

p
)

1− 8p−1Hp

∫ t

0

∫ s

δs

E|x(z)|pdzds

≤C +
2p−1τ

p
2
max

1− 8p−1Hp
[2p−1τ

p
2
maxK1

p
+ ρK2

p
+ 4p−1τ

p
2
maxK3

p
]

∫ t

0

E|x(s)|pds. (40)

Substituting this into (39) yields

E|x(t)|p ≤ C+|x0|p + C

∫ t

0

E|x(s)|pds. (41)

So by Theorem 3.5, we have

E|x(t)|p ≤ C ∀t ≥ 0. (42)

In addition, it follows from the Itô formula that

E|x(t2)|p − E|x(t1)|p

≤
∫ t2

t1

(
pK1E|x(t)|p + pK3E

[
|x(t)|p−1|x(δt)|

]
+ θK2

2E|x(t)|p
)
dt.

Then by (38), (40) and (42), we get that for any 0 ≤ t1 < t2 <∞,∣∣∣E|x(t2)|p − E|x(t1)|p
∣∣∣ ≤ C ∫ t2

t1

E|x(t)|pdt ≤ C(t2 − t1). (43)

Apply Barbalat’s lemma (see e.g. [24, page 123]) to
∫ t
0
E|x(s)|pds, by combining

the uniform continuity of E|x(t)|p, which is shown in (43), with Theorem 3.5. Thus
we can obtain assertion (35). The proof of almost sure asymptotic stability (36)
is similar to the proof of Theorem 2 in [11] and Theorem 3.4 in [34]. So we only
present the sketch of the proof in the Appendix.

In practice, a frequent choice of Lyapunov functions is quadratic functions, for
example, V (x(t), r(t), t) = (xT (t)Qr(t)x(t))

p
2 where Qr(t) are positive-definite n×n

matrices for p ≥ 2. By calculating its partial derivatives, we propose the following
alternative assumption and corollary.

Assumption 3.7. Assume that there exist positive-definite symmetric matrices
Qi ∈ Rn×n (i ∈ S) and a periodic positive continuous function b(t) such that

p(xTQix)
p
2−1
(
xTQi[f(x, i, t) + u(x, i, t)] +

1

2
trace[gT (x, i, t)Qig(x, i, t)]

)
+ p(

p

2
− 1)[xTQix]

p
2−2|gTQix|2 +

N∑
j=1

γij [x
TQjx]

p
2 ≤ −b(t)|x|p, (44)

for all (x, i, t) ∈ Rn × S× [0, T ].

We can see that T is a period of b(t). Let b = min0≤t≤T b(t).
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Corollary 1. If Assumption 3.4 are replaced by Assumption 3.7, then Theorems 3.5

and 3.6 still hold for p ≥ 2 with λ(t) = b(t)− ld where d = [pmaxi∈S λ
p
2
max(Qi)]

p
p−1

and l < b/d.

4. Single-mode SDEs. We also establish similar theory for single-mode SDEs.
Consider an n-dimensional periodic SDE

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (45)

on t ≥ 0, with initial value x(0) = x0 ∈ Rn. Here

f : Rn × R+ → Rn and g : Rn × R+ → Rn×m.

If the given system is not stable, then we can design a feedback control u : Rn×R+ →
Rn to make the controlled system

dx(t) =
(
f(x(t), t) + u(x(δt), t)

)
dt+ g(x(t), t)dB(t) (46)

stable.

Assumption 4.1. Assume that f(x, t), g(x, t) and u(x, t) are all periodic with
respect to time t. Assume f , g, u and κt have a common period T .

Assumption 4.2. Assume that the coefficients f(x, t) and g(x, t) are both locally
Lipschitz continuous on x. We also assume that f(x, t) and g(x, t) both satisfy the
following linear growth conditions on x

|f(x, t)| ≤ K1(t)|x| and |g(x, t)| ≤ K2(t)|x| (47)

for all (x, t) ∈ Rn×R+, where K1(t) and K2(t) are periodic non-negative continuous
functions with period T .

Assumption 4.3. Assume

|u(x, t)− u(y, t)| ≤ K3(t)|x− y| (48)

for all (x, y, t) ∈ Rn × Rn × R+, where K3(t) is a periodic non-negative continuous
function with period T . We also assume that

u(0, t) = 0 (49)

for all t ∈ R+.

Let V (x(t), t) ∈ C2,1(Rn×R+;R+) be a Lyapunov function periodic with respect
to t. Then define LV : Rn × R+ → R by

LV (x, t) =Vt(x, t) + Vx(x, t)[f(x, t) + u(x, t)] +
1

2
trace[gT (x, t)Vxx(x, t)g(x, t)].

