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Abstract—LCL filters are commonly used to connect Voltage
Sourced Converters (VSCs) to the grid. This type of filters are
cheaper than a single inductor, but they can generate resonance
problems if no active or passive damping method is used.
Active damping methods are becoming popular in the literature
because they improve efficiency, but they are sometimes difficult
to implement and additional measurements are required. This
paper proposes a method to provide active damping for VSCs
connected to the grid that is based on making zero the open-
loop phase at the resonance frequency. It will shown that this
strategy provides adequate damping of oscillations and that it
can be achieved in two different ways: at the design stage (if
the design constraints make it possible) or with an all-pass filter
in series with the current controller. All the proposed control
algorithms are verified by simulation and in a 15 kW prototype
of a three-phase VSC connected to the grid with an LCL filter.

I. INTRODUCTION

LCL filters are popular in power electronics applications
since they are commonly cheaper than a filter based on a single
inductor. However, these filters generate a resonance that, in
many cases, interacts the VSC current controller. Therefore,
this resonance need to be damped either with additional
passive elements or with a more sophisticated control system.
The most common solution to damp the resonance is to add
a resistor in series with the filtering capacitor of the LCL
filter, what is commonly known as “passive damping” [1].
Passive damping reduces the converter efficiency and slightly
deteriorates the high-frequency filtering capabilities of the LCL
filter [2]. However, it is a simple solution so it is widely
adopted when losses are not important. There are methods
to reduce the damping resistor losses, but more hardware
elements are required [3]. However, when passive damping
cannot be applied, an adequate damping can be achieved
with the control system: this is commonly known as “active
damping” [4]. Active damping prevents the use of resistors,
but additional state variables are sometimes required [5].

Multi-variable controllers can be used to damp the reso-
nance of LCL filters [6, 7]. Between these controllers, the “vir-
tual resistor” is commonly applied to emulate the behaviour
of a resistance by using an inner control loop [8]. However,
calculus and measurements delays reduce the validity of this
method and a carefully-designed digital filter has to be added
to the control loop [4, 8]. Moreover, additional sensors are
sometimes required to measure the capacitor voltage [4] or
current [9]. The resonance can also be damped with a state-

feedback controller in order to place the closed-loop poles
in appropriate locations [7]. State-feedback controllers are
straightforward to design, but it is difficult to figure out which
pole position leads to acceptable stability margins and, also,
additional measurements are required [7, 10]. Alternatively,
Huerta et al. [11] select the controller gains by using a linear-
quadratic regulator. This solution simplifies the pole location
problem, but the value of the weighting coefficients for the
LQ problem may be difficult to find. Some authors use other
multi-variable controllers to tackle resonance problems [6, 12].
However, multi-variable controllers require additional mea-
surements compared to a control system based on a single
loop. The latter problem can be solved with an observer [13],
but this adds even more complexity to the control system.
Additionally, Busada et al. [5] propose a high-order controller
that makes possible to choose the closed-loop poles locations
with a single loop, but the compensator obtained is complex
so implementation problems may be difficult to solve.

For these reasons, single-loop control strategies are gener-
ally preferred and, among them, notch filters are a popular
alternative [14]. This type of controllers are easy to design
and implement, but they are sensitive to changes in the
resonance frequency. Other types of solutions like artificial
neural networks are sometimes used to damp the LCL filter
resonance, but they are not very popular since their per-
formance is difficult to predict and they are not easy to
implement [15]. Hysteresis controllers can be used as well
for active damping applications [16]. However, this control
method is not straightforward to apply for high-order plants,
which is the case of the LCL filter. Recently, the effects of
delays in the open-loop transfer function of LCL filters have
been studied by Lyu et al. [17], revealing that these effects
can be used to damp LCL filter resonance. In this sense,
Wang et al. [18] explore the effects of these delays taking into
account the discrete-time implementation. A similar approach
is followed by Chen et al. [19]. The results of these works are
promising since they provide a simple solution to damp the
resonance with a single control loop.

This paper proposes a method to provide active damping
for VSCs connected to the grid with LCL filters. First of
all, it will be shown that active damping can be provided at
the design stage if the design constraints allow it. However,
when this is not possible, an all-pass filter in series with the
current controller is used with this purpose. With this addition,
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a classical PI controller can be easily designed to control the
grid-side current of the filter. It will be shown that this strategy
provides large stability margins if a first-order all-pass filter
is applied. The control techniques proposed in this paper are
verified in a 15 kVA prototype of a VSC with an LCL filter.

