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Abstract

Recently a discrete unified gas kinetic scheme (DUGKS) in finite-volume formulation based on

the Boltzmann model equation is developed for gas flows in all flow regimes. The original DUGKS

is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of

binary gas mixtures of Maxwell molecules based on the AAP kinetic model [P. Andries et al., J.

Stat. Phys. 106, 993 (2002)]. A particular feature of the method is that the flux at each cell

interface is evaluated based on the characteristic solution of the kinetic equation itself, thus the

numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the

implicit treatment of the collision term enable the time step to be free from the restriction of the

relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to

determine the interaction parameters appearing in the equilibrium distribution function, which can

be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme,

including the shock structure problem under different Mach numbers and molar concentrations, the

channel flow driven by small gradient of pressure, temperature or concentration, the plane Couette

flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The

results are compared with those from other reliable numerical methods. The results show that the

proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.
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I. INTRODUCTION

Rarefied gas mixtures flows exist widely in nature and practical applications, such as

chemical reactions, evaporation-condensation and the Micro-Electro-Mechanical-System

(MEMS). The rarefaction degree of gas flows is normally characterized by the Knudsen

number (Kn), which is defined as the ratio of the mean free path of gas molecules to the

characteristic length of the system. The conventional fluid dynamics models, such as the Eu-

ler equations and the Navier-Stokes equations, are valid for continuum flows (Kn < 0.001),

but for flows with relative large Kn, non-equilibrium effects will appear and continuum

models become invalid [1].

Alternatively, the Boltzmann equation can be used to describe the gas mixtures flows in

all regimes. But it is difficult to obtain the accurate solutions of the Boltzmann equation

directly due to the complicated collision term. Conventionally, the Direct Simulation Monte

Carlo (DSMC) method was employed to investigate non-equilibrium behaviors of the rarefied

gas mixtures in many studies, e.g., [2–5], which is a prevailing numerical technique for

simulating moderate and highly rarefied gas flows. However, the streaming and collision

processes of the DSMC are decoupled, such that the time step and mesh size are limited by

the molecular collision time and the mean free path, respectively [6]. This limitation leads

to expensive computational costs for continuum and near-continuum flows. It is noted that

some efforts have been made to reduce these difficulties [7, 8]. Besides the DSMC method,

some deterministic numerical methods for the Boltzmann equation, such as [9–12], have been

applied to gas mixtures flows with simple geometries. These deterministic methods can offer

accurate solutions of the full Boltzmann equation, but are usually rather complicated and

computationally expensive.

Some efforts have been devoted to simplify the full Botlzmann equation for gas mixtures

by replacing the full collision operator with certain simplified models. Compared with the

single-species kinetic model equations, the non-unitary mass ratio between different molec-

ular species increases the difficulty. One of such models is the McCormack model [13] which

linearizes the nonlinear collision term under the assumption that the systems only slight

deviate from equilibrium; it is noted that extension to nonlinear problems has also been

made recently [14, 15]. Another simplified model is the so called AAP model [16] in which

the collision term is modeled by a single Bhatnagar-Gross-Krook (BGK) [17] operator con-
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sidering both self-collision and cross-collision effects. Owing to its simple formulation, the

AAP model has been applied to a number of rarefied mixture flows [18–21].

Based on the kinetic models, some numerical schemes have been developed, such as the

lattice Boltzmann method (LBM) [22–24] and the discrete velocity methods (DVM) [25–27].

Particularly, a unified gas kinetic scheme (UGKS) for binary gas mixtures of hard sphere

molecules and Maxwell molecules has been constructed [28, 29] for all flow regimes based on

the AAP model. The original UGKS is designed for single-species gas flows covering differ-

ent flow regimes [30, 31], which is a finite-volume scheme for the discrete velocity Boltzmann

model equation. A distinctive feature of the UGKS is that the reconstruction of the nu-

merical flux is based on the local analytical characteristic solution of the kinetic equation

rather than interpolation, such that the numerical dissipation is small. Furthermore, the

semi-implicit discretization of the collision term in UGKS enables it to be unified stable,

i.e., the time step is not limited by the mean-collision time. The UGKS also has the nice

asymptotic preserving (AP) property [32], i.e., it solves the Navier-Stokes equations in the

continuum flow regime.

Recently, another unified kinetic method, i.e., the discrete unified gas kinetic scheme

(DUGKS) [33, 34] was developed for single-species gas flows covering different flow regimes.

The DUGKS shares all the advantages of the UGKS, but some apparent differences also

exist between the two schemes. Firstly, they achieve the characteristic solution by different

approach: the UGKS uses an analytical temporal-spatial integral solution of the governing

equation, while the DUGKS uses a discrete characteristic solution which is much simpler

than the analytical integral one. Secondly, in the UGKS, flow variables are required to

be updated first to evaluate explicitly the implicit treatment of the collision term, while

the DUGKS removes the implicitness by introducing a new distribution function that is

tracked in implementation. The above differences make the DUGKS more efficient than the

UGKS [28]. Compared with the LBM, the computational cost of the DUGKS is somewhat

expensive with the same uniform mesh, but is less expensive if a nonuniform mesh is em-

ployed [35]. The DUGKS has already been applied successfully to flows of single-species

gases from continuum to rarefied regimes [36–39]. Recently, some extensions of DUGKS

to complex flows have also been made. For example, a DUGKS for two-phase flows was

proposed based on the phase-field theory [40]. Another possible extension is for flows in

porous media, by making use of unstructured meshes like the finite-volume LBM [41, 42].
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The aim of this work is to extend the DUGKS to binary gas mixtures of Maxwell molecules

based on the AAP model. The remaining part of this paper is organized as follows. Section 2

will introduce the AAP model for binary gas mixtures. In Sec. 3, the DUGKS will be

constructed based on the AAP model, and in Sec. 4 several numerical tests are performed.

Finally, a brief summary is given in Sec. 5.