(50)

Assumption 4.4. Assume that there is a Lyapunov function V (x, t) and a positive
continuous function λ(t) which have common period T , constants l > 0 and p > 1
such that

LV (x, t) + l|Vx(x, t)|
p

p−1 ≤ −λ(t)|x|p (51)

for all (x, t) ∈ Rn × R+.
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Theorem 4.5. Fix the moment order p > 1. Let Assumptions 4.1, 4.2, 4.3 and
4.4 hold. Divide [0, T ] into Z − 1 subintervals with T1 = 0 and TZ = T . Choose the
observation interval sequence {τj}1≤j≤M sufficiently small such that κt ≤ Tj+1−Tj
for t ∈ [Tj , Tj+1) where j = 1, 2, · · · , Z − 1 and

β(t) > 0 and κtK̂3t < 8−
p−1
p for ∀t ∈ [0, T ), (52)

where

β(t) := β(κt, t) = λ(t)− [2(p− 1)]p−1K̂p
3s

pp(1− 8p−1κpt K̂
p
3t)
l1−pκ

p
2
t

×
[
2p−1κ

p
2
t K

p
1 (t) + ρKp

2 (t) + 4p−1κ
p
2
t K

p
3 (t)

]
. (53)

Then the controlled system (46) satisfies (19) for all initial data x0 ∈ Rn.

Theorem 4.5 can be proved in the same way as Theorem 3.5.

Theorem 4.6. Fix the moment order p ≥ 2. Under the same assumptions of The-
orem 4.5, the solution of the controlled system (46) satisfies (35) and (36) for any
initial data x0 ∈ Rn. In other words, the controlled system (46) is asymptotically
stable in pth moment and almost surely.

Assumption 4.7. Assume that there exist positive-definite symmetric matrix Q ∈
Rn×n and a periodic positive continuous function b(t) such that

p(xTQx)
p
2−1
(
xTQ[f(x, t) + u(x, t)] +

1

2
trace[gT (x, t)Qg(x, t)]

)
+ p(

p

2
− 1)[xTQx]

p
2−2|gTQx|2 ≤ −b(t)|x|p, (54)

for all (x, t) ∈ Rn × [0, T ).

Corollary 2. If Assumption 4.4 are replaced by Assumption 4.7, then Theorems

4.5 and 4.6 still hold for p ≥ 2, with λ(t) = b(t) − ld where d = [pλ
p
2
max(Q)]

p
p−1 ,

l < b/d and b = inf0≤t<T b(t).

5. Example. Now we illustrate our theory with an example.
Consider a 2-dimensional SDE

dx(t) = F (x(t), t)x(t)dt+G(t)x(t)dB(t) (55)

on t ≥ 0, where x(t) = (x1(t), x2(t))
T

and B(t) is a scalar Brownian motion. Here
the coefficients are

F (x, t) = [1.5 + cos(
π

6
t)]

[
0 sin(x1)

cos(x2) 0

]
and

G(t) = [1 + sin(
π

6
t− 2.8)]

[
0.5 −0.5
−0.5 0.5

]
.

The upper plot in Figure 1 shows that the original system (55) is not stable.
Coefficients f(x, t) = F (x(t), t)x(t) and g(x, t) = G(t)x(t) have common period

T = 12. Assumption 4.2 holds with K1(t) = 1.5 + cos(π6 t) and K2(t) = 1 + sin(π6 t−
2.8). Then we can design a feedback control u(x, t) and find an observation intervals
to make the controlled system

dx(t) = [F (x(t), t)x(t) + u(x(δt), t)]dt+G(t)x(t)dB(t) (56)

mean square asymptotically stable.
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Figure 1. Sample averages of |x|2 from 500 simulated paths by the
Euler-Maruyama method with step size 1e− 5 and random initial
values. Upper plot shows original system (55); lower plot shows
controlled system (56) for mean square asymptotically stabilization
with corresponding observation frequencies.

Let u(x, t) = A(x, t)x where A : R2 × R+ → R2×2 with bounded norm. Then
assumption 4.3 holds with K3(t) ≥ maxx∈R2 ‖A(x, t)‖. Let V (x, t) = xTQx where
Q = I, the 2×2 identity matrix, then Corollary 2 can be applied. The left-hand-side
of (54) is

2[xT (f(x, t) + u(x, t)) +
1

2
gT (x, t)g(x, t)]

=2xT (F (x, t) +A(x, t))x+ xTGT (t)G(t)x

≤xT Q̃x ≤ λmax(Q̃)|x|2, (57)

where
Q̃ = F (x, t) + FT (x, t) +A(x, t) +AT (x, t) +GT (t)G(t).