II. ACTIVE DAMPING OVERVIEW

A. Description of the Control System

Fig. 1 shows the electrical diagram and the control system
of a VSC connected to the grid with an LCL filter. A Syn-
chronous Reference Frame (SRF) (dq) is used to simplify the
controller implementation with a Phase Looked Loop (PLL)
synchronized with the d-axis positive-sequence of the grid
voltage [20]. Therefore, the instantaneous active power (p(t))
is controlled with id(t), while the instantaneous reactive power
(q(t)) is controlled with iq(t) [20]. The DC-link voltage is
maintained constant with a diode rectifier directly connected
to the grid.

Fig. 1. Electrical diagram of a VSC with an LCL filter. The controlled variable
is i2(t) and the diode rectifier maintains the DC-link voltage constant.

B. Modelling Equations

Assuming perfect decoupling between axis, the transfer
function that relates Ui(s) with I2(s) (Laplace transforms of
ui(t) and i2(t), respectively) is

P (s) =
b1s+ 1

a3s3 + a2s2 + a1s+ a0
, (1)

where

a0 = R1 +R2,

a1 = L1 + L2 + Cf (RdR
′
2 +RdR1 +R1R

′
2),

a2 = Cf (L′2(Rd +R1) + L1(Rd +R′2)),

a3 = CfL1L
′
2,

b1 = Cf (Rd +R′2),

(2)

with L′2 = L2 + Lg and R′2 = R2 + Rg . This transfer
function typically contains a low-frequency pole, a pair of
high-frequency complex poles, and a high-frequency zero. The
complex-poles resonance frequency is [1]:

ωr =

√
1

Cf

L′2 + L1

L′2L1
. (3)

The plant in (1) can be discretized with the ZOH method,
together with a number of delays due to computations and
measurements (n), yielding [21]:

P2(z) = z−nZ {P (s)}ZOH . (4)

C. Classical Current Controller with LCL Filters

A PI controller can be used to track constant set-points of
i2−d and i2−q if the grid voltage is balanced. Therefore:

C2(z) = Kp +Kiz/(z − 1). (5)

Fig. 2 shows P2(ejωts) and G2(z) = P2(z)C2(z), where
C2(z) is a PI controller designed with a phase margin (φm)
of 65 degrees. The system parameters are defined in Sec-
tion VI-A. It can be seen that the phase of G2(ejωts) is
hardly modified at high frequency. Therefore, it is clear that the
damping problem cannot be solved with this type of controller.

D. Proposed Active Damping Solution

The core of the active damping method proposed in this
paper is to guarantee zero phase at the resonance frequency:

G2(ejωrts) = Age
jφg , with φg = 0 deg. (6)

This condition guarantees that the open-loop frequency
response at the resonance frequency is purely resistive. It will
shown that this choice a) provides adequate resonance damp-
ing and b) maximizes the phase margins. Two alternatives to
achieve φg = 0 will be explored:

1) Active Damping at the Design Stage: With this method
a) the resonance frequency (ωr) or b) the sampling period (ts)
are modified so that φg = 0 deg without any addition to the
control system.

2) Active Damping with All-Pass Filters: If active damp-
ing cannot be provided at the design stage due to design
constraints (e.g. ωr and ts are fixed), a unitary-gain all-pass
filter [22], called D(z), is proposed (see Fig. 3):

G2(z) = C2(z)D(z)P2(z), (7)

Fig. 2. Frequency response of (solid) P2(z) and (dotted)G2(z), where C2(z)
is PI controller with φm = 65 deg (no active damping is used). fs = 7 kHz.



where

G2(ejωrts) = (Ace
jφc)︸ ︷︷ ︸

C2(ejωrts)

· (ejφd)︸ ︷︷ ︸
D(ejωrts)

· (Ape
jφp)︸ ︷︷ ︸

P2(ejωrts)
(8)

and |D(ejωts)| = 1 ∀ω. To achieve φg = 0 deg, the following
condition must be fulfilled:

φg = φc + φd + φp = 0. (9)

Therefore, φd can be chosen to ensure that (9) is satisfied.
As D(z) is an all-pass filter, only the phase is modified and
high-frequency noise will not be amplified.

