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Abstract

The recently proposed discrete unified gas kinetic scheme (DUGKS) is a finite
volume method for multiscale flow computations with asymptotic preserving
property. The solution of the Boltzmann model equation is directly used for
the construction of numerical flux and makes the scheme applicable in all flow
regimes. In previous applications of the DUGKS, structured meshes have been
mostly employed, which may have difficulties for problems with complex geome-
tries. In this paper we will extend the DUGKS to unstructured meshes, with
the implementation of computational fluid dynamics techniques to the DUGKS.
Several test cases, i.e., the cavity flow ranging from continuum to free molecular
regimes, a multiscale flow problem between two connected cavities with large
pressure and density variations, high speed flows past multiple cylinders in slip
and transitional regimes, and an impulsive start problem are performed, and
the results are compared with the well-defined Direct Simulation Monte Carlo
(DSMC) or Navier-Stokes (NS) solutions in their applicable regimes. The nu-
merical results demonstrate the effectiveness of the proposed DUGKS for the
study of multiscale flow problems.
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1. Introduction

Gas flows can be classified into different flow regimes based on the Knudsen
number (Kn), which is defined as the ratio of the mean free path of the gas to
the physical characteristic length. For flow with Kn > 0.001, non-equilibrium
effects become important and the classical Navier-Stokes-Fourier (NSF) equa-
tions fail to describe such a flow [I], while the Boltzmann equation can serve as
a fundamental equation which is valid in the whole range of Knudsen numbers.

There are mainly two types of numerical approaches to solve the Boltz-
mann equation. The first one is the widely used direct simulation Monte Carlo
(DSMC) method [I], which is the prevailing technique for simulating high-speed
rarefied gas flows. However, the DSMC is a single scale method, where the par-
ticle transport and collision processes are decoupled. As a result, the cell size
and time step are required to be smaller than the mean free path and the mean
particle collision time [I]. For flows in near continuum or continuum regime,
this requirement will lead to enormous computational costs. Another undesired
feature of the DSMC is the statistical noise that must be reduced through in-
tensive sampling and averaging, which is more serious for low speed and small
temperature variation flows [I]. Great efforts have been devoted to reduce sta-
tistical noise of the DSMC method [2] [3]. The second approach for solving the
Boltzmann equation is to use deterministic numerical schemes, i.e., the Dis-
crete Velocity Methods (DVM) [4, B 6]. Most DVM schemes are single scale
methods with decoupled particle transport and collision, which have the same
constraints on the time step and cell size as the DSMC [7, [8, [9]. Recently, some
asymptotic preserving (AP) schemes have been proposed to overcome these dis-
advantages (e.g., [10, 1, 12]). The AP schemes for Boltzmann equation are
designed to reduce to the appropriate discretization schemes for hydrodynamic
equations automatically as the Knudsen number goes to zero, without resolv-
ing the mean free path and particle collision time on the computational grids.
The AP schemes also treats the collision term implicitly using efficient man-

ners to overcome the stiffness problem as the Knudsen number approaches to
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zero. Their stability is independent of the Knudsen number. These schemes are
able to recover the Euler solutions in the continuum limit, but it is still unclear
whether the Navier-Stokes solutions can be accurately obtained [I3].

Recently, a unified gas kinetic scheme (UGKS) has been constructed for all
Knudsen number flows [14], 15, [16, [17]. The UGKS is an aggressive enxtension of
the gas kinetic scheme (GKS) which is a flux solver for hydrodynamic equations
and is mainly used to simulate continuum flows [I§]. In the UGKS, the particle
transport and collision effects are coupled in UGKS when updating the discrete
distribution function. Consequently, the restrictions on the cell size and time
step are avoided, and the UGKS solutions depend on the ratio of the local time
step to the particle collision time [13].