To satisfy Assumption 4.7, we design A(x, t) to make Q̃ negative definite.
Let

A(x, t) =

[
B1(x, t) B2(x, t)
B2(x, t) B1(x, t) + 0.1 sin(π6 t)

]
,

where B1(x, t) = −0.25K2
2 (t) − 0.5 and B2(x, t) = −0.25K1(t)K2

2 (t)[sin(x1) +
cos(x2)]. Then

Q̃ =

[
−1 0
0 −1 + 0.2 sin(π6 t)

]
.

So b(t) = −λmax(Q̃) = min{1− 0.2 sin(π6 t), 1}, b = 0.8 and d = 4.
Choose l = 0.1, then λ(t) = b(t)− 0.4. Obviously, T = 12 is a common period of

f, g, u, b and λ. Figure 2 shows parameters K1(t), K2(t), K3(t) and λ(t).
Now we calculate {τj}j≥1 for mean square asymptotic stabilization. The auxil-

iary function τ̃a(t) is calculated through

λ(t) ≥ [2(p− 1)]p−1

pp(1− 8p−1τ̃a
p(t)Kp

3 (t))
l1−pKp

3 (t)τ̃a
p
2 (t)

×
[
2p−1τ̃a

p
2 (t)Kp

1 (t) + ρKp
2 (t) + 4p−1τ̃a

p
2 (t)Kp

3 (t)
]
.
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Figure 2. Plot of parameters K1(t), K2(t), K3(t) and λ(t).

It’s plotted as a dashed blue line in Figure 3. Then according to its shape, we divide

Figure 3. Plot of observation intervals. The dashed blue line
shows the auxiliary function and the solid orange line is observation
interval sequence.

[0, 12] into 10 subintervals. The calculated observation interval for each subinterval
is shown as the solid orange line in Figure 3. Table 1 presents the partition, the
observation interval and observation times for each subinterval.

Table 1 shows that on the first subinterval [0, 0.5), the system needs to be ob-
served once every 0.05556 time units for 9 times; the 6th row means that when
t ∈ [3 + 12k, 4.27 + 12k) for k = 0, 1, 2, · · · , the system needs to be observed once
every 0.21167 time units for 6 times.

This observation frequency setting gives min0≤t≤T β(t) = 1.98e − 06 > 0, so all
the conditions on observation intervals have been satisfied. By Corollary 2, the
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Table 1. Period partition, observation interval and observation
times in each subinterval.

Subinterval Observation interval Observation times
[0, 0.5) 0.05556 9
[0.5, 1) 0.1 5
[1, 2.42) 0.142 10
[2.42, 3) 0.19333 3
[3, 4.27) 0.21167 6
[4.27, 5) 0.10429 7
[5, 5.48) 0.06 8

[5.48, 6.37) 0.01745 51
[6.37, 11.28) 0.00164 2988
[11.28, 12) 0.01714 42

controlled system (56) is asymptotically stable in mean square and almost surely.
In addition, the lower plot of Figure 1 agrees with it.

The largest and the smallest observation intervals are 0.00164 and 0.21167 re-
spectively. Existing theory gives a constant observation interval 0.00089 [4, Chapter
3]. Our shortest observation intervals are still wider than the constant one. This
is because parameters K1(t), K2(t), K3(t) and λ(t) do not reach their minimum
values at the same time point, which can be seen from Figure 2.

6. Conclusion. This paper has discussed the asymptotic stabilization of periodic
SDEs by feedback control based on periodic discrete-time observations. The sta-
bilities analyzed include Lp-stability for p > 1, asymptotic stability in pth moment
for p ≥ 2, and almost sure asymptotic stability.

The main contributions of this paper are: (1) considering the time-varying prop-
erty of the system into stability analysis and using time-varying observation fre-
quencies for stabilization of periodic SDEs; (2) reducing the observational cost for
control by reducing the observation frequencies dramatically.

Appendix. Following is the sketch of the proof of assertion (36).

Proof. It follows from Theorem 3.5 that

lim inf
t→∞

|x(t)| = 0 a.s. (58)

We claim that
lim
t→∞

|x(t)| = 0 a.s. (59)

Otherwise, we must have

P
(

lim sup
t→∞

|x(t)| > 0
)
> 0.