Fig. 3. Simplified control diagram of the controlled plant with D(z).

III. PROVIDING ACTIVE DAMPING AT THE DESIGN STAGE

As shown before, at high frequencies φc ≈ 0, so φg ≈ φp.
The value of φp can be estimated by analysing P2(z) (see
Fig. 2 (solid)). First of all, the low-frequency pole contribution
to φg is almost −90 deg. Secondly, the resonant poles provide
almost no phase until their resonance frequency is reached,
when the phase suddenly suffers a −180 deg phase shift at
ωr. Finally, the phase introduced by the delays is −nωrts rad,
while the high-frequency zero has no phase contribution if
Rd = 0 Ω. Taking into account all the considerations above,
the condition that makes φg = 0 deg is, approximately:

∃k ∈ N : φp ≈ −nωrts − π = 2kπ. (10)

It is easy to see that there are only two alternatives to fulfil
(10), which are to modify a) ωr or b) ts. However, design
constraints can limit the applicability of this strategy. Clearly,
the simplified formula in (10) can be replaced by the actual
value of φp calculated with P2(ejωrts), but (10) provides
valuable information to understand the damping problem.

IV. ACTIVE DAMPING BASED ON ALL-PASS FILTERS

An alternative for D(z) is a first-order digital all-pass
filter [22, 23]:

D′(z) =
(1 + d′)z−1 + (1− d′)
(1− d′)z−1 + (1 + d′)

, (11)

where d′ ∈ (0, 1) adjusts the phase of the filter at the resonance
frequency. If d′ 6∈ (0, 1), the filter is unstable. The phase of
D′(ejωts) at ωr is [23]:

φ′d = 2 arctan

(
(1− d′) sin(ωrts)

(1 + d′) + (1− d′) cos(ωrts)

)
− ωrts.

(12)
Fig. 4 shows the phase of D′(ejωts) for fs = 10 kHz and

d′ ∈ (0, 1), while |D′(ejωts)| is always one. The phase for a

given value of ωr (fr in Hertz) can be modified with d′, and
the value that provides the required phase (φ′d) can be solved
from (12), yielding:

d′ = tan (φ′d/2)/tan(ωrts/2). (13)

As shown in Fig. 4, D′(z) cannot provide any phase value
between 0 and 360 deg. Therefore, if more phase is required, a
higher-order all-pass filter can be used instead [23]. A simple
solution is to include m filters like D′(z) in series, yielding

D(z) = (D′(z))
m
. (14)

Now, φd can be divided between m filters and the phase of
each one can be selected as:

φ′d = φd/m. (15)

The minimum and maximum phase that each filter can
provide can be solved from (13) by making d′ = 0 and d′ = 1:

0 < φ′d < ωrts. (16)

In order to calculate the number of D′(z) filters required to
provide φd, (15) and (16) can be merged, yielding:

m ≥ φd/(ωrts) ∈ N. (17)

The main drawback of this method is that the additional
phase introduced by D(z) can slow down the transient re-
sponse.

Fig. 4. Phase of D′(ejωts ), varying the value d′. From top to bottom,
d′ = 0.1, 0.3, 0.5, 0.7, and 0.9, for fs = 10 kHz.

V. PRACTICAL GUIDE TO PROVIDE DAMPING

The concepts explained in Section III and IV to provide
active damping can be applied as follows:

1) If possible, design the converter so that φp = 0 deg (or
φg = 0). If this condition is met, D(z) is not necessary
and a PI controller can be used.

If φp differs to a great extend from zero, an all-pass filter
can be used to provide active damping:

1) First, use (17) to calculate the number of D′(z) filters
(m) required to guarantee that φd = −φp.

2) Use (13) to calculate the value of d′.
3) Design C2(z) with a classical method, but taking into

account that D(z) is in series with P2(z).



Fig. 5. Plant phase at the resonance frequency (φp) changing the sampling
frequency (fs) (φp = 0 deg is obtained when fs = 5 kHz).

VI. CASE STUDY

A. System Description

The VSC parameters are L1 = 2.3 mH (R1 = 70 mΩ),
L2 = 0.93 mH (R2 = 30 mΩ), and Cf = 23.8 µF
(Rd = 0 mΩ). A transformer (Lg = 1 mH) is used to
connect the VSC to grid. Therefