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Abstract

The recently proposed discrete unified gas kinetic scheme (DUGKS) is a finite

volume method for multiscale flow computations with asymptotic preserving

property. The solution of the Boltzmann model equation is directly used for

the construction of numerical flux and makes the scheme applicable in all flow

regimes. In previous applications of the DUGKS, structured meshes have been

mostly employed, which may have difficulties for problems with complex geome-

tries. In this paper we will extend the DUGKS to unstructured meshes, with

the implementation of computational fluid dynamics techniques to the DUGKS.

Several test cases, i.e., the cavity flow ranging from continuum to free molecular

regimes, a multiscale flow problem between two connected cavities with large

pressure and density variations, high speed flows past multiple cylinders in slip

and transitional regimes, and an impulsive start problem are performed, and

the results are compared with the well-defined Direct Simulation Monte Carlo

(DSMC) or Navier-Stokes (NS) solutions in their applicable regimes. The nu-

merical results demonstrate the effectiveness of the proposed DUGKS for the

study of multiscale flow problems.
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1. Introduction

Gas flows can be classified into different flow regimes based on the Knudsen

number (Kn), which is defined as the ratio of the mean free path of the gas to

the physical characteristic length. For flow with Kn > 0.001, non-equilibrium

effects become important and the classical Navier-Stokes-Fourier (NSF) equa-5

tions fail to describe such a flow [1], while the Boltzmann equation can serve as

a fundamental equation which is valid in the whole range of Knudsen numbers.

There are mainly two types of numerical approaches to solve the Boltz-

mann equation. The first one is the widely used direct simulation Monte Carlo

(DSMC) method [1], which is the prevailing technique for simulating high-speed10

rarefied gas flows. However, the DSMC is a single scale method, where the par-

ticle transport and collision processes are decoupled. As a result, the cell size

and time step are required to be smaller than the mean free path and the mean

particle collision time [1]. For flows in near continuum or continuum regime,

this requirement will lead to enormous computational costs. Another undesired15

feature of the DSMC is the statistical noise that must be reduced through in-

tensive sampling and averaging, which is more serious for low speed and small

temperature variation flows [1]. Great efforts have been devoted to reduce sta-

tistical noise of the DSMC method [2, 3]. The second approach for solving the

Boltzmann equation is to use deterministic numerical schemes, i.e., the Dis-20

crete Velocity Methods (DVM) [4, 5, 6]. Most DVM schemes are single scale

methods with decoupled particle transport and collision, which have the same

constraints on the time step and cell size as the DSMC [7, 8, 9]. Recently, some

asymptotic preserving (AP) schemes have been proposed to overcome these dis-

advantages (e.g., [10, 11, 12]). The AP schemes for Boltzmann equation are25

designed to reduce to the appropriate discretization schemes for hydrodynamic

equations automatically as the Knudsen number goes to zero, without resolv-

ing the mean free path and particle collision time on the computational grids.

The AP schemes also treats the collision term implicitly using efficient man-

ners to overcome the stiffness problem as the Knudsen number approaches to30
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zero. Their stability is independent of the Knudsen number. These schemes are

able to recover the Euler solutions in the continuum limit, but it is still unclear

whether the Navier-Stokes solutions can be accurately obtained [13].

Recently, a unified gas kinetic scheme (UGKS) has been constructed for all

Knudsen number flows [14, 15, 16, 17]. The UGKS is an aggressive enxtension of35

the gas kinetic scheme (GKS) which is a flux solver for hydrodynamic equations

and is mainly used to simulate continuum flows [18]. In the UGKS, the particle

transport and collision effects are coupled in UGKS when updating the discrete

distribution function. Consequently, the restrictions on the cell size and time

step are avoided, and the UGKS solutions depend on the ratio of the local time40

step to the particle collision time [13].

An alternative unified kinetic method, i.e., the discrete unified gas kinetic

scheme (DUGKS), has been proposed for multi-regime flow computations re-

cently [19, 20]. The DUGKS shares the same modeling mechanism as the

UGKS [19]. The main difference between the UGKS and the DUGKS lies in45

the construction of numerical flux for the discrete distribution function at cell

interface. In UGKS, the flux is obtained from the time-dependent distribution

function at the cell interface, and this solution is based on the local analytical

integral solution of the model kinetic equation. While in DUGKS, the flux is

calculated from the distribution function at a half time step, and this solution is50

determined from a numerical characteristic solution of the model kinetic equa-

tion. The flux in DUGKS couples the effects of particle transport and collision,

and the updating rule is much simpler than the UGKS.

The DUGKS shares some similarities with the well-known lattice Boltzmann

method (LBM) which can be viewed as a special discrete velocity type method.55

Both of them are based on the relaxation-type collision models, and employ the

implicit-to-explicit transformation. The idea behind the flux evaluation method

in the DUGKS is conceptually very similar to the streaming step of the LBM,

i.e., the particles arrived at the cell face (in the DUGKS) or lattice node (in

the LBM) are assumed to have streamed from the upwind, with collision effect60

considered. However, there are considerable differences between the DUGKS
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and the LBM. The LBM is essentially an Navier-Stokes equation solver under

the low Mach number condition, thus can only be used to simulating near in-

compressible continuum flows. The DUGKS employing the LBM type discrete

velocity set (i.e., the DnQm lattices) can be viewed as a finite-volume based65

off-lattice Boltzmann method. Their relative performances for continuum flows

have been compared in [21]. It is also found that the DUGKS is not a straight

forward translation of the finite-difference interpreted LBM [22].

In previous works [19, 20], the DUGKS has been applied to both low speed

and high speed non-equilibrium flows using structured meshes. However, most70

non-equilibrium flow problems involve complicated geometries, such as those in

the microelectromechanical systems (MEMS) industrial and aerospace engineer-

ing. The use of unstructured mesh is preferable. In this work we aim to extend

the DUGKS to unstructured meshes and demonstrate its effectiveness for the

multiscale non-equilibrium flows.75

The rest of the paper is organized as following. In Sec. 2, the general pro-

cedure of the DUGKS on unstructured meshes is presented. In Sec. 3, several

numerical examples, including the micro cavity flow, an expansion flow between

two connected cavities, and the rarefied gas flow passing through a single and

double circular cylinders, will be computed to demonstrate the capability of the80

current method in simulating flows in different regimes. An additional test case,

the impulsive start plate problem is used to verify the uniform convergence rate

of DUGKS. A brief summary is given in the last section.