Consequently, for event Ω1 :=
{

lim supt→∞ |x(t)| > 2ε
}

, we can find a number

ε > 0 such that
P(Ω1) ≥ 3ε. (60)

Let h > |x0| and τh = inf{t ≥ 0 : |x(t)| ≥ h} with inf ∅ =∞.
Notice that

E|x(t ∧ τh)|p = hpP(τh ≤ t) + E
(
|x(t)|pI{t < τh}

)
. (61)
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By (37), we have that for any t ≥ 0,

E(|x(t ∧ τh)|p)

≤|x0|p +

∫ t

0

(
pK1E|x(s)|p + pK3E

[
|x(s)|p−1|x(δs)|

]
+ θK2

2E|x(s)|p
)
ds.

If follows from (38), (39), (40), (41) and Theorem 3.5 that as t, h → ∞, we still
have

E|x(t ∧ τh)|p ≤ C.
Then by (61), we have

hpP(τh <∞) ≤ C.
Choose h sufficiently large so that P(τh <∞) ≤ C

hp ≤ ε.
Let Ω2 = {|x(t)| < h for all 0 ≤ t <∞}. Then P(Ω2) ≥ 1− ε. By (60), we have

P(Ω1 ∩ Ω2) ≥ 2ε. (62)

Define a sequence of stopping times:

α1 = inf{t ≥ 0 : |x(t)|p ≥ 2ε},
α2k = inf{t ≥ α2k−1 : |x(t)|p ≤ ε}, k = 1, 2, · · · ,

α2k+1 = inf{t ≥ α2k : |x(t)|p ≥ 2ε}, k = 1, 2, · · · .

By definitions of α2k−1 and α2k, we have |x(t)|p ≥ ε for α2k−1 ≤ t ≤ α2k. Hence
by Theorem 3.5, we can derive that

∞>E
∫ ∞
0

|x(t)|pdt≥ ε
∞∑
i=1

E
(
I{α2k−1<∞,τh=∞}[α2k − α2k−1]

)
. (63)

Let F (t) = f(x(t), r(t), t) + u(x(δt), r(δt), t) and G(t) = g(x(t), r(t), t) for t ≥
0. By Assumptions 3.2 and 3.3, there is a Kh > 0 for any h > 0 such that
|F (t)|p ∨ |G(t)|p ≤ Kh for all t ≥ 0 and |x(t)| ∨ |x(δt)| ≤ h.

We can obtain from Hölder’s inequality and the Burkholder-Davis-Gundy in-
equality that for any s > 0,

E
(
IA sup

0≤t≤s

∣∣∣x(τh∧(α2k−1+t))−x(τh∧α2k−1)
∣∣∣p) ≤2p−1Khs

p
2 (s

p
2 + ξ), (64)

where A = {τh ∧ α2k−1 <∞}.
Use the elementary inequality |ap − bp| ≤ p|a− b|(ap−1 + bp−1) for ∀a, b ≥ 0 and

p ≥ 1 (see e.g. [19, page 53]). Note that
∣∣∣|x| − |y|∣∣∣ ≤ |x− y| for any x, y ∈ Rn. Let

θ = ε
2php−1 , then we have∣∣∣|x|p − |y|p∣∣∣ < ε whenever |x− y| < θ, |x| ∨ |y| ≤ h. (65)

Choose s sufficiently small for 2p−1Khs
p
2 (s

p
2 + ξ) < θ−pε. By Chebyshev’s inequal-

ity and (64), we have

P
(
{α2k−1 <∞, τh =∞} ∩

{
sup

0≤t≤s
|x(α2k−1 + t)− x(α2k−1)| ≥ θ

})
≤ ε. (66)

It can be seen from definitions of Ω1 and Ω2, (62) and (66) that

P
(
{α2k−1<∞,τh=∞}∩

{
sup

0≤t≤s
|x(α2k−1+t)−x(α2k−1)|<θ

})
≥ ε.
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Let

Ω̃k =
{

sup
0≤t≤s

||x(α2k−1 + t)|p − |x(α2k−1)|p| < ε
}
.

Then (65) implies that

P
(
{α2k−1 <∞, τh =∞} ∩ Ω̃k

)
≥ ε. (67)

It follows from the definition of αk, (63), (65) and (67) that

∞ > ε

∞∑
i=1

E
(
I{α2k−1<∞,τh=∞}[α2k − α2k−1]

)
≥ εs

∞∑
i=1

P
(
{α2k−1 <∞, τh =∞} ∩ Ω̃k

)
=∞,

which is a contradiction. Hence (59) must hold. The proof is complete.
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