II. THE AAP MODEL FOR GAS MIXTURES

The Boltzmann equation for a binary gas mixture of species A and B can be written

as [43],
∂fα
∂t

+ ξ ·∇fα = Qα(f, f), (1)

with

Qα(f, f) =
∑
α=A,B

Qαβ(fα, fβ), Qαβ(fα, fβ) =

∫
R3

∫
B+

(f ′αf
′
β∗−fαfβ∗)Bαβ(N ·V , |V |)dξ∗dN ,

(2)

where the Greek letters α and β will be used symbolically to represent the gas species, i.e.,

{α, β} = {A,B}; fα ≡ fα(x, ξ, t) represents the distribution function of species α with

particle velocity ξ at position x and time t in 3-dimensional physical space; Qα(f, f) is the

Boltzmann collision operator for species α, Bαβ(N · V , |V |) is the collision kernel which

is decided by the intermolecular force between species α and β, ξ and ξ∗ are pre-collision

velocities, N is a unit vector and B+ is the semi-sphere defined by N · V = 0, where V is

the relative velocity

V = ξ − ξ∗. (3)

From conservation laws of momentum and energy:mαξ +mβξ∗ = mαξ
′ +mβξ

′
∗,

mα|ξ|2 +mβ|ξ∗|2 = mα|ξ′|2 +m|ξ
′
∗|2,

(4)

the post-collision velocities ξ′ and ξ′∗ can be written asξ
′ = ξ − 2mαβ

mα
N [(ξ − ξ∗) ·N ],

ξ′∗ = ξ∗ +
2mαβ
mβ

N [(ξ − ξ∗) ·N ],
(5)
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with the reduced mass being

mαβ =
mαmβ

(mα +mβ)
, (6)

in which mα and mβ are the molecular masses of species α and β, respectively. Without

loss of generality, we assume mA < mB.

Furthermore, the macroscopic quantities of species α, such as the molecular number

density nα, mass density ρα, flow velocity uα, the total energy Eα, and the internal energy

εα are calculated as the moments of distribution function fα:

ρα =

∫
fαdξ, nα = ρα/mα, (7a)

ραuα =

∫
ξfαdξ, (7b)

ραEα =
1

2

∫
ξ2fαdξ =

1

2
ραu

2
α + εα, (7c)

εα =
1

2

∫
|cα|2fαdξ, (7d)

where cα = ξ−uα. The mass density ρm, number density nm, flow velocity um, energy Em

and internal energy εm of the mixture can then be obtained as

ρm =
∑
α=A,B

ρα, nm =
∑
α=A,B

nα, (8a)

ρmum =
∑
α=A,B

ραuα, (8b)

ρmEm =
∑
α=A,B

ραEα =
1

2
ρm|um|2 + εm. (8c)

The AAP model is a relaxation approximation of the full Boltzmann equation in Eq. (1)

∂fα
∂t

+ ξ ·∇fα = Ωα(f, f) =
f ∗α − fα
τα

, (9)

where α = A or B with

f ∗α = ρα

(
mα

2πkBT ∗α

) 3
2

exp

[
− mα

2kBT ∗α
(ξ − u∗α)2

]
, (10)

in which kB is the Boltzmann constant. The parameters u∗α and T ∗α are introduced to

recover the correct inter-species transfer of momentum and energy due to the collisions
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between molecules of different species [16],

u∗α = uα + τα
∑
β=A,B

2
ρβ

mα +mβ

θαβ(uβ − uα), (11a)

3

2
kBT

∗
α =

3

2
kBTα −

mα

2
(u∗α − uα)2

+ τα
∑
β=A,B

4mα
ρβ

(mα +mβ)2
θαβ

[
3

2
kBTβ −

3

2
kBTα +

mβ

2
(uβ − uα)2

]
, (11b)

with θαβ being the interaction coefficient between molecules. The mean collision time and

frequency from the AAP model can be expressed as

να =
1

τα
= χ

∑
β=A,B

θαβρβ
mβ

, (12)

where χ is either 1 or selected to make τα be the same with that of the single-species gas

when all species are equal. In this paper, we fix χ = 1. The interaction coefficient θαβ is

related to the molecular interaction model. For example, for Maxwell molecules [44]:

θαβ = 0.422π

[
aαβ(mα +mβ)

mαmβ

] 1
2

, (13)

where aαβ is the constant of proportionality, i.e.,

Uαβ =
aαβ
4r4

, (14)

where Uαβ is the potential between two molecules of masses mα and mβ with a distance r.

In this work, we will consider Maxwell molecules and the force constant ratios aBB/aAA

and aAB/aAA should be known. According to the viscosity of the mixture given by the AAP

model [16]

µ = kBT0
∑
α=A,B

nα
να
, (15)

if we take nα = 0 then the binary gas mixture reduces to a single gas of species β and its

viscosity is

µβ = kBT0
nβ
νβ

= kBT0
1

θββ
. (16)

Then, based on Eq. (13), we can obtain

aββ
aαα

=

(
µα
µβ

)2
mβ

mα

. (17)

The constant aαβ can then be determined as [13]

aαβ =
√
aααaββ. (18)
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III. DISCRETE UNIFIED GAS KINETIC SCHEME

A. Updating of the cell-averaged distribution function

For problems of D < 3 dimensional, the kinetic equation (9) can be simplified by in-

troducing a reduced one. Specially, the original distribution function fα can be expressed

as fα = fα(x, ξ,η, t), where ξ = (ξ1, ..., ξD), x = (x1, ..., xD) and η = (ξD+1, ..., ξ3) is a

vector of length L = 3−D, consisting of the rest components of the three-dimensional (3D)

velocity space (ξ1, ξ2, ξ3). Since the evolution of the distribution function fα is only relevant

to the D-dimensional velocity and independent of η, a reduced distribution function is used

to remove the dependence of the redundant variable η [45, 46]

gα(x, ξ, t) =

∫
fα(x, ξ,η, t)dη. (19)

However, the energy defined by Eq. (7) cannot be determined by this gα solely, and another

reduced distribution function is required,

hα(x, ξ, t) =

∫
η2fα(x, ξ,η, t)dη. (20)

The macroscopic flow variables of species α can be computed from the two reduced distri-

bution functions as

ρα =

∫
gαdξ, ραuα =

∫
ξgαdξ,

ραEα =
1

2

∫
(ξ2gα + hα)dξ,

(21)

and the heat flux qα and stress tensor Pα can be computed as

qα =
1

2

∫
cα(c2αgα + hα)dξ, Pα =

∫
cαcα(gα − geqα )dξ, (22)

where

geqα = ρα

(
mα

2πkBTα

)D/2
exp

[
− mα

2kBTα
(ξ − uα)2

]
. (23)

Note that geqα cannot give any communication among species in the multispecies system.