2. Discrete unified gas kinetic scheme

2.1. Shakhov model85

The DUGKS is based on the Boltzmann model equation. In this study, the

collision operator is approximated by the Shakhov model [23] for monatomic

gases. In D dimensional space, the model equation is

∂f

∂t
+ ξ · ∇f = −1

τ

[
f − fS

]
, (1)

4



where f = f(ξ,η,x, t) is the velocity distribution function of particles with

velocity ξ = (ξ1, . . . , ξD) in D dimensional velocity space at position x =

(x1, . . . , xD) and time t. Here η = (ξD+1, . . . , ξ3) is a vector in a space with

dimension L = 3 − D, which accounts for the degrees of freedom other than

the D-dimensional translational ones. fS is the Shakhov equilibrium distribu-

tion function given by the Maxwellian distribution function feq plus a heat flux

correction term

fS = feq
[
1 + (1− Pr)

c · q
5pRT

(
c2 + η2

RT
− 5)

)]
= feq + fPr, (2)

where Pr is the Prandtl number and c = ξ −U is the peculiar velocity around

the averaged macroscopic fluid velocity U ; q is the heat flux, R is the specific

gas constant, and T is the temperature. The collision time τ in Eq. (1) is related

to the dynamic viscosity µ and pressure p by τ = µ/p. The dynamic viscosity

µ depends on temperature as

µ = µref

(
T

Tref

)ω

, (3)

where µref is the viscosity at the reference temperature Tref, and the exponent

ω is a constant depends on the inter-molecular interaction model. The viscosity

µref can be related to the reference mean free path λref. By using the Knudsen

(Kn), Mach (Ma) and Reynolds (Re) numbers, the µref ∼ λref relation leads to

(Eq. 1.29 in [24]),

Kn =

√
2γ

π

(5− 2ω)(7− 2ω)

15

Ma

Re
, (4)

where γ is the heat capacity ratio. The Kn, Ma and Re numbers are define as

Kn =
λref
Lref

, Ma =
Uref√
γRTref

, Re =
ρrefUrefLref

µref
, (5)

where Lref, Uref, ρref are the referenced length, velocity and density, respectively.

The Maxwellian distribution function feq is given by

feq =
ρ

(2πRT )3/2
exp

(
−c

2 + η2

2RT

)
, (6)
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where ρ is the gas density. The conservative flow variables W ≡ (ρ, ρU , ρE)T

are calculated as moments of the distribution function,

W =

∫
ψfdξdη, (7)

here ψ =
(
1, ξ, 12 (ξ2 + η2)

)T
and ρE = 1

2ρU
2 +CVT = 1

2ρU
2 +p/(γ−1), where

CV is the heat capacity. The heat flux q is defined by

q =
1

2

∫
c(c2 + η2)fdξdη. (8)

The parameter η can be viewed as internal degree of freedom, and the depen-

dence of f on η can be removed by using two reduced distribution functions [25]

g(x, ξ, t) =

∫
f(ξ,η,x, t)dη, (9a)

h(x, ξ, t) =

∫
η2f(ξ,η,x, t)dη. (9b)

The conservative macroscopic variables can be computed from these reduced

distribution functions as

ρ =

∫
gdξ, ρU =

∫
ξgdξ, ρE =

1

2

∫
(ξ2g + h)dξ, (10)

and the heat flux can be computed as

q =
1

2

∫
c(c2g + h)dξ. (11)

The evolution equations for the two distribution functions can be deduced from

Eq. (1) as

∂g

∂t
+ ξ · ∇g =Ωh = −1

τ

[
g − gS

]
, (12a)

∂h

∂t
+ ξ · ∇h =Ωg = −1

τ

[
h− hS

]
, (12b)

where the reduced equilibrium distribution functions gS and hS can be deduced

as well,

gS(x, ξ, t) =

∫
fS(ξ,η,x, t)dη = geq + g

Pr
, (13a)

hS(x, ξ, t) =

∫
η2fS(ξ,η,x, t)dη = heq + h

Pr
, (13b)
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with

geq =
ρ

(2πRT )D/2
exp

[
− c2

2RT

]
, (14a)

heq =(3−D)RTgeq, (14b)

g
Pr

=(1− Pr)
c · q

5pRT

[
c2

RT
−D − 2

]
geq, (14c)

h
Pr

=(1− Pr)
c · q

5pRT

[(
c2

RT
−D

)
(3−D)

]
RTgeq. (14d)

2.2. Discrete unified gas kinetic scheme on unstructured meshes

2.2.1. Updating of the cell-averaged distribution function

The updating rules for g and h in Eq. (12) have the same structure as

∂φ

∂t
+ ξ · ∇φ = Ω = −1

τ

[
φ− φS

]
, (15)

for φ = g or h. The generic symbol φ will be used to denote g and h in the

following. The DUGKS is an explicit finite volume scheme for solving Eq. (15).

The computation domain is firstly divided into some control volumes (cells). By

integrating Eq. (15) in each cell from time tn to tn+1, we have

φn+1
j (ξ)− φnj (ξ) +

∆t

|Vj |
Fn+1/2

j (ξ) =
∆t

2

[
Ωn+1

j + Ωn
j

]
. (16)

Here φj and Ωj are the cell averaged values of φ and Ω in cell j; |Vj | is the cell’s

volume and ∆t = tn+1 − tn is the time step. Note that the trapezoidal and

middle-point rules are used for the collision and convection terms in Eq. (16),

respectively. The term Fn+1/2
j in Eq. (16) is the flux of φ across the interface

of cell j and is evaluated as

Fn+1/2
j (ξ) =

∑
k

ξ · Sk
j φ(xk

j , ξ, tn+1/2), (17)

where Sk
j is the outward normal vector of the kth face of cell j with face area

|Sk
j |, and xk

j is the center of the face. Equation(16) can be rewritten in an

explicit form by introducing two new distribution functions [19, 20],

φ̃n+1
j = φ̃+,n

j + Fn+1/2
j , (18)
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where

φ̃ = φ− ∆t

2
Ω =

2τ + ∆t

2τ
φ− ∆t

2τ
φS , (19a)

φ̃+ = φ+
∆t

2
Ω =

2τ −∆t

2τ + ∆t
φ̃+

2∆t

2τ + ∆t
φS . (19b)

Due to the conservative property of the collision term, the conservative variables

can also be calculated from φ̃ as [20]

ρ =

∫
g̃dξ, ρU =

∫
ξg̃dξ, ρE =

1

2

∫
(ξ2g̃ + h̃)dξ, (20)

and

q =
2τ

2τ + ∆tPr
q̃, with q̃ =

1

2

∫
c(c2g̃ + h̃)dξ. (21)

Therefore, in actual implementations, we track the evolution of φ̃ according to90

Eq. (18), instead of the original distribution function φ in order to avoid implicit

computations. This is also one of the major differences between the DUGKS

and the UGKS.