An alternative unified kinetic method, i.e., the discrete unified gas kinetic
scheme (DUGKS), has been proposed for multi-regime flow computations re-
cently [19, 20]. The DUGKS shares the same modeling mechanism as the
UGKS [19]. The main difference between the UGKS and the DUGKS lies in
the construction of numerical flux for the discrete distribution function at cell
interface. In UGKS, the flux is obtained from the time-dependent distribution
function at the cell interface, and this solution is based on the local analytical
integral solution of the model kinetic equation. While in DUGKS, the flux is
calculated from the distribution function at a half time step, and this solution is
determined from a numerical characteristic solution of the model kinetic equa-
tion. The flux in DUGKS couples the effects of particle transport and collision,
and the updating rule is much simpler than the UGKS.

The DUGKS shares some similarities with the well-known lattice Boltzmann
method (LBM) which can be viewed as a special discrete velocity type method.
Both of them are based on the relaxation-type collision models, and employ the
implicit-to-explicit transformation. The idea behind the flux evaluation method
in the DUGKS is conceptually very similar to the streaming step of the LBM,
i.e., the particles arrived at the cell face (in the DUGKS) or lattice node (in
the LBM) are assumed to have streamed from the upwind, with collision effect

considered. However, there are considerable differences between the DUGKS
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and the LBM. The LBM is essentially an Navier-Stokes equation solver under
the low Mach number condition, thus can only be used to simulating near in-
compressible continuum flows. The DUGKS employing the LBM type discrete
velocity set (i.e., the DnQm lattices) can be viewed as a finite-volume based
off-lattice Boltzmann method. Their relative performances for continuum flows
have been compared in [2I]. It is also found that the DUGKS is not a straight
forward translation of the finite-difference interpreted LBM [22].

In previous works [I9, 20], the DUGKS has been applied to both low speed
and high speed non-equilibrium flows using structured meshes. However, most
non-equilibrium flow problems involve complicated geometries, such as those in
the microelectromechanical systems (MEMS) industrial and aerospace engineer-
ing. The use of unstructured mesh is preferable. In this work we aim to extend
the DUGKS to unstructured meshes and demonstrate its effectiveness for the
multiscale non-equilibrium flows.

The rest of the paper is organized as following. In Sec. 2, the general pro-
cedure of the DUGKS on unstructured meshes is presented. In Sec. 3, several
numerical examples, including the micro cavity flow, an expansion flow between
two connected cavities, and the rarefied gas flow passing through a single and
double circular cylinders, will be computed to demonstrate the capability of the
current method in simulating flows in different regimes. An additional test case,
the impulsive start plate problem is used to verify the uniform convergence rate

of DUGKS. A brief summary is given in the last section.

2. Discrete unified gas kinetic scheme

2.1. Shakhov model

The DUGKS is based on the Boltzmann model equation. In this study, the
collision operator is approximated by the Shakhov model [23] for monatomic
gases. In D dimensional space, the model equation is

of
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where f = f(&,m,x,t) is the velocity distribution function of particles with
velocity & = (£1,...,&p) in D dimensional velocity space at position & =
(z1,...,zp) and time t. Here 3 = ({py1,...,&3) is a vector in a space with
dimension L = 3 — D, which accounts for the degrees of freedom other than
the D-dimensional translational ones. f° is the Shakhov equilibrium distribu-
tion function given by the Maxwellian distribution function f? plus a heat flux

correction term
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where Pr is the Prandtl number and ¢ = & — U is the peculiar velocity around
the averaged macroscopic fluid velocity U; q is the heat flux, R is the specific
gas constant, and T is the temperature. The collision time 7 in Eq. is related
to the dynamic viscosity p and pressure p by 7 = u/p. The dynamic viscosity

1 depends on temperature as

T w
= Hre T ) 3
= p f<Tmf) , (3)

where pi,0r is the viscosity at the reference temperature T}, and the exponent
w is a constant depends on the inter-molecular interaction model. The viscosity
Lref can be related to the reference mean free path Af. By using the Knudsen
(Kn), Mach (Ma) and Reynolds (Re) numbers, the fiyef ~ Aref relation leads to
(Eq. 1.29 in [24]),

2v (b —2 —2w) M
Kn=4/22 (5= 2w)(7 — 2w) —a, (4)
0 15 Re

where 7 is the heat capacity ratio. The Kn, Ma and Re numbers are define as

)\re Ure re Ure Lre
Kn= 2 Ma= 2 Re= freftrefire (5)
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where Lyet, Urer, pref are the referenced length, velocity and density, respectively.