The evolution equations for gα and hα can be deduced from Eq. (9)

∂gα
∂t

+ ξ ·∇gα = Ω(gα) ≡ g∗α − gα
τα

, (24a)

∂hα
∂t

+ ξ ·∇hα = Ω(hα) ≡ h∗α − hα
τα

, (24b)
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where

g∗α = ρα

(
mα

2πkBT ∗α

)D/2
exp

[
− mα

2kBT ∗α
(ξ − u∗α)2

]
, (25a)

h∗α = (3−D)RαT
∗
αg
∗
α, (25b)

with Rα = kB/mα.

Then the DUGKS for a binary gas mixture is constructed based on Eq. (24), which can

be rewritten as
∂φα
∂t

+ ξ ·∇φα = Ωα ≡
φ∗α − φα
τα

, (26)

where φα = gα or hα, φ∗α = g∗α or h∗α. As a finite volume scheme, the computation domain is

first divided into a set of control volumes (cells). Then integrating Eq. (26) over a control

volume Vj centered at xj from time tn to tn+1, and employing the midpoint rule for the time

integration of the convective term and trapezoidal rule for the collision term inside each cell,

the evolution equation for species α can be written as

φn+1
α,j (ξ)− φnα,j(ξ) = − ∆t

|Vj|
Fn+1/2
α,j (ξ) +

∆t

2

[
Ωn
α,j(ξ) + Ωn+1

α,j (ξ)
]
, (27)

here ∆t = tn+1 − tn is the time step, |Vj| is the volume of the cell Vj and φnα,j and Ωn
α,j are

the cell averaged values of φα and Ωα defined by

φnα,j(ξ) =
1

|Vj|

∫
Vj

φα(x, ξ, tn)dx, (28a)

Ωn
α,j(ξ) =

1

|Vj|

∫
Vj

Ωα(x, ξ, tn)dx. (28b)

The term Fn+1/2
α,j in Eq. (27) is the distribution function flux across the cell interface

Fn+1/2
α,j (ξ) =

∫
∂Vj

(ξ · n)φα(x, ξ, tn+1/2)dS, (29)

where n is the outward unit vector normal to the cell surface ∂Vj. It is clear that the

updating rule given by Eq. (27) is implicit due to the term Ωn+1
α,j . In order to obtain an

explicit form, two new distribution functions are introduced

φ̃α = φα −
∆t

2
Ωα =

2τα + ∆t

2τα
φα −

∆t

2τα
φ∗α, (30a)

φ̃+
α = φα +

∆t

2
Ωα =

2τα −∆t

2τα + ∆t
φα +

2∆t

2τα + ∆t
φ∗α. (30b)
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Then Eq. (27) can be rewritten as

φ̃n+1
α,j = φ̃+,n

α,j −
∆t

|Vj|
Fn+1/2
α,j . (31)

To avoid the implicity of Eq. (27), we can track the evolution of φ̃α instead of the original

distribution function φα.

Note that the moments of g̃α and h̃α have the following expressions:∫
g̃αdξ = ρα, (32a)∫
ξg̃αdξ =

2τα + ∆t

2τα

∫
ξgαdξ −

∆t

2τα

∫
ξg∗αdξ

=
2τα + ∆t

2τα
ραuα −

∆t

2τα
ραu

∗
α, (32b)

1

2

∫
(ξ2g̃α + h̃α)dξ =

2τα + ∆t

2τα

∫
1

2
(ξ2gα + hα)dξ − ∆t

2τα

∫
1

2
(ξ2g∗α + h∗α)dξ

=
2τα + ∆t

2τα
ραEα −

∆t

2τα
ραE

∗
α, (32c)

where ραE
∗
α = ραu

∗2
α /2 + ραRαT

∗
α/(γ − 1) with γ being the the specific heat ratio.

Once the distribution functions g̃α and h̃α are known, the macroscopic variables Wα =

(ρα, ραuα, ραEα) and W ∗
α = (ρα, ραu

∗
α, ραE

∗
α) can be solved from the moments of them ac-

cording to Eq. (32). Then Eq. (32) becomes an equation set with four relations [[Eq. (32b)

and Eq. (32c) for α = A,B] and eight unknown variables (uα, Tα, u∗α and T ∗α for α = A,B).

To ensure the equation set is closed, the exchange relations between species A and B in

Eq. (11) are introduced. Then the macroscopic quantities uα, Tα, u∗α and T ∗α for each species

can be solved analytically from Eqs. (32) and (11). In particular, for Maxwell molecules,

the interaction coefficients θαβ and θαα only depend on the mass ratio [see Eq. (13)]. By

this way, the macroscopic variables Wα and W ∗
α for each species can be expressed in terms

of the moments of g̃α and h̃α explicitly.

B. Flux evaluation

To update φ̃n+1
α,j according to Eq. (31), the flux Fn+1/2 should be evaluated. Based on the

definition of flux in Eq. (29), Fn+1/2 can be calculated by reconstructing the distribution

function φα(x, ξ, tn+1/2) at the cell interface. To this end, Eq. (26) is integrated along the

characteristic line from time tn to tn+1/2,

φα(xb, ξ, tn + s)− φα(xb − ξs, ξ, tn) =
s

2
[Ωα(xb, ξ, tn + s) + Ωα(xb − ξs, ξ, tn)] , (33)
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where s = ∆t/2 and xb is the interface center of cell j, and the trapezoidal rule is applied

to evaluate the collision term again. In order to remove the implicity caused by the term

Ω
n+1/2
α , another two auxiliary distribution functions are introduced,

φ̄α = φα −
s

2
Ωα =

2τα + s

2τα
φα −

s

2τα
φ∗α, (34a)

φ̄+
α = φα +

s

2
Ωα =

2τα − s
2τα + s

φα +
2s

2τα + s
φ∗α. (34b)

Then Eq. (33) can be rewritten as

φ̄α(xb, ξ, tn+1/2) = φ̄+
α (xb − ξs, ξ, tn), (35)

where

φ̄+
α (xb − ξs, ξ, tn) = φ̄+

α (xj, ξ, tn) + (xb − xj − ξs) · δj, (xb − ξs) ∈ Vj. (36)

Here δj is the slope of φ̄+
α in cell j. For example, in the one-dimensional (1D) case, the distri-

bution function φα at the cell interface xb = xj+1/2 is reconstructed through approximating

the distribution function φ̄+
α as

φ̄+
α (xb − ξs, ξ, tn) =

φ̄
+
α (xj, ξ, tn) + (xb − xj − ξs) · δj, ξ > 0,

φ̄+
α (xj+1, ξ, tn) + (xb − xj+1 − ξs) · δj, ξ < 0.

(37)

Here the van Leer limiter [47] is applied to determine the slope δj for discontinuous problems.

Once the distribution function φ̄α at the interface is known, the original distribution function

φα can be obtained according to Eq. (34), i.e.,

φα(xb, ξ, tn+1/2) =
2τα

2τα + s
φ̄α(xb, ξ, tn + s) +

s

2τα + s
φ∗α(xb, ξ, tn + s). (38)

Note that the macroscopic variables used to evaluate the distribution function φ∗α are com-

puted from φ̄α directly as∫
ḡαdξ = ρα, (39a)∫
ξḡαdξ =

2τα + s

2τα

∫
ξgαdξ −

s

2τα

∫
ξg∗αdξ

=
2τα + s

2τα
ραuα −

s

2τα
ραu

∗
α, (39b)

1

2

∫
(ξ2ḡα + h̄α)dξ =

2τα + s

2τα

∫
1

2
(ξ2gα + hα)dξ − s

2τα

∫
1

2
(ξ2g∗α + h∗α)dξ

=
2τα + s

2τα
ραEα −

s

2τα
ραE

∗
α. (39c)
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Similar to the previous treatment of cell averaged macroscopic variables, equations (39)

and (11) constitute a closed system for eight unknown variables (uα, Tα, u∗α and T ∗α at cell

interface xb and half time step tn+1/2 for each species α). These macroscopic variables can

also be obtained explicitly, and the original distribution function φα can be updated from

Eq. (38). Then the flux across each cell interface can be computed according to Eq. (29).

Finally, the cell averaged distribution function φ̃α in each cell is updated from tn to tn+1

according to Eq. (31).

In practical implementation, the velocity space is discretized into a set of discrete veloc-

ities ξi(i = 1, 2, . . . , b). Certain quadrature rules, such as the Gaussian-Hermite or Newton-

Cotes formula, can be chosen to discretize the velocity space and approximate the moments,

e.g.,

ρα =
∑
i

wig̃α(ξi), ραuα =
∑
i

wiξig̃α(ξi),

ραEα =
1

2

∑
i

wi(ξ
2
i g̃α(ξi) + h̃α(ξi)),

(40)

where wi are the quadrature weights.

The time step in DUGKS is determined by the Courant-Friedrichs-Lewy(CFL) condition,

∆t = ς
∆x

Um + ξm
, (41)

where 0 < ς < 1 is the CFL number, ∆x is the minimal mesh size, ξm is the maximum

discrete velocity, and Um is the maximum flow velocity. Due to the coupling of parti-

cle transport and collision in the reconstruction of the interface distribution function, the

DUGKS has the asymptotic preserving (AP) property [30, 32]. As a result, the time step

∆t is not limited by the particle collision time but determined by the CFL number, and the

DUGKS is uniformly stable with respect to the Knudsen number.

C. Algorithm

Now we list the computational procedure of the DUGKS for a binary gas mixture made

up of Maxwell molecules from tn to tn+1:

1. Calculate φ̃+,n
α and φ̄+,n

α at each cell center according to Eqs. (30) and (34), respectively.

2. Reconstruct the distribution function φ̄+
α (xb − ξs, ξ, tn) according to Eq. (36).
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3. Calculate the distribution function φ̄α(xb, ξ, tn+1/2) according to Eq. (35).

4. Calculate the macroscopic variables Wα(xb, tn+1/2) and W ∗
α(xb, tn+1/2) according to

Eqs. (39) and (11).

5. Calculate the original distribution function at each cell interface φα(xb, ξ, tn+1/2) ac-

cording to Eq. (38).

6. Calculate the microflux Fn+1/2 across each cell interface from φα(xb, ξ, tn+1/2) accord-

ing to Eq. (29).

7. Update the cell-averaged distribution function φ̃α in each cell according to Eq. (31).

IV. NUMERICAL EXAMPLES

In this section, the proposed DUGKS will be validated by several test cases, including

the shock structure problem under different Mach numbers, the channel flow driven by small

pressure gradient, or temperature gradient or concentration gradient, and the 1D and 2D

shear driven flows over a wide range of Knudsen numbers. In each test different mass ratios

and molar concentrations will be considered.

A. Shock structure

The first test case is the shock structure for a binary gas mixture. Consider a normal

shock formed by a mixture made up of a light species (A) and a heavy species (B). The

molar concentrations, number densities, velocities and temperatures are expressed as χA,B1 ,

nA,B1 , U1, T1 in the upstream and χA,B2 , nA,B1 , U2, T2 in the downstream, where χA,B =

nA,B/(nA + nB). The Mach number is defined as

Ma1 =
U1

(γkBT1/m)1/2
, (42)

12



where m = mAχ
A +mBχ

B. The Rankine-Hugoniot condition [48] holds for each species, so

the downstream quantities are then determined as

Ma2 =

√
Ma21(γ − 1) + 2

2γMa21 − (γ − 1)
,

χA,B2 = χA,B1 ,

nA2
nA1

=
nB2
nB1

=
(γ + 1)Ma21

(γ − 1)Ma21 + 2
,

T2
T1

=
[2 + (γ − 1)Ma21] (2γMa21 − γ + 1)

Ma21(γ + 1)2
.

(43)

The reference mean free path is defined as [49]

λ∞ =
µB
P0

√
2kBT1
mB

, (44)

where P0 = n1kBT1 and µB is the viscosity of species B defined in Eq. (16). In the sim-

ulations, the computation domain is set to be [−25λ∞, 25λ∞], which is divided into 100

uniform cells. The velocity space is discretized by Newton-Cotes quadrature with 101 ve-

locity points distributed uniformly in [−8
√

2kBT1/m, 8
√

2kBT1/m]. The CFL number is

set to be 0.6.The origin of the distribution is determined so that n(0) = (n1 + n2)/2. The

simulation results are normalized as

n̂A,B =
nA,B − nA,B1

nA,B2 − nA,B1

, T̂A,B =
TA,B − TA,B1

TA,B2 − TA,B1

, (45)

where the hat will be dropped for simplicity in the following.