2.2.2. Flux evaluation on unstructured meshes

To update φ̃j according to Eq. (18), the flux Fn+1/2
j is required. From the

definition of Fn+1/2
j given by Eq. (17), the original distribution functions at the

middle time step at cell interfaces, i.e. φn+1/2(xk
j , ξ), should be computed. This

is done by integrating Eq. (15) from time tn to tn+1/2 along the characteristic

line which ends at the face center xf ,

φn+1/2(xf , ξ)− φn(xf − ξs, ξ) =
s

2

[
Ωn+1/2(xf , ξ) + Ωn(xf − ξs, ξ)

]
, (22)

where s = tn+1/2 − tn is the half time step. Here the trapezoidal rule is used

again for the collision term. Similar to the treatment of Eq. (16), another two

auxiliary distribution functions are introduced

φ̄ = φ− s

2
Ω =

2τ + s

2τ
φ− 2

2τ
φS , (23a)

φ̄+ = φ+
s

2
Ω =

2τ − s
2τ + s

φ̄− 2s

2τ + s
φS . (23b)
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Then Eq. (22) can be expressed explicitly as

φ̄n+1/2(xf , ξ) = φ̄+,n(xf − ξs, ξ). (24)

In this work, piecewise linear reconstructions in the upstream neighboring cells

are employed to interpolate φ̄+,n(xf − ξs) from the cell centered φ̄+,n. The

neighboring cells are identified by the direction of the particle velocity ξ. To

demonstrate this procedure, here we consider a general case as illustrated in

Fig. 1, where AB is a cell interface with the center xf and its unit normal vector

nf points from cell P to cell N . The distribution function φ̄+(xf − ξs, ξ, tn) is

A

B

xf
P N

nfξs

Figure 1: Sketch of two neighboring cells on a general unstructured mesh

evaluated as

φ̄+(xf−ξs, ξ) = φ̄+(xC , ξ)+(xf−xC−ξs)·L
[
φ̄+(x, ξ),xC

]
∇φ̄+(xC , ξ), (25)

where C stands for P if ξ ·nf > 0, or N otherwise. The gradient ∇φ̄+ at the cell

center is calculated using the least square method. For instance, the gradient

of cell P is evaluated as

(
∇φ̄+

)
P

=
∑
i

ω2
iG
−1 · di

[(
φ̄+
)
P
−
(
φ̄+
)
Ni

]
, (26)

where the tensor G is defined as

G =
∑
i

ω2
i didi, (27)

with di being the spatial vector from P to its ith adjacent cell center Ni, and95

ωi = 1/|di| being the weighting factor. The function L
[
φ̄+(x, ξ),xC

]
in Eq. (25)
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denotes the gradient limiter which is used to suppress numerical oscillations in

regions with large discontinuities, such as the shock layer in continuum flow

regime. In this work, we adopt the Venkatakrishnan limiter [26] which is a

typical choice for flow computations on unstructured meshes.100

The time step in the DUGKS is determined by the Courant-Friedrichs-Lewy

(CFL) condition,

∆t = α

(
∆x

|U |+ |ξ|

)
min

, (28)

where 0 < α < 1 is the CFL number and ∆x is the distance between the

centers of two neighboring cells that share an interface. It should be noted

that the CFL condition is imposed by the treatment of the convection term in

the governing equation. Usually the collision term also poses a restriction on

the time step since the computation can be unstable if ∆t is much larger than105

the mean collision time τ . However, in DUGKS, as long as the computation is

stable, accurate solutions can be obtained even if ∆t is much larger than the

mean collision time [20], due to coupled treatment of the collision and transport

in the construction of numerical flux. While in many DVM schemes, the lack

of collision contribution in the numerical flux leads to a numerical viscosity110

proportional to the time step [13, 27], such that the time step must be smaller

than the mean collision time in order to keep the numerical viscosity being much

smaller than the physical viscosity.

After getting φ̄ at face centers according to Eqs. (24) and (25), the original

distribution functions φ can be recovered from Eq. (23a). The macro variables

at time tn+1/2 used to evaluate the equilibrium distribution functions φS are

calculated from φ̄ as

ρ =

∫
ḡdξ, ρU =

∫
ξḡdξ, ρE =

1

2

∫
(ξ2ḡ + h̄)dξ, (29)

and

q =
2τ

2τ + sPr
q̄, with q̄ =

1

2

∫
c(c2ḡ + h̄)dξ. (30)

Then the flux across each cell interface can be evaluated according to Eq. (17).

Finally, the cell centered φ̃ can be advanced to the new time level according to115

Eq. (18).
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The updating procedures presented above are all based on continuous veloc-

ity space for convenience. In actual implementations, the continuous velocity

space is discretized into a finite discrete velocity set {ξi} like the DVM [25],

and the distribution functions such as g̃ and h̃ are defined at these discrete ve-

locity points as g̃i and h̃i. Proper quadrature rules such as the Newton-Cotes

quadrature or the Gauss-Hermite quadrature are then used to approximate the

moments,

ρ =
∑
i

$ig̃i, ρU =
∑
i

$iξig̃i, ρE =
1

2

∑
i

$i

[
ξ2i g̃i + h̃i

]
, (31)

where $i are the weight coefficients.

3. Numerical examples

We apply the proposed DUGKS on unstructured meshes to both internal

and external flows to demonstrate its performance in multiscale flow simulations.120

The first one is the two dimensional lid driven cavity flow in different regimes, the

second one is a multiscale unsteady gas expansion problem in which the Knudsen

number ranges from 10−3 to 10, the third one is a supersonic rarefied gas flow

with Mach number Ma=5 passing through a circular cylinder at Kn = 0.1 and

1, the forth one is a Mach 2 rarefied gas flow passing through a two side-by-side125

circular cylinders at Kn = 0.1, the last one is the impulsive start problem, which

is used to verify the uniform convergence rate of the DUGKS.

The simulations start from equilibrium states based on given initial flow

variables. For a steady problem, the flow field gradually evolves into the final

steady state. The flow field will be assumed to be steady when the average

relative change of the temperature field in a two-successive steps is less than

10−8, i.e.,

εn =

∑
i |T

n+1
i − Tn

i |∑
i T

n
i

< 10−8, (32)

where the summations are taken over all cells.

In all tests, the gas is argon with molecular mass m = 6.63 × 10−26kg and

the molecular diameter d = 4.17 × 10−10m. The exponent ω in the viscosity-130
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temperature relation is 0.81, corresponding to the variable hard sphere (VHS)

model of molecular interaction [1]. However, in the calculation of the reference

viscosity by Eq. 4, ω is 0.5, corresponding to the hard sphere (HS) model of

molecular interaction [1].

3.1. Lid driven cavity flow135

The two dimensional lid driven cavity flow is a standard benchmark problem

for validating classical CFD methods in continuum regime. This problem has

also been studied recently by Benzi et al. [28] using a parallel DSMC code at

Knudsen numbers Kn = 10, 1.0, 0.075, and becomes a benchmark test to validate

different schemes in the whole flow regimes [17, 13, 19, 21]. To demonstrate the140

capability of the present DUGKS on unstructured meshes, we also simulate this

flow in different regimes.

The flow domain is a square cavity with length L = 1m. The upper wall

moves with a constant velocity Uw, while other walls are kept fixed. The tem-

perature at the four walls is fixed at Tw = 273K and is used as the reference145

temperature. The walls are fully diffusive and the boundary conditions are the

same as that presented in Refs [19, 20]. The Knudsen number is defined as

the ratio of the mean free path corresponding to the initial density ρref and the

cavity length L. Different Knudsen numbers can be obtained by adjusting the

initial density.150

Both rarefied and continuum flows are simulated. In rarefied regimes, three

values of the Knudsen number, Kn = 10, 1 and 0.075, are considered. The ve-

locity of the upper wall is set to be Uw = 50m/s, which is the same as that used

in the DSMC and the UGKS simulations [28, 17]. The corresponding Knud-

sen numbers are 3.7763 × 10−4 and 1.5105 × 10−4, respectively. Furthermore,155

the Mach number is Ma = 0.1, so that the flow is nearly incompressible and

the solutions in the continuum regime can be compared with the benchmark

solutions [29] of the incompressible Navier-Stokes equations.

In the previous work [19], the DUGKS with structured meshes has been

employed to simulate the cavity flow in different flow regimes. Here we choose160
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(a) (b)

Figure 2: Meshes for the cavity flow. (a) Kn = 10, 1 and 0.075. (b) Re = 400 and 1000.

unstructured meshes to demonstrate the performance of the proposed method.

Figure 2 presents the meshes used for flows with different Knudsen numbers

and Reynolds numbers. Note that the mesh in Fig. 2(b) is a hybrid mesh with

quadrilateral cells near the walls. It is suitable to capture the boundary layer

effect which is important for continuum flows.165

The discretization of velocity space and quadrature rules used depend on the

Knudsen number. For highly rarefied flows (i.e. Kn = 10, 1), we use the Newton-

Cotes rule with 101× 101 velocity points distributed uniformly in the range of

[−4
√

2RTw, 4
√

2RTw] × [−4
√

2RTw, 4
√

2RTw]. For the case of Kn = 0.075, we

adopt the half-range Gauss-Hermit quadrature with 28×28 velocity points. For170

continuum flows, we employ the half-range Gauss-Hermit quadrature rule with

8× 8 velocity points. The CFL number is fixed at 0.8 in all simulations unless

stated otherwise.

Figures 3-5 present the temperature field, heat flux, and velocity (U, V ) on

the vertical and horizontal center lines, for the cases of Kn = 10, 1 and 0.075,175

respectively, together with the DSMC solutions. It can be seen that the present

results agree well with DSMC data. It is interesting to note that the direction of

the heat flux is not following temperature gradient in each case, which indicates

the breakdown of Fourier law at the Knudsen number 0.075 and even smaller

ones.180
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Figure 3: Results of the cavity flow at Kn = 10. (a) Temperature contours, black line: DSMC;

white line with background: DUGKS. (b) Heat flux: blue solid line with arrows: DSMC; red

dashed line : DUGKS. (c) U-velocity along vertical center line and V-velocity along horizontal

central line.
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Figure 4: Results of the cavity flow at Kn = 1. (a) Temperature contours, black line: DSMC;

white line with background: DUGKS. (b) Heat flux: blue solid line with arrows: DSMC, red

dashed line : DUGKS. (c) U-velocity along vertical center line and V-velocity along horizontal

central line.
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Figure 5: Results of the cavity flow at Kn = 0.075. (a) Temperature contours, black line:

DSMC; white line with background: DUGKS. (b) Heat flux: blue solid line with arrows:

DSMC; red dashed line : DUGKS. (c) U-velocity along vertical center line and V-velocity

along horizontal central line.
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Figure 6: Results of the cavity flow at Re = 400, Kn = 3.7763×10−4. (a) Velocity streamline

(b) U-velocity alone vertical central line and V-velocity alone horizontal central line.
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Figure 7: Results of the cavity flow at Re = 1000, Kn = 1.5105 × 10−4. (a) Velocity

streamline. (b) U-velocity alone vertical central line and V-velocity alone horizontal central

line.

Figures 6 and 7 show the streamlines and velocity profiles for the cases of

Re = 400 and 1000, respectively. The benchmark solutions [29] are also included

for comparison. Even with the cell size and time step size being much larger

than the mean free path and mean collision time in these cases, for example, at

Re = 1000, the smallest cell size is about 45 times of the mean free path, and at185

steady state the time step size is 20 times of the mean collision time, the DUGKS

results still have good agreement with the benchmark data. So the DUGKS

recovers the Navier-Stokes solutions in the continuum limit. We would also like

to point out that for most traditional DVM methods, the numerical dissipation

is proportional to cell size due to the splitting treatment of particle transport190

and collision processes. This may lead to significant errors for unstructured

meshes as the cell size changes dramatically. The above results indicate that

the DUGKS can avoid this kind of difficulty with coupled treatment of particle

transport and collision. The stable computations of the cavity flow in the three

different flow regimes with the CFL number fixed at 0.8 also indicate the uniform195

stability of the current method with respect to the Kn.
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Figure 8: Gas expansion between two cavities connected by a channel.
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Figure 9: Mesh for the gas expansion case.

Mach Number: 0.5 1 1.5 2 2.5 3 3.5

Figure 10: Mach number contours for the gas expansion problem at time t/tc = 1.
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Figure 11: Pressure contours and streamlines for the gas expansion problem at time t/tc = 1.

Mach Number: 0.2 0.5 1 1.5 2 2.5

Figure 12: Mach number contours for the gas expansion problem at time t/tc = 4.

Pressure: 2 5 10 15 20 25 30 35 40

Figure 13: Pressure contours and streamlines for the gas expansion problem at time t/tc = 4.
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3.2. Multiscale flow expansion between two connected cavities

In the above subsection, the cavity flow at specific flow regimes have been

simulated. Now we consider a gas expansion between two connected cavities

with different initial pressures. This flow is an unsteady multiscale problem200

where different flow regimes appear in a single run. The flow configuration is

sketched in Fig. 8. Two square cavities A and B connected by a channel are

initially maintained at different pressures and separated by a diaphragm at the

middle of the channel. The height of the cavity is L = 1m, and the length and

width of the channel are L and H with H = L/8. The walls of the cavities205

and the channel are maintained at 273K, and are assumed to be fully diffusive.

Initially, the temperature of the gas in the system is 273K, which is used as

the reference temperature. The initial Knudsen numbers in cavities A and B

are KnA = 0.001 and KnB = 10, respectively, and the corresponding pressures

are PA = 48.78Pa and PB = 0.004878Pa, respectively. At time t = 0, the210

diaphragm is removed suddenly. Then the gas starts to expand from the left

cavity to the right one. We are interested in the dynamic behavior of the gas

during the expansion process.

The computational mesh used in the simulation is shown in Fig. 9. As sig-

nificant flow variations can take place in cavity B, the mesh is much finer there.215

While in cavity A, the flow changes slowly and the mesh is relatively coarser.

Note that like the continuum cavity flow, the cell size in cavity A is much

larger than the mean free path there. The correctness of using such a coarser

mesh in cavity A is granted by the AP property of the DUGKS. To account for

the highly non-equilibrium effect in cavity B at the early stage, we use 101 ×220

101 grid points distributed uniformly in the range of [−7
√

2RTw, 7
√

2RTw] ×

[−7
√

2RTw, 7
√

2RTw] for the velocity space discretization, and the Newton-

Cotes quadrature rule is used for the numerical integration. Note that in this

test case, the bound of the discrete velocity is larger than that used in the cavity

flow simulations, as we have to account for the supersonic flow behavior in the225

channel and cavity B at the early stage of expansion. In our simulations, the

CFL number is set to be 0.8.
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Figure 14: Temperature (a), horizontal velocity (b), pressure (c) and Mach number (d) along

the horizontal center line across the cavities and the channel at different times for the gas

expansion problem.
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Figure 15: Temperature (a), horizontal velocity (b), vertical velocity (c) and pressure (d)

along the vertical center line (upper half) of the cavity B at different times for the gas

expansion problem.

21



We can define a characteristic time of the system as tc = L/
√

2RTw, and the

flow fields at different times are measured. The local Mach number, pressure,

and streamlines at times t/tc = 1 and 4 are presented in Figs. 10-13. Figs. 10 and230

11 show that the shock wave reaches the center of cavity B at time t/tc = 1. At

this moment the gas is still very rarefied there associated with ballistic behavior,

and there is no vortex formation. As the gas moves into cavity B continuously,

the pressure in cavity B rises with time, but the pressure ratio between the two

cavities is high enough to form a supersonic jet at the outlet of the channel.235

The initial shock wave disappears, and two symmetric vortexes appear in cavity

B at a later time.
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Figure 16: Temperature (a) and pressure (b) along the vertical center line (upper half) of

the cavity A at different times for the gas expansion problem.

To get a detail information of the expansion process, we show the tempera-

ture, U-velocity and pressure profiles along the horizontal symmetric line of the

system at times t/tc = 0.013, 0.1, 1, 2, 3 and 4 in Fig. 14. It can be seen that at240

the early stage (t/tc = 0.013 and 0.1), the shock wave propagates in the channel,

and the flow variables change sharply across the shock. With time increments,

the pressure difference between the two cavities decreases. Consequently, the

shock becomes weaker and the flow rate decreases gradually.

To quantify the results, the temperature, velocity, and pressure profiles along245

the vertical center lines of the two cavities at different times are presented in
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Figs. 15 and 16, respectively. Here only the results at the upper half ( 0 < y <

L/2 ) of the domain are shown owing to the symmetry of the flow. Fig. 15(b)

shows a counterclockwise vortex development in the upper half of cavity B,

which enhances heat convection in the gas. Consequently, the temperature field250

becomes uniform gradually, as indicated in Fig. 15(a). On the other hand, the

flow in cavity A changes slightly. Actually, the temperature and pressure are

almost uniform at each time. With the decreasing of pressure in the cavity, the

temperature reduces as the internal energy is converted to the kinetic energy.

3.3. Mach 5 rarefied gas flow passing through a circular cylinder255

To further demonstrate the performance of the DUGKS on unstructured

meshes for high speed non-equilibrium external flows, we simulate the rarefied

gas flow passing through a circular cylinder. This problem has been studied

before [16] using the UGKS method with structured mesh. We here adopt the

same configuration and parameters as the early simulations. The free-stream260

Mach number is Ma∞ = 5, and the radius of the cylinder is r = 0.01m. Two

Knudsen numbers are considered (Kn∞ = λ∞/r = 0.1 and 1). The free-stream

gas temperature is T∞ = 273K and is used as the reference temperature. The

surface of the cylinder is maintained at constant temperature of Tw = 273K, and

diffusive boundary condition is assumed. The outer boundary of the computa-265

tional domain is a circle with a diameter of Do = 22r, and forms a concentric

annular along with the surface of the cylinder. The distribution functions com-

ing to the computational domain from the outer boundary are equilibrium state

with the free-stream flow conditions.

Hybrid meshes are adopted again for this test case (see Fig. 17). Locally270

refined quadrilateral cells are used near the cylinder to resolve the boundary

layer. We note that the mesh resolution in the normal direction of the cylinder

wall should be fine enough to capture the large flow gradients correctly in the

boundary layer. For the case of Kn = 0.1, the mesh spacing around the cylinder

wall is finer than that for Kn = 1 (see Fig. 17(b)) since the boundary layer275

become thinner as Kn decreases. The fine meshes around the cylinder wall are

23



X

Y

0.1 0.05 0 0.05 0.1

0.1

0.05

0

0.05

0.1

(a)

Mesh for Kn=0.1

Mesh for Kn=1

(b)

Figure 17: Meshes for the flow passing through a cylinder. (a) Global view of the mesh.

(b) Local view of the meshes around the cylinder surface, upper: Kn = 1, lower: Kn = 0.1.

only used to capture the large gradients of the flow field, but not to resolve the

mean free path scale. Actually, based on the posterior estimation, the mesh

spacing around the stagnation point for the case of Kn = 1 is about 2 times of

the mean free path there.280

In our computations, the velocity space is discretized into 89 × 89 uniform

grid points in the range of [−15
√

2RT∞, 15
√

2RT∞]× [−15
√

2RT∞, 15
√

2RT∞],

and the Newton-Cotes quadrature rule is used for the numerical integration. To

validate our simulation results, we use the open source dsmcFoam solver [30]

to obtain the DSMC results under the same flow conditions and computational285

domain.

The contours of temperature and Mach number for the case of Kn = 0.1

are shown in Fig. 18. Also included are the DSMC solutions. The temperature

and U-velocity profiles along the stagnation line are shown in Fig. 19. Clearly

both temperature and Mach number distributions of the DUGKS results agree290

with those of the DSMC results perfectly. However, there are some small dis-

crepancies in the front of the bow shock, which can be seen more clearly in the

temperature profile. This is due to the intrinsic defect of the Shakhov model
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Figure 18: Temperature (a) and Mach number (b) distribution for the flow passing through

a cylinder at Kn=0.1. Solid white line with colored background: DUGKS, dashed black line:

DSMC.
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Figure 19: Temperature (a), velocity (b) and density (c) profiles alone the stagnation line

for flow past a cylinder at Kn=0.1.
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Figure 20: Heat flux (a), pressure (b) and shear stress (c) alone the surface for the flow

passing through a cylinder at Kn=0.1.
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Figure 21: Temperature and Mach number distributions for the flow passing through a

cylinder at Kn=1. Solid white line with colored background: DUGKS, dashed black line:

DSMC.

used in the current DUGKS [1], where the collision frequency is independent of

particle velocities. Despite of the small deviations, the temperature agrees well295

with the DSMC results in the downstream the shock. The heat flux, normal

pressure and shear stress distribution along the cylinder’s surface predicted by

the DUGKS and DSMC agree with each other quite well, as shown in Fig. 20.
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Figure 22: Temperature (a), velocity (b) and density (c) profiles alone the stagnation line

for flow passing through a cylinder at Kn=1.

For the case of Kn = 1, the temperature and Mach number distributions are

presented in Fig. 21. The temperature, U-velocity, and density profiles along300

the stagnation line are shown in Fig. 22. These results show that the DUGKS
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Figure 23: Heat flux (a), pressure (b) and shear stress (c) alone the surface for the flow

passing through a cylinder at Kn=1.

results agree with the DSMC results as well. The discrepancies in the front of

the bow shock are slightly more obvious. Due to the increment of Kn, the non-

equilibrium effects get stronger, thus the Shakhov model deviates more from

the full Boltzmann collision operator. However, the heat flux, normal pressure,305

and shear stress along surface of cylinder predicted by DUGKS are still quite

satisfactory in comparison with the DSMC results, as shown in Fig. 23. These

results demonstrate that although the Shakhov model with intrinsic defects is

used in the current numerical modeling, the DUGKS still gives rather satisfac-

tory predictions, particularly the flow behaviors near the body. The DUGKS310

can be a very useful engineering tool for hypersonic rarefied flow applications,

especially in the regime of Kn < 0.1.

3.4. Mach 2 rarefied gas flow passing through two side-by-side circular cylinders

We further apply the DUGKS to the flow over two circular cylinders in a

side-by-side arrangement, as sketched in Fig. 24. The computational domain315

is a 0.18m by 0.2m rectangular. Two cylinders with radius of r = 0.01m are

placed vertically in the computational domain with a gap of 2r. The centers of

the cylinders are 8r away from the left boundary. The gas is argon and the free-

stream Mach number and temperature are Ma = 2 and T∞ = 273, respectively.

The Knudsen number based on the radius of the cylinders and the mean free320

path of free-stream gas is 0.1. For this geometry, it is difficult to use a simple

structured mesh to represent the configuration. But for the present DUGKS, we
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can easily setup a hybrid structured-unstructured mesh, as illustrated in Fig. 24.

The velocity space is discretized into 49×49 uniform grid points in the range of

[−6
√

2RT∞, 6
√

2RT∞] × [−6
√

2RT∞, 6
√

2RT∞], and the Newton-Cotes rule is325

used for the calculation of the moments. In our simulations, the CFL number

is set to be 0.8.

Figure 24: Mesh for the flow past two cylinders case.
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Figure 25: Temperature (a) and mach number (b) distribution for the flow passing through

two cylinders case. Solid white line with colored background: DUGKS; dashed black line:

DSMC.

The results of the DUGKS are compared with those of the dsmcFoam solver [30].

Fig. 25 shows the temperature and Mach number distributions predicted by the
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DUGKS and DSMC. It can be seen that the contour lines of two results almost330

overlap each other, especially in the region near the surfaces of cylinders. In

this case the results of the DUGKS and DSMC are nearly identical in the front

of the shock, suggesting that the deviation of the Shakhov model from the full

Boltzmann collision model is small at this Mach number. It is also observed

that, the gas is chocked in the gap between the two cylinders. The high tem-335

perature region in front of the cylinders covers the inlet of the gap. At the

outlet of the gap, the temperature drops gradually, and the gas is accelerated

to supersonic speed. To quantify the comparison, we present in Fig. 27 the heat

flux, pressure, and shear stress on the upper cylinder’s surface. It can be seen

that the results of the DUGKS and DSMC methods agree with each other quite340

well. Furthermore, from Fig. 27(c), we can find the stagnation points are about

14 degrees away from the left leading points at the cylinder surface.
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Figure 26: Heat flux (a), pressure (b) and shear stress (c) alone the surface of the upper

cylinder for the flow past tow cylinders case.

3.5. Impulsive start problem

In this test, we investigate the spatial convergence order of the DUGKS at345

varies flow regimes (Knudsen numbers). The problem considered is the flow of

argon gas between two infinitely long parallel plates, placed at y = L/2 and y =

−L/2. The surfaces of the plates are maintained at uniform temperature Tw and

are assumed to be diffusive boundaries. The flow filed is initially set at uniform

temperature Tw, density ρ0 and is static. At time t = 0, both of the plates350
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start to move in the X direction impulsively with velocity Uw = 0.15
√

2RTw.

The Knudsen number Kn is based on the distance between the plates L and the

initial density ρ0. Three Kn values, Kn = 10, 0.1 and 0.001 are considered. The

characteristic time of the system is chosen as tc = L/
√

2RTw.

Table 1: L2 errors of the velocity field and convergence orders at varies Knudsen numbers for

the impulsive start problem

Kn=10 Kn=0.1 Kn=0.001

Ni ‖δu‖i2 Ei+1
i Ni ‖δu‖i2 Ei+1

i Ni ‖δu‖i2 Ei+1
i

5 6.05E-02 10 4.46E-03 20 7.82E-02

10 6.10E-03 3.31 20 1.19E-03 1.90 40 2.07E-02 1.92

20 1.30E-03 2.22 40 3.18E-04 1.91 80 3.30E-03 2.65

40 3.15E-04 2.04 80 8.16E-05 1.96 160 4.91E-04 2.75

n 2.50 1.92 2.46
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Figure 27: Velocity profiles in the impulsive start problem. (a) Kn=10, at time t = 0.4tc.

(b) Kn=0.1, at time t = 4tc. (c) Kn=0.001, at time t = 40tc.

The flow can be treated as a pseudo one-dimensional problem, as the flow355

fields at any time are independent of the x coordinate. Uniform structured

meshes with resolutions of N × 1 are used in the simulation. The relatively

small computation effort is also the reason to use such a test case to investigate

the convergence rate of the DUGKS. Because in the investigation of spatial

convergence order, the CFL number is usually kept at very low values to suppress360
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the errors induced by time integration, and very fine meshes have to be used. At

such condition, simulating a full two-dimensional problem would be extremely

expensive.

The L2 errors the horizontal velocity field against the reference solutions are

computed at three successively refined meshes N0, N1 = 2N0, N2 = 4N0 at

time t = te. For Kn = 10, N0 = 5, te = 0.4tc. For Kn = 0.1, N0 = 10, te = 4tc.

For Kn = 0.001, N0 = 20, te = 40tc. The L2 error is defined as

‖δu‖i2 :=

Ni∑
j=1

‖u(yj , te)− u∗(yj , te)‖2
Ni∑
j=1

‖u∗(yj , te)‖2

(33)

where u∗(yj , te) is the reference solution at the grid points and is linearly inter-

polated from the solution obtained at a much finer mesh with mesh size Nm×1.

The reference solutions are assumed to be the approximated accurate solutions.

Nm are 80, 320 and 640 for Kn = 10, 0.1 and 0.001, respectively. Using two

different mesh sizes Ni and Ni+1, the convergence order can be estimated by

E
Ni+1

Ni
=

log(‖δu‖i2 / ‖δu‖
i+1
2 )

log (Ni+1/Ni)
. (34)

The overall convergence order n is linearly fitted from (log ‖δu‖i2 , logNi). We

expected second convergence using the current CFL condition with very low365

CFL numbers. For Kn = 10, the velocity grid is a set of uniform spaced 201×201

points in the range of [−4
√

2RT∞, 4
√

2RT∞] × [−4
√

2RT∞, 4
√

2RT∞]. Rect-

angular rule is used for numerical integration in velocity space. Using of such

a fine grid in the velocity space is to minimize the ray effect at high Knudsen

number. For Kn = 0.1 and 0.001, 28 × 28 points and 8 × 8 points half-range370

Gauss-Hermit quadrature rules are used respectively. The time step size is fixed

for simulation at each mesh, and Eq. 28 is replaced by ∆t = α∆x/(10
√

2RTw)

where α = 0.01 is the CFL number for all of the above configurations. The

gradient limiter function is not applied for accuracy consideration.

The errors and convergence orders are listed in Table. 1. The velocity profiles375

across the channel at each Kn are shown in Fig. 27. From Table. 1, we can
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observe that the convergence order is nearly 2 or even higher. The convergence

order is independent of the Knudsen number.

4. Concluding remarks

In this paper, the DUGKS based on the Shakhov model [20] is extended to380

unstructured meshes. The key feature of the DUGKS is the discrete character-

istic solution of the kinetic equation which is used in the modeling of the evo-

lution of distribution function at a cell interface. Due to the coupled treatment

of particle collision and transport processes, the method has the asymptotic

preserving (AP) properties for capturing the Navier-Stokes solutions in the con-385

tinuum flow regime. Linear reconstruction and gradient limiter are employed in

the reconstruction to attain a second-order accuracy of the DUGKS.

The performance of the proposed method is explored by several examples

ranging from low speed micro flows to hypersonic rarefied flows. In the tran-

sitional and slip regimes, good agreements between the results of DUGKS and390

DSMC solutions are observed. In the continuum regime, the DUGKS results

agree well with the benchmark solutions of the Navier-Stokes equations. The

second order spatial convergence order and uniform stability of the DUGKS

have also been verified numerically. Thus the AP property of the DUGKS for

the Navier-Stokes limit is validated. This property is important for flow that395

involves both continuum and rarefied regimes. As the mesh size in the contin-

uum regimes can be much larger than the particle mean free path, the overall

computational cost for the DUGKS can be largely reduced in comparison with

the DSMC method and the traditional DVM. Since the DUGKS is a direct mod-

eling multiscale method [31], as the mesh size and time step size become larger400

than the particle mean free path and mean collision time, the physical solutions

will not be sensitive to individual particle collision anymore. Therefore, in such

a situation, the Shakhov model based DUGKS is accurate enough and can be

faithfully used in real engineering applications. The current paper also presents

a test case with two-cavities for the capturing of multiple scale flow physics. It405
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is highly recommended to use this test to validate any claimed AP scheme for

the gas dynamics.