The Maxwellian distribution function f¢? is given by

e A4
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where p is the gas density. The conservative flow variables W = (p, pU, pE)T

are calculated as moments of the distribution function,
w = [ wragdn 7)

here ¢ = (1,¢, 3(¢2 + 772))T and pE = $pU? 4+ CyT = $pU?+p/(y—1), where
CY is the heat capacity. The heat flux q is defined by

a=j [ el + i) fagdn. 0

The parameter 7 can be viewed as internal degree of freedom, and the depen-

dence of f on 1 can be removed by using two reduced distribution functions [25]

o(@,€,1) = / F(€.m,, t)dn, (9)
h(z, &, t) =/772f(€,n,w,t)dn~ (9b)

The conservative macroscopic variables can be computed from these reduced

distribution functions as

1
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and the heat flux can be computed as
1 2
=3 c(cg + h)d&. (11)
The evolution equations for the two distribution functions can be deduced from
Eq. as
dg 1 g
=7 Vg=Q, = —=[g— 12
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where the reduced equilibrium distribution functions ¢° and h° can be deduced
as well,
9% (@, €,1) =/fs(£,n,w,t)dn =9+ 9p. (13a)
h (@, €, t) :/UQfS(ﬁ, @, t)dn = W+ hy, (13b)
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2.2. Discrete unified gas kinetic scheme on unstructured meshes

2.2.1. Updating of the cell-averaged distribution function
The updating rules for g and A in Eq. have the same structure as

0 1

_ _ = e
S TEVo=0=—-[6-0¢°], (15)

for ¢ = g or h. The generic symbol ¢ will be used to denote g and & in the
following. The DUGKS is an explicit finite volume scheme for solving Eq. .
The computation domain is firstly divided into some control volumes (cells). By
integrating Eq. in each cell from time t,, to t,1, we have
. At ., At ,
OO — O + 1 F O = [ el (16)
J

Here ¢; and (2, are the cell averaged values of ¢ and Q in cell j; |V;] is the cell’s
volume and At = t,41 — t,, is the time step. Note that the trapezoidal and
middle-point rules are used for the collision and convection terms in Eq. ,
respectively. The term ]-';L 24y Eq. is the flux of ¢ across the interface

of cell j and is evaluated as
FI2e) =3¢ Sho(ak € tyyn), (17)
k

where S ;k is the outward normal vector of the kth face of cell j with face area
|S]’?|, and :vf is the center of the face. Equation(I6) can be rewritten in an

explicit form by introducing two new distribution functions [19] 20],

gl = gy FrEV2 (18)
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Due to the conservative property of the collision term, the conservative variables

can also be calculated from ¢ as [20]

/m& Mf./@%,pE—f/@%+M®7 (20)
and
q= ﬁq, with ¢ = %/c((;?g + h)d¢. (21)

Therefore, in actual implementations, we track the evolution of ¢ according to
Eq. , instead of the original distribution function ¢ in order to avoid implicit
computations. This is also one of the major differences between the DUGKS

and the UGKS.

2.2.2. Fluz evaluation on unstructured meshes

To update q~5j according to Eq. , the flux .7:;1+1/2 is required. From the
definition of .7-';1+1/ 2 given by Eq. , the original distribution functions at the
middle time step at cell interfaces, i.e. "1/ ?(a%,€), should be computed. This
is done by integrating Eq. from time ¢, to t,41/2 along the characteristic

line which ends at the face center xy,
S
¢n+1/2(wf7 6) - d)n(a:f - 53, E) = 5 |:Qn+l/2(wf’ 5) + Qn(wf - ésv 6):| y (22)

where s = #,,11/2 — t, is the half time step. Here the trapezoidal rule is used
again for the collision term. Similar to the treatment of Eq. , another two

auxiliary distribution functions are introduced

b=p-20=""0 24 (230)

T+ SQ_ 27 — 5o 2s
¢ ¢+2 2T + s 2T+ s

#5. (23b)
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Then Eq. can be expressed explicitly as

¢ (a5,€) = 9T (s — €5,8). (24)

In this work, piecewise linear reconstructions in the upstream neighboring cells
are employed to interpolate ¢™"(x; — &s) from the cell centered ¢*". The
neighboring cells are identified by the direction of the particle velocity €. To
demonstrate this procedure, here we consider a general case as illustrated in
Fig.[l} where AB is a cell interface with the center ¢ and its unit normal vector

n; points from cell P to cell N. The distribution function ¢+ (x; — €s,€,t,) is

Figure 1: Sketch of two neighboring cells on a general unstructured mesh
evaluated as
ot (wp—E5,8) = ¢ (xe, &) +(xp—wc—E5)-L [¢T (2, €), 20| VT (zc,€), (25)

where C stands for P if §-ny > 0, or N otherwise. The gradient Vot at the cell
center is calculated using the least square method. For instance, the gradient

of cell P is evaluated as
(Véh)p =D wi@ ™t di [(6%), = (67) ] - (26)
where the tensor G is defined as
G=> widid;, (27)

with d; being the spatial vector from P to its ith adjacent cell center NV;, and

w; = 1/|d;| being the weighting factor. The function £ [¢™ (x, £), z¢] in Eq.
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denotes the gradient limiter which is used to suppress numerical oscillations in
regions with large discontinuities, such as the shock layer in continuum flow
regime. In this work, we adopt the Venkatakrishnan limiter [26] which is a
typical choice for flow computations on unstructured meshes.

The time step in the DUGKS is determined by the Courant-Friedrichs-Lewy

(CFL) condition,
Az
At=a—2) 28
“(|U|+|s|>mm 28)

where 0 < « < 1 is the CFL number and Az is the distance between the
centers of two neighboring cells that share an interface. It should be noted
that the CFL condition is imposed by the treatment of the convection term in
the governing equation. Usually the collision term also poses a restriction on
the time step since the computation can be unstable if At is much larger than
the mean collision time 7. However, in DUGKS, as long as the computation is
stable, accurate solutions can be obtained even if At is much larger than the
mean collision time [20], due to coupled treatment of the collision and transport
in the construction of numerical flux. While in many DVM schemes, the lack
of collision contribution in the numerical flux leads to a numerical viscosity
proportional to the time step [13] [27], such that the time step must be smaller
than the mean collision time in order to keep the numerical viscosity being much
smaller than the physical viscosity.

After getting ¢ at face centers according to Eqs. and , the original
distribution functions ¢ can be recovered from Eq. . The macro variables
at time ,,1/5 used to evaluate the equilibrium distribution functions ¢° are

calculated from ¢ as

1 _
p= / gde, U = / cgde, pF = / (€2 + h)de, (20)
and
2 1 )

Then the flux across each cell interface can be evaluated according to Eq. .

Finally, the cell centered q~5 can be advanced to the new time level according to

Eq. .

10
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The updating procedures presented above are all based on continuous veloc-
ity space for convenience. In actual implementations, the continuous velocity
space is discretized into a finite discrete velocity set {&;} like the DVM [25],
and the distribution functions such as § and h are defined at these discrete ve-
locity points as g; and h,. Proper quadrature rules such as the Newton-Cotes
quadrature or the Gauss-Hermite quadrature are then used to approximate the

moments,
. N 1 SO
p=> @i, pU=Y @& pE= 3 > @i [51‘291' + hi:| . (31)

where w; are the weight coefficients.

3. Numerical examples

We apply the proposed DUGKS on unstructured meshes to both internal
and external flows to demonstrate its performance in multiscale flow simulations.
The first one is the two dimensional lid driven cavity flow in different regimes, the
second one is a multiscale unsteady gas expansion problem in which the Knudsen
number ranges from 1072 to 10, the third one is a supersonic rarefied gas flow
with Mach number Ma=>5 passing through a circular cylinder at Kn = 0.1 and
1, the forth one is a Mach 2 rarefied gas flow passing through a two side-by-side
circular cylinders at Kn = 0.1, the last one is the impulsive start problem, which
is used to verify the uniform convergence rate of the DUGKS.

The simulations start from equilibrium states based on given initial flow
variables. For a steady problem, the flow field gradually evolves into the final
steady state. The flow field will be assumed to be steady when the average
relative change of the temperature field in a two-successive steps is less than

1078, ie.,

2T

where the summations are taken over all cells.

|7t
e = Zz| 7 | < 10—8’ (32)

In all tests, the gas is argon with molecular mass m = 6.63 x 10~26kg and

the molecular diameter d = 4.17 x 107'%m. The exponent w in the viscosity-

11
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temperature relation is 0.81, corresponding to the variable hard sphere (VHS)
model of molecular interaction [I]. However, in the calculation of the reference
viscosity by Eq. 4] w is 0.5, corresponding to the hard sphere (HS) model of

molecular interaction [IJ.

8.1. Lid driven cavity flow

The two dimensional lid driven cavity flow is a standard benchmark problem
for validating classical CFD methods in continuum regime. This problem has
also been studied recently by Benzi et al. [28] using a parallel DSMC code at
Knudsen numbers Kn = 10, 1.0, 0.075, and becomes a benchmark test to validate
different schemes in the whole flow regimes [I7], 13|, 19, 21]. To demonstrate the
capability of the present DUGKS on unstructured meshes, we also simulate this
flow in different regimes.

The flow domain is a square cavity with length L = 1m. The upper wall
moves with a constant velocity Uy, while other walls are kept fixed. The tem-
perature at the four walls is fixed at T, = 273K and is used as the reference
temperature. The walls are fully diffusive and the boundary conditions are the
same as that presented in Refs [I9, 20]. The Knudsen number is defined as
the ratio of the mean free path corresponding to the initial density pyef and the
cavity length L. Different Knudsen numbers can be obtained by adjusting the
initial density.

Both rarefied and continuum flows are simulated. In rarefied regimes, three
values of the Knudsen number, Kn = 10,1 and 0.075, are considered. The ve-
locity of the upper wall is set to be Uy, = 50m/s, which is the same as that used
in the DSMC and the UGKS simulations [28, [I7]. The corresponding Knud-
sen numbers are 3.7763 x 10~* and 1.5105 x 10~%, respectively. Furthermore,
the Mach number is Ma = 0.1, so that the flow is nearly incompressible and
the solutions in the continuum regime can be compared with the benchmark
solutions [29] of the incompressible Navier-Stokes equations.

In the previous work [19], the DUGKS with structured meshes has been

employed to simulate the cavity flow in different flow regimes. Here we choose

12
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Figure 2: Meshes for the cavity flow. (a) Kn = 10,1 and 0.075. (b) Re = 400 and 1000.

unstructured meshes to demonstrate the performance of the proposed method.
Figure [2] presents the meshes used for flows with different Knudsen numbers
and Reynolds numbers. Note that the mesh in Fig. b) is a hybrid mesh with
quadrilateral cells near the walls. It is suitable to capture the boundary layer
effect which is important for continuum flows.

The discretization of velocity space and quadrature rules used depend on the
Knudsen number. For highly rarefied flows (i.e. Kn = 10, 1), we use the Newton-
Cotes rule with 101 x 101 velocity points distributed uniformly in the range of
[—4v2RTy,4V2RTy] x [-4v/2RTy,4y/2RTy]. For the case of Kn = 0.075, we
adopt the half-range Gauss-Hermit quadrature with 28 x 28 velocity points. For
continuum flows, we employ the half-range Gauss-Hermit quadrature rule with
8 x 8 velocity points. The CFL number is fixed at 0.8 in all simulations unless
stated otherwise.

Figures present the temperature field, heat flux, and velocity (U, V') on
the vertical and horizontal center lines, for the cases of Kn = 10,1 and 0.075,
respectively, together with the DSMC solutions. It can be seen that the present
results agree well with DSMC data. It is interesting to note that the direction of
the heat flux is not following temperature gradient in each case, which indicates
the breakdown of Fourier law at the Knudsen number 0.075 and even smaller

ones.
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Figure 3: Results of the cavity flow at Kn = 10. (a) Temperature contours, black line: DSMC;
white line with background: DUGKS. (b) Heat flux: blue solid line with arrows: DSMC; red

dashed line : DUGKS. (c) U-velocity along vertical center line and V-velocity along horizontal
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Figure 4: Results of the cavity flow at Kn = 1. (a) Temperature contours, black line: DSMC;
white line with background: DUGKS. (b) Heat flux: blue solid line with arrows: DSMC, red

dashed line : DUGKS. (c) U-velocity along vertical center line and V-velocity along horizontal

central line.
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Figure 6: Results of the cavity flow at Re = 400, Kn = 3.7763 x 10~%. (a) Velocity streamline

(b) U-velocity alone vertical central line and V-velocity alone horizontal central line.
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Figure 7:  Results of the cavity flow at Re = 1000, Kn = 1.5105 x 10~%. (a) Velocity
streamline. (b) U-velocity alone vertical central line and V-velocity alone horizontal central

line.

Figures [6] and [7] show the streamlines and velocity profiles for the cases of
Re = 400 and 1000, respectively. The benchmark solutions [29] are also included
for comparison. Even with the cell size and time step size being much larger
than the mean free path and mean collision time in these cases, for example, at
Re = 1000, the smallest cell size is about 45 times of the mean free path, and at
steady state the time step size is 20 times of the mean collision time, the DUGKS
results still have good agreement with the benchmark data. So the DUGKS
recovers the Navier-Stokes solutions in the continuum limit. We would also like
to point out that for most traditional DVM methods, the numerical dissipation
is proportional to cell size due to the splitting treatment of particle transport
and collision processes. This may lead to significant errors for unstructured
meshes as the cell size changes dramatically. The above results indicate that
the DUGKS can avoid this kind of difficulty with coupled treatment of particle
transport and collision. The stable computations of the cavity flow in the three
different flow regimes with the CFL number fixed at 0.8 also indicate the uniform

stability of the current method with respect to the Kn.
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Figure 8: Gas expansion between two cavities connected by a channel.

Figure 9: Mesh for the gas expansion case.

Mach Number: 0.5 1 1.5 2 25 3 35

Figure 10: Mach number contours for the gas expansion problem at time ¢/t. = 1.
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Figure 11: Pressure contours and streamlines for the gas expansion problem at time t/t. = 1.

Mach Number: 0.205 1 1.5 2 25

Figure 12: Mach number contours for the gas expansion problem at time ¢/t. = 4.

Pressure: 2 5 10 152025303540

Figure 13: Pressure contours and streamlines for the gas expansion problem at time t/¢t. = 4.
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8.2. Multiscale flow expansion between two connected cavities

In the above subsection, the cavity flow at specific flow regimes have been
simulated. Now we consider a gas expansion between two connected cavities
with different initial pressures. This flow is an unsteady multiscale problem
where different flow regimes appear in a single run. The flow configuration is
sketched in Fig. [ Two square cavities A and B connected by a channel are
initially maintained at different pressures and separated by a diaphragm at the
middle of the channel. The height of the cavity is L = 1m, and the length and
width of the channel are L and H with H = L/8. The walls of the cavities
and the channel are maintained at 273K, and are assumed to be fully diffusive.
Initially, the temperature of the gas in the system is 273K, which is used as
the reference temperature. The initial Knudsen numbers in cavities A and B
are Kny = 0.001 and Knp = 10, respectively, and the corresponding pressures
are Py = 48.78Pa and Pp = 0.004878Pa, respectively. At time ¢ = 0, the
diaphragm is removed suddenly. Then the gas starts to expand from the left
cavity to the right one. We are interested in the dynamic behavior of the gas
during the expansion process.

The computational mesh used in the simulation is shown in Fig. [9] As sig-
nificant flow variations can take place in cavity B, the mesh is much finer there.
While in cavity A, the flow changes slowly and the mesh is relatively coarser.
Note that like the continuum cavity flow, the cell size in cavity A is much
larger than the mean free path there. The correctness of using such a coarser
mesh in cavity A is granted by the AP property of the DUGKS. To account for
the highly non-equilibrium effect in cavity B at the early stage, we use 101 x
101 grid points distributed uniformly in the range of [—7v2RTy, Tv/2RTy,| x
[-7V2RTy,7V2RTy] for the velocity space discretization, and the Newton-
Cotes quadrature rule is used for the numerical integration. Note that in this
test case, the bound of the discrete velocity is larger than that used in the cavity
flow simulations, as we have to account for the supersonic flow behavior in the
channel and cavity B at the early stage of expansion. In our simulations, the

CFL number is set to be 0.8.
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Figure 14: Temperature (a), horizontal velocity (b), pressure (c) and Mach number (d) along

the horizontal center line across the cavities and the channel at different times for the gas

expansion problem.
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We can define a characteristic time of the system as t. = L/v/2RT, and the
flow fields at different times are measured. The local Mach number, pressure,
and streamlines at times ¢/t. = 1 and 4 are presented in Figs. Figs. and
show that the shock wave reaches the center of cavity B at time ¢/t. = 1. At
this moment the gas is still very rarefied there associated with ballistic behavior,
and there is no vortex formation. As the gas moves into cavity B continuously,
the pressure in cavity B rises with time, but the pressure ratio between the two
cavities is high enough to form a supersonic jet at the outlet of the channel.
The initial shock wave disappears, and two symmetric vortexes appear in cavity

B at a later time.
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g g
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01 ' R 01
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Figure 16: Temperature (a) and pressure (b) along the vertical center line (upper half) of

the cavity A at different times for the gas expansion problem.

To get a detail information of the expansion process, we show the tempera-
ture, U-velocity and pressure profiles along the horizontal symmetric line of the
system at times t/t. = 0.013,0.1,1,2,3 and 4 in Fig. It can be seen that at
the early stage (¢/t. = 0.013 and 0.1), the shock wave propagates in the channel,
and the flow variables change sharply across the shock. With time increments,
the pressure difference between the two cavities decreases. Consequently, the
shock becomes weaker and the flow rate decreases gradually.

To quantify the results, the temperature, velocity, and pressure profiles along

the vertical center lines of the two cavities at different times are presented in
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Figs. and respectively. Here only the results at the upper half ( 0 <y <
L/2) of the domain are shown owing to the symmetry of the flow. Fig. [15]b)
shows a counterclockwise vortex development in the upper half of cavity B,
which enhances heat convection in the gas. Consequently, the temperature field
becomes uniform gradually, as indicated in Fig. (a). On the other hand, the
flow in cavity A changes slightly. Actually, the temperature and pressure are
almost uniform at each time. With the decreasing of pressure in the cavity, the

temperature reduces as the internal energy is converted to the kinetic energy.

3.8. Mach 5 rarefied gas flow passing through a circular cylinder

To further demonstrate the performance of the DUGKS on unstructured
meshes for high speed non-equilibrium external flows, we simulate the rarefied
gas flow passing through a circular cylinder. This problem has been studied
before [16] using the UGKS method with structured mesh. We here adopt the
same configuration and parameters as the early simulations. The free-stream
Mach number is Ma,, = 5, and the radius of the cylinder is » = 0.0lm. Two
Knudsen numbers are considered (Kne, = Aoo/r = 0.1 and 1). The free-stream
gas temperature is T, = 273K and is used as the reference temperature. The
surface of the cylinder is maintained at constant temperature of Ty, = 273K, and
diffusive boundary condition is assumed. The outer boundary of the computa-
tional domain is a circle with a diameter of D, = 22r, and forms a concentric
annular along with the surface of the cylinder. The distribution functions com-
ing to the computational domain from the outer boundary are equilibrium state
with the free-stream flow conditions.

Hybrid meshes are adopted again for this test case (see Fig. . Locally
refined quadrilateral cells are used near the cylinder to resolve the boundary
layer. We note that the mesh resolution in the normal direction of the cylinder
wall should be fine enough to capture the large flow gradients correctly in the
boundary layer. For the case of Kn = 0.1, the mesh spacing around the cylinder
wall is finer than that for Kn = 1 (see Fig. [L7[b)) since the boundary layer

become thinner as Kn decreases. The fine meshes around the cylinder wall are

23



280

285

290

Y
ARk

NOSIN

S
/AVAVAVAY
AVAVAY

TR
SRROOALTS
O Ay vvava
Ny,
R0

,,
e
AT

%

% Ya

7

2
%
,/

%
7%

NN
N
RN

RN

\\\\\\‘\\\\‘\nuﬁ
Nhwvavs
AT
A

V.,
V%,

44
%
7%

Aval

e

N

%
<]

'Y
D

%
%
X
v,
X
XK 4&'&%
vava)
v
X

PR
K
POIA
<\ X

1‘» Q
<

<
v,
X

]

0
vaV Ay,
X

OO0
SRR
ORRR
%
2

XK
KRB0
RN
BRSO
Y N <[>
WAVAS

/N
S

SVAVAVAVAVAVAAYA
! PO,

I R ST AV ST AAVAVAVAVATATAY
SRR

R AYAVAVAVAVAVATY,

-0.05 0.05 0.1

Figure 17: Meshes for the flow passing through a cylinder. (a) Global view of the mesh.

(b) Local view of the meshes around the cylinder surface, upper: Kn = 1, lower: Kn = 0.1.

only used to capture the large gradients of the flow field, but not to resolve the
mean free path scale. Actually, based on the posterior estimation, the mesh
spacing around the stagnation point for the case of Kn = 1 is about 2 times of
the mean free path there.

In our computations, the velocity space is discretized into 89 x 89 uniform
grid points in the range of [—15v/2R T, 15v/2R T | X [—15v/2R T, 15v/2RT ],

and the Newton-Cotes quadrature rule is used for the numerical integration. To

validate our simulation results, we use the open source dsmcFoam solver [30]
to obtain the DSMC results under the same flow conditions and computational
domain.

The contours of temperature and Mach number for the case of Kn = 0.1
are shown in Fig. Also included are the DSMC solutions. The temperature
and U-velocity profiles along the stagnation line are shown in Fig. Clearly
both temperature and Mach number distributions of the DUGKS results agree
with those of the DSMC results perfectly. However, there are some small dis-
crepancies in the front of the bow shock, which can be seen more clearly in the

temperature profile. This is due to the intrinsic defect of the Shakhov model
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Figure 18: Temperature (a) and Mach number (b) distribution for the flow passing through

a cylinder at Kn=0.1. Solid white line with colored background: DUGKS, dashed black line:

DSMC.
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Figure 21: Temperature and Mach number distributions for the flow passing through a

cylinder at Kn=1. Solid white line with colored background: DUGKS, dashed black line:
DSMC.

used in the current DUGKS [I], where the collision frequency is independent of
particle velocities. Despite of the small deviations, the temperature agrees well
with the DSMC results in the downstream the shock. The heat flux, normal
pressure and shear stress distribution along the cylinder’s surface predicted by

the DUGKS and DSMC agree with each other quite well, as shown in Fig.
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Figure 22: Temperature (a), velocity (b) and density (c) profiles alone the stagnation line
for flow passing through a cylinder at Kn=1.

For the case of Kn = 1, the temperature and Mach number distributions are
presented in Fig. The temperature, U-velocity, and density profiles along
the stagnation line are shown in Fig. [22] These results show that the DUGKS
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Figure 23: Heat flux (a), pressure (b) and shear stress (c) alone the surface for the flow

passing through a cylinder at Kn=1.

results agree w