The number density and temperature of each species under different Mach numbers and

concentrations are shown and compared with those of the UGKS method [28, 29] in Figs. 1-

3. Good agreement between the two methods can be observed. As shown in Fig. 1 for

Ma1 = 1.5 andmA/mB = 0.5, the number density nA and temperature TA of the light species

firstly deviate from their upstream quantities, and nA reaches its downstream quantity

earlier than nB. However, the temperature of the heavy species, TB, arises rapidly, then

exceeds that of the light one (TA) and finally reaches its downstream quantity earlier. These

phenomena become more obvious as the concentration of the light species becomes large.

Figure 2 presents the results for smaller value of mA/mB under Ma1 = 1.5. It can observed

that the above features appear more clearly. The results with Ma1 = 3 and mA/mB = 0.5

13



are shown in Fig. 3, and the above phenomena still exist. However, TB does not arise

monotonically for large concentration of the light species. At the beginning, it approximates

the maximum value and then decreases to its downstream quantity, which has been known

as the temperature overshoot [50].
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FIG. 1. Structure of a Ma1 = 1.5 shock wave in a binary gas mixture with mA/mB = 0.5 and

aBB/aAA = 1: (a) χA1 = 0.1; (b) χA1 = 0.9.
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FIG. 2. Structure of a Ma1 = 1.5 shock wave in a binary gas mixture with mA/mB = 0.25 and

aBB/aAA = 1: (a) χA1 = 0.1; (b) χA1 = 0.9.
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FIG. 3. Structure of a Ma1 = 3.0 shock wave in a binary gas mixture with mA/mB = 0.5 and

aBB/aAA = 1: (a) χA1 = 0.1; (b) χA1 = 0.9.

B. Channel flow driven by a gradient

Now we consider a binary mixture flow in a long channel with width H (see Fig. 4). A

uniform pressure gradient, or temperature gradient or concentration gradient exists along

the channel (x-direction), i.e., p = p0(1 +Cpx/H), T = T0(1 +CTx/H), χA = χA0 +Cχx/H,

where Cp, Cχ, CT , p0 and T0 are constants. Both plates are fully diffusive and a uniform

temperature gradient T0(1 + CTx/H) maintains. The inlet and outlet are imposed with

pressure boundary conditions based on characteristics as described in Ref. [28]. In this case,

𝐻/2

−𝐻/2

𝑝0(1 + 𝐶𝑝𝑥/𝐻)

𝑇0(1 + 𝐶𝑇𝑥/𝐻)

𝜒0
𝐴 + 𝐶𝜒𝑥/𝐻

0
𝑥

𝑦

FIG. 4. Schematic of the channel flow.

the numerical results are compared with those from Kosuge [51] based on the McCorma-

ck model. The definitions of the intermolecular potential and the reference diameter for

Maxwell molecules are [51]

Uαβ =
καβ
r4

, dαβ∗ =

(
4καβ

2kBT0

) 1
4

, (46)
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in which καβ is a positive constant. Comparing Eq. (46) with Eq. (14), one can obtain that

aαβ = 4καβ, (47)

thus the relationship between dαβ∗ and aαβ is

dαβ∗ =

(
aαβ

2kBT0

) 1
4

. (48)

The reference mean free path is given by [51]

λ =
1√

2πn0(dAA∗ )2
, (49)

where n0 is the total number density at the inlet. In the simulations, we consider the flow

driven by the pressure gradient, temperature gradient, and concentration gradient separately.

For the pressure driven flow, CT and Cχ are zero and the non-dimensional particle flux of

each species is defined by [51]

MA,B
p =

1

Cp

∫ H/2

−H/2

uA,B√
2kBT0/mA

d(y). (50)

The fluxes MA,B
T and MA,B

χ due to the temperature gradient and concentration gradient can

be defined similarly.

In our simulations, the length-to-height ratio of the channel is set to be 40 and the

gradient Cp, Cχ and CT are kept at 0.01. The particle fluxes versus Knudsen number are

displayed in Figs. 5-7 for mB/mA = 2, 4 and 10 with aBB/aAA = aAB/aAA = 1. The results

of the UGKS for binary gas mixtures [28, 29] of Maxwell molecules are also included for

comparison. Overall good agreement between the DUGKS and UGKS can be observed for

the cases considered.

In Fig. 5, the mass fluxes driven by a pressure gradient show good agreement with the

solutions of the linearized Boltzmann equation [51], with some minor deviations. The differ-

ences can be attributed to the discrepancy in viscosity from different models. Furthermore,

it can be observed that a minimum appears for each species around Kn ≈ 1, which is the

well-known Knudsen minimum [52] for Poiseuille flow in rarefied regime.

Figure 6 shows the mass fluxes of each species for flows driven by a temperature gradient.

It can be seen that MA
T and MB

T increase monotonically with Kn, and their difference

decreases with Kn. Furthermore, it is observed that the predicted mass fluxes of the heavy
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species B match quite well with the reference solutions. But clear deviations can be observed

for the light species A and the deviations increase with Kn. This can be attributed to

the different thermal conductivities from the AAP model and the linearized Boltzmann

equation [51].

The mass fluxes at different Knudsen numbers driven by a concentration gradient are

shown in Fig. 7. It can be seen that the concentration of the light species A increases while

that of the heavy one decreases along the channel. As a result, the light one turns to flow in

the opposite direction. But it can be observed that both |MA
χ | and MB

χ grow monotonically

with increasing Kn, and the results predicted by the AAP model are in good agreement with

the reference data for all cases considered.

It can also be observed that the differences in the mass fluxes of species A and B de-

crease with increasing Kn driven by the pressure, temperature, or concentration gradient.

This is because the velocities of the two species are different due to the difference in molec-

ular masses. Particularly, the differences between uA and uB can be much larger as the

intermolecular collisions are insufficient such that the momentum of the two species are not

exchanged sufficiently. On the contrary, the velocities of the two species will become closer

in the continuum limit when the collision is frequent.