Acknowledgments

We would like to thank Dr. Pubing Yu and Dr. Songze Chen for helpful

discussions. This study was supported by the National Science Foundation of410

China (Grant No. 51125024), the Fundamental Research Funds for the Cen-

tral Universities (Grant No. 2014TS119), and the Hong Kong Research Grant

Council with grants (621011, 620813, 16211014).

References

[1] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas415

Flows, Clarendon, Oxford, 1994.

[2] J. Fan, C. Shen, Statistical simulation of low-speed rarefied gas flows, J.

Comput. Phys., 167 (2001) 393-412.

[3] T.M. Homolle, N.G. Hadjiconstantinou, A low-variance deviational simu-

lation Monte Carlo for the Boltzmann equation, J. Comput. Phys., 226420

(2007) 2341-2358.

[4] J.E. Broadwell, Study of rarefied shear flow by the discrete velocity method,

J. Fluid. Mech., 19 (1964) 401-414.

[5] H. Cabannes, The discrete velocity Boltzmann equation, Lecture notes Uni-

versity of California, Berkeley, 1980.425

[6] T. Inamuro, B. Sturtevant, Numerical study discrete-velocity gases, Physics

of Fluids A, 2(1990) 2196-2203.

[7] V.V. Aristov, Direct Methods for Solving the Boltzmann Equation and

Study of Nonequilibrium Flows, Springer Science & Business Media, 2001.

33



[8] L. Mieussens, Discrete-velocity models and numerical schemes for the430

Boltzmann-BGK equation in plane and axisymmetric geometries, J. Com-

put. Phys., 162 (2000) 429-466.

[9] Z.H. Li, H.X. Zhang, Gas-kinetic numerical studies of three-dimensional

complex flows on spacecraft re-entry, J. Comput. Phys., 228 (2009) 1116-

1138.435

[10] M. Bennoune, M. Lemou, L. Mieussens, Uniformly stable numerical

schemes for the Boltzmann equation preserving the compressible Navier-

Stokes asymptotics, J. Comput. Phys., 227 (2008) 3781-3803.

[11] F. Filbet, S. Jin, A class of asymptotic-preserving schemes for kinetic equa-

tions and related problems with stiff sources, J. Comput. Phys., 229 (2010)440

7625-7648.

[12] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hy-

perbolic equations: a review, in: Lecture Notes for Summer School on

Methods and Models of Kinetic Theory (M&MKT), Porto Ercole, Gros-

seto, Italy, 2010, Riv. Mat. Univ. Parma 3 (2012) 177216.445

[13] S.Z. Chen, K. Xu, A comparative study of an asymptotic preserving scheme

and unified gas-kinetic scheme in continuum flow limit, J. Comput. Phys.,

288 (2015) 52-65.

[14] K. Xu, J.C. Huang, A unified gas-kinetic scheme for continuum and rarefied

flows, J. Comput. Phys., 229 (2010) 7747-7764.450

[15] K. Xu, J.C. Huang, An improved unified gas-kinetic scheme and the study

of shock structures, IMA J. Appl. Math., 76 (2011) 698-711.

[16] J.C. Huang, K. Xu, P.B. Yu, A unified gas-kinetic scheme for continuum

and rarefied flows II: multi-dimensional cases, Commun. Comput. Phys.,

12 (2012) 662-690.455

34



[17] J.C. Huang, K. Xu, P.B. Yu, A unified gas-Kinetic scheme for continuum

and rarefied flows III: microflow simulations, Commun. Comput. Phys., 14

(2013) 1147-1173.

[18] K. Xu, A gas-kinetic bgk scheme for the NavierStokes equations and its

connection with artificial dissipation and Godunov method, J. Comput.460

Phys., 171 (2001) 289-335.

[19] Z.L. Guo, K. Xu, R.J. Wang, Discrete unified gas kinetic scheme for all

Knudsen number flows: low-speed isothermal case, Phys. Rev. E, 88 (2013)

033305.

[20] Z.L. Guo, R.J. Wang, K. Xu, Discrete unified gas kinetic scheme for465

all Knudsen number flows. II. Thermal compressible case, Phys. Rev. E,

91(2015) 033313.

[21] P. Wang, L.H. Zhu, Z.L. Guo, K. Xu, A comparative study of LBE

and DUGKS methods for nearly incompressible flows, Commun. Comput.

Phys., 17 (2015) 657-681.470

[22] L.H. Zhu, P. Wang, Z.L. Guo, A comparative study of LBE and DUGKS

methods for nearly incompressible flows, Commun. Comput. Phys., 17

(2015) 657-681.

[23] E.M. Shakhov, Generalization of the Krook kinetic relaxation equation,

Fluid Dyn., 3 (1968) 95-96.475

[24] G.A. Bird, The DSMC method, CreateSpace Independent Publishing Plat-

form, USA, 2013.

[25] J.Y. Yang, J.C. Huang, Rarefied flow computations using nonlinear model

Boltzmann equations, J. Comput. Phys., 120 (1995) 323-339.

[26] V. Venkatakrishnan, Convergence to steady state solutions of the Euler480

equations on unstructured grids with limiters, J. Comput. Phys., 118 (1995)

120-130.

35



[27] T. Ohwada, On the construction of kinetic schemes, J. Comput. Phys., 177

(2002) 156-175.

[28] B. John, X.J. Gu, D.R. Emerson, Effects of incomplete surface accommo-485

dation on non-equilibrium heat transfer in cavity flow: A parallel DSMC

study, Comput. Fluids, 45 (2011) 197-201.

[29] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow

using the Navier-Stokes equations and a multigrid method, J. Comput.

Phys., 48 (1982) 387-411.490

[30] T.J. Scanlon, E. Roohi, C. White, M. Darbandi, J.M. Reese, An open

source, parallel DSMC code for rarefied gas flows in arbitrary geometries,

Comput. Fluids, 39 (2010) 2078-2089.

[31] K. Xu, Direct Modeling for Computational Fluid Dynamics: Construction

and Application of Unified Gas-Kinetic Schemes, World Scientific Publish-495

ing, 2015.

36



  

LaTeX Source Files
Click here to download LaTeX Source Files: latex_source_files.zip

http://ees.elsevier.com/caf/download.aspx?id=380351&guid=8df069ea-0fb1-4c92-acba-af19070273e9&scheme=1