C. Couette flow

Now we consider the plane Couette flow of a binary gas mixture in the rarefied regime.

As shown in Fig. 8, two plates with a constant temperature T0 are fixed at y = ±H/2 and

move with velocities ±U/2 in x-direction, respectively. The plates are fully diffusive and the

periodic boundary conditions are imposed on the inlet and outlet of the channel. Here we

assume that the plate velocities are much smaller than the characteristic molecular velocity

v0 of mixture, i.e.,

U � v0, v0 =

√
2kBT0
m

, (51)

where m is the mean molecular mass of the mixture m = C0mA + (1 − C0)mB, and C0 is

the molar concentration of the light species in equilibrium

C0 =
n0
A

n0
A + n0

B

, (52)
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FIG. 5. Particle flux versus Knudsen number of the pressure driven channel flow with χA0 = 0.5.

mB/mA in (a), (b) and (c) are 2, 4 and 10, respectively. The linearized solutions are from Ref. [51].

with n0
A, n

0
B being the equilibrium number density of species A and B, respectively. In this

case, we focus on the shear stress P ′xy = P ′Axy + P ′Bxy of the mixture and the velocity u′α

of species α. The shear stress P ′αxy of species α is calculated according to Eq. (22). The

velocity of the mixture in x-direction is defined as

um,x =
ρAu

′
A,x + ρBu

′
B,x

ρA + ρB
. (53)

The gas rarefaction parameter δ is defined as

δ =
HP0

µv0
, P0 = n0kBT0, (54)
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FIG. 6. Same as Fig. 5 except that the flow is driven by a temperature gradient.

where µ is the mixture viscosity at temperature T0, and P0 is the equilibrium pressure

with n0 being the total number density of the two species. Then we can get the following

dimensionless quantities

uα =
u′α
U
, Pxy = − v0

2UP0

P ′xy. (55)

To calculate aBB/aAA by Eq. (17), the mass ratio and viscosity ratio should be known.

Here we consider two groups of binary gas mixtures of noble gases: neon-argon (Ne-Ar)

and helium-xenon (He-Xe). The molecular masses of these gases are mHe = 4.0026, mNe =

20.1791, mAr = 39.948 and mXe = 131.293 in atomic units. The experimental data [53] of

the viscosities at an equilibrium temperature T0 = 300K are µHe = 19.73µPa · s, µNe =

19



10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

(
√

π/2)Kn

−
χ
A 0
M

A χ
,χ

B 0
M

B χ

 

 
A, UGKS
B, UGKS
A, DUGKS
B, DUGKS
A, Linearized Boltzmann
B, Linearized Boltzmann

(a)

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

(
√

π/2)Kn

−
χ
A 0
M

A χ
,χ

B 0
M

B χ

 

 
A, UGKS
B, UGKS
A, DUGKS
B, DUGKS
A, Linearized Boltzmann
B, Linearized Boltzmann

(b)

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

(
√

π/2)Kn

−
χ
A 0
M

A χ
,χ

B 0
M

B χ

 

 
A, UGKS
B, UGKS
A, DUGKS
B, DUGKS
A, Linearized Boltzmann
B, Linearized Boltzmann

(c)

FIG. 7. Same as Fig. 5 except that the flow is driven by a concentration gradient.

𝑦 = +𝐻/2

𝑦 = −𝐻/2

U/2

-U/2

0
𝑥

𝑦

𝑇0, 𝑃0 𝐻

FIG. 8. Schematic of the plane Couette flow.
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31.60µPa · s, µAr = 22.39µPa · s and µXe = 22.62µPa · s.

In our simulations, we take U = 0.1v0 and the rarefaction parameter δ varies from 0.1

to 10. Three values of C0 = 0.1, 0.5, and 0.9 are considered. The physical space is divided

uniformly into 2 grid points in x-direction and 400 in y-direction. The half-range Gauss-

Hermite quadrature [54] with 28× 28 velocity points is adopted for each species. The CFL

number is set to be 0.6 in the following cases. In addition, the flow field is assumed to be

steady when the maximum relative change of the velocity field of the two species in two

successive steps is less than 10−10, i.e.,∫ 1/2

−1/2
max

(
|un+1
A,x − unA,x|
|unA,x|

,
|un+1
B,x − unB,x|
|unB,x|

)
dy < 10−10. (56)

The results of the present DUGKS will be compared with the solutions of the McCormack

model in Refs. [55] and [56]. The results of the UGKS for binary gas mixtures [28, 29] of

Maxwell molecules are also presented for comparison. A comparative study between the

McCormack model and the linearized Boltzmann equation for this problem was performed

in Ref. [56]. The results indicate that differences in shear stress between the two models

are small, while differences in other macroscopic quantities such as the velocity of each

species are rather large, which increase with the mass ratio of the two species and the molar

concentration of the heavy species.
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FIG. 9. Velocity profiles in the Couette flow for the Ne-Ar mixture with C0 = 0.5 at (a) δ = 0.1,

(b) δ = 1 and (c) δ = 10.

The velocity profiles for the Ne-Ar and He-Xe mixtures with molar concentration C0 = 0.5

at δ = 0.1, 1 and 10 are demonstrated in Fig. 9 and Fig. 10. It can be seen that the

results predicted by the DUGKS agree well with those by the UGKS at different rarefaction

21



TABLE I. Species velocity uNe and uAr and mixture velocity um near the top plate (y = H/2) for

the Ne-Ar mixture with concentration of the light species C0 and rarefaction parameter δ.

δ uNe uAr um

Present UGKS Ref. [56] Present UGKS Ref. [56] Present UGKS Ref. [56]

C0 = 0.1

0.1 0.0545 0.0546 0.0633 0.0745 0.0753 0.0736 0.0737 0.0742 0.0730

1.0 0.2141 0.2141 0.2341 0.2542 0.2543 0.2536 0.2521 0.2522 0.2525

10.0 0.4261 0.4261 0.4361 0.4396 0.4397 0.4420 0.4384 0.4389 0.4417

C0 = 0.5

0.1 0.0609 0.0610 0.0663 0.0844 0.0842 0.0773 0.0764 0.0764 0.0736

1.0 0.2280 0.2283 0.2399 0.2699 0.2700 0.2598 0.2559 0.2560 0.2531

10.0 0.04310 0.4311 0.4377 0.4437 0.4437 0.4435 0.4394 0.4395 0.4416

C0 = 0.9

0.1 0.0699 0.0700 0.0712 0.0973 0.0976 0.0833 0.0749 0.0750 0.0734

1.0 0.2456 0.2457 0.2492 0.2887 0.2889 0.2695 0.2534 0.2535 0.2529

10.0 0.4369 0.4369 0.4407 0.4484 0.4485 0.4463 0.4389 0.4390 0.4417

TABLE II. The shear stresses in the Couette flow of the Ne-Ar and He-Xe mixtures under different

rarefaction parameter δ and concentration of the light species C0.

δ C0 = 0.1 C0 = 0.5 C0 = 0.9

Present UGKS Ref. [55] Present UGKS Ref. [55] Present UGKS Ref. [55]

Ne-Ar

0.1 0.2600 0.2600 0.2601 0.2568 0.2568 0.2576 0.2590 0.2590 0.2594

1.0 0.1683 0.1684 0.1689 0.1657 0.1658 0.1675 0.1677 0.1678 0.1685

10.0 0.04143 0.04145 0.04150 0.04115 0.04112 0.04139 0.04137 0.04142 0.04147

He-Xe

0.1 0.2522 0.2523 0.2527 0.2111 0.2112 0.2163 0.1810 0.1811 0.1919

1.0 0.1641 0.1642 0.1655 0.1337 0.1338 0.1482 0.1171 0.1171 0.1360

10.0 0.04094 0.0410 0.04128 0.03645 0.03646 0.03999 0.03642 0.03643 0.03898
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FIG. 10. Same as Fig. 9 but for the He-Xe mixture.
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FIG. 11. The normalized stress of the Couette flow for gas mixtures (a) Ne-Ar and (b) He-Xe

under different rarefaction parameter δ with C0 = 0.5.

parameters. As δ = 0.1, the velocity differences of Ne and Ar between the DUGKS and the

McCormack model are about 8% and 9%, respectively. As δ = 1, the velocity differences

decrease. As δ = 10, there are slightly differences in the velocity of the two species, i.e.,

1.5% for Ne and 0.04% for Ar. The velocity of the He-Xe mixture is also shown in Fig. 10 to

illustrate the influence of the mass ratio on the velocity. It can be seen that the deviations

in velocity between the DUGKS and the McCormack model are significant, especially as δ is

small. For instance, the velocity difference of He between the two models reaches 46.8% at

δ = 0.1. Furthermore, the DUGKS overestimates the Xe velocity by 32.8% compared with

the McCormack model. These differences decrease with increasing δ, reducing to 10.6% for

He and 2.97% for Xe as δ = 10.
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The influence of the molar concentration C0 on the gas velocity near the plate is displayed

in Table I. When δ = 0.1, the velocity difference of Ne between the two kinetic models

decreases from 13.9% to 1.8%, while that for Ar increases from 2% to 17% as C0 increases

from 0.1 to 0.9. As δ = 1, the difference in each velocity is smaller than that for δ = 0.1 for

all considered values of C0. For δ = 10, the velocity difference of Ne between the DUGKS

and the McCormack model is less than 2.3% and that of Ar is less than 1% as C0 varies

from 0.1 to 0.9.

The shear stresses Pxy of the Ne-Ar and He-Xe mixtures are presented in Table II under

different rarefaction parameters and molar concentrations. The shear stress of each mixture

should be constant theoretically due to the momentum conservation of the mixture. While

the numerical results can slightly deviate from the theoretical values. Thus the average

shear stress P av
xy =

∫ 1/2

−1/2 Pxy(y)dy is presented here. The maximum variation of the shear

stress is calculated as

∆Pxy = max
y∈[−H2 ,

H
2 ]

∥∥∥∥Pxy(y)− P av
xy

P av
xy

∥∥∥∥ , (57)

which is less than 0.7% according to Eq. (57), showing a good numerical accuracy of the

proposed DUGKS. In the Ne-Ar mixture, the differences in shear stress between the results

obtained from the DUGKS and the McCormack model are less than 1% for all values of the

considered molar concentration C0 and rarefaction δ, meaning a good agreement between

these two kinetic models at small mass ratio. In the He-Xe mixture whose mass ratio is

much greater than that of the Ne-Ar mixture, the relative differences between results from

the two kinetic models are less than 1% for all considered values of C0 as δ = 0.01 and

40. However, the DUGKS underpredicts the shear stress by 2.4% as C0 = 0.5 and 5.6% as

C0 = 0.9 when δ = 0.1 for the He-Xe mixture. As δ = 1, the differences increase and reach

to 9.7% for C0 = 0.5 and 13.8% for C0 = 0.9. For δ = 10, the differences in shear stress are

8.9% and 6.5% for C0 = 0.5 and C0 = 0.9, respectively. These comparisons indicate that

the relative difference in shear stress of the He-Xe mixture between the DUGKS and the

McCormack model is much higher than that of the Ne-Ar mixture, especially for δ = 1, at

which the difference reaches the maximum.

The influence of the rarefaction parameter δ on the shear stress is demonstrated in Fig. 11

with δ ranging from 0.01 to 80 and C0 = 0.5 for the Ne-Ar and He-Xe mixtures. It shows

a good agreement between the DUGKS and the McCormack model over the whole range of
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the flow regime for the Ne-Ar mixture. While for the He-Xe mixture, clear deviations are

observed in the slip and transitional regimes between the two models, suggesting that the

difference between the two models increases with mass ratio.

D. Lid-driven cavity flow

The last test case is the two-dimensional lid-driven cavity flow of binary gas mixtures.

The flow domain is a square cavity with length H and the upper wall moves with a constant

velocity Uw which is also much smaller than the characteristics molecular velocity v0 in

Eq. (51), while other walls are fixed. The temperature at the four walls is fixed at T0, and

the walls are fully diffusive. The Ne-Ar and He-Xe mixtures are considered to investigate

the influence of the mass ratio on the mixture velocity and temperature. We also simulate

this problem by the UGKS [28, 29] and the DSMC [57] to validate the current DUGKS

method.

Firstly, to verify the indifferentiability principle of the AAP model, we set mA/mB = 1,

µA/µB = 1, and aAA/aBB = 1, namely the mixture reduces to a single-species gas. The

rarefaction parameter δ is related to the Reynolds number as

δ =
RekBT0
mAUwv0

, (58)

where

Re =
ρ0UwH

µA
, ρ0 = n0mA. (59)

In the simulations, we take Uw = 0.1v0. The velocity space is discretized via the half-range

Gauss-Hermite quadrature with 8 × 8 velocity nodes. The physical space is divided into

120 × 120 uniform cells. The CFL number is set to be 0.6. Figure 12 shows the velocity

profiles along the centerlines of the cavity at Re = 400. The Ghia’s benchmark solutions [58]

are also included for comparison. It can be seen that the DUGKS results agree well with the

benchmark data, suggesting that the AAP model satisfies the indifferentiability principle,

which requires that the total distribution function f =
∑

α=A,B fα satisfies the single-species

BGK equation when the two species are the same. Besides, the ratio of the time step to

the mean collision time (∆t/τ) is about 3.146 for this case (Kn ≈ 5 × 10−4), which clearly

shows that the time step of the DUGKS is not limited by the mean collision time. Thus the

AP property of the DUGKS for the Navier–Stokes limit is validated.
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FIG. 12. Velocity profiles across the cavity center at Re = 400.

Then the flows of two groups of binary gas mixtures (Ne-Ar and He-Xe) are simulated.

The velocity space for each species is discretized using the Newton-Cotes rule, with 101×101

velocity points distributed uniformly in [−4
√

2RαT0, 4
√

2RαT0] × [−4
√

2RαT0, 4
√

2RαT0].

The physical space is divided into 60 × 60 cells uniformly, where the results are nearly

identical to those on a 100× 100 mesh.

The velocity profiles of the two mixtures across the cavity center for δ = 0.1, 1 and 10

under the concentration of the light species C0 = 0.5 are presented in Figs. 13 and 14. Good

agreement can be observed between the DUGKS and the UGKS and DSMC results for the

Ne-Ar mixture as δ varies from 0.1 to 10. However, for the He-Xe mixture, whose molecular

mass ratio is large, deviations between the solutions of DSMC and the DUGKS increase

with δ. This discrepancy can be attributed to the relaxation approximation of the collision

operator. The above comparisons show that the DUGKS based on the AAP model can offer

accurate flow solutions for flows in the rarefied regimes, as the molecular mass ratio is not

large.

Similar phenomena can also be found in the temperature field as shown in Figs. 15 and 16.

The translational kinetic temperature [6] is considered in this case, which is defined by

3

2
kBTtr =

1

2

∑
α

(nα/n)mαc
′2
α , (60)

where c′2α can be expressed as

c′2α = u2α + 3RαTα − u2m. (61)
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For the Ne-Ar mixture with a small mass ratio, the DUGKS results agree excellently with

the DSMC solutions in all cases. For the He-Xe mixture with a large mass ratio, the results

of DUGKS and UGKS always have good agreement, while they deviate from the DSMC

solutions for large δ.

In order to evaluate the computational efficiency, we also measure the computing time

of the DUGKS, UGKS and the DSMC method using the lid-driven cavity flow case with

of the Ne-Ar mixture. Both the DUGKS and UGKS are run with 24 cores using OpenMP

programming, while the DSMC solver is run with 48 cores using MPI programming. The wall

time (in seconds) and numbers of iterations to reach the steady states in DUGKS/UGKS

and the current noise level in DSMC for δ = 0.1, 1 and 10 are listed in Table III. We can see

the DUGKS is about 15% to 64% faster than UGKS depending on the rarefaction degree

and is significantly faster than DSMC method.
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FIG. 13. Velocity profiles along the center lines in the cavity flow for the Ne-Ar mixture with

C0 = 0.5 at (a) δ = 0.1, (b) δ = 1 and (c) δ = 10.
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FIG. 14. Same as Fig. 13 but for the He-Xe mixture.
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FIG. 15. Temperature contours in the lid driven cavity flow for the Ne-Ar mixture with C0 = 0.5

at (a) δ = 0.1, (b) δ = 1 and (c) δ = 10. Black line: DSMC; white line with background: DUGKS.
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FIG. 16. Same as Fig. 15 but for the He-Xe mixture.

V. CONCLUSIONS

In this paper, a DUGKS is developed for flows of binary gas mixtures of Maxwell molecules

in the whole range of the Knudsen number based on the AAP model. The numerical scheme

possesses the asymptotic preserving (AP) property, which means that the time step and the

cell size are not constrained by the particle collision time and the mean free path of gas

molecules respectively when solving the Navier-stokes equations at the continuum limit.

In order to validate the DUGKS, several tests have been performed, including the shock

structure, the channel flows driven by a small gradient of pressure, or temperature, or concen-

tration, the plane Couette flow and the cavity flow in all flow regimes. Excellent agreement

has been obtained between the solutions of the DUGKS and the UGKS for all cases, and

good agreement with the reference solutions is obtained at moderate Knudsen numbers and
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TABLE III. Wall time (in seconds) and iteration steps of reaching steady states. 24 cores are used

in the DUGKS and UGKS, and 48 cores are used in DSMC.

δ DUGKS UGKS DSMC

time step time step time step

0.1 11454 17217 18787 19880 37534 6, 110, 000

1 7240 9625 8314 8770 58244 10, 000, 000

10 10470 14516 15633 16490 92043 10, 000, 000

mass ratios in channel flow, especially for the heavy species. But some deviations in temper-

ature are found for the light species, which can be attributed to the incorrect Prandt number

of AAP model. For the plane Couette flow, the DUGKS results agree well with those of

the McCormack model at small mass ratio and small Knudsen numbers, otherwise obvious

differences are observed. As for the cavity flow, the proposed DUGKS results agree well with

the DSMC solutions in all flow regimes when the mass ratio is small, but clear deviations

appear in the near-continuum regime with large mass ratio, which can be attributed to the

relaxation approximation of the collision operator.

Finally, it should be pointed out that the present DUGKS is based on the AAP model

for Maxwell molecular gases, which has its own limitations as indicated in the simulation

results. Further development of the method based on more accurate kinetic models such as

the ellipsoidal models [59, 60] or the McCormack model will be studied in the future work.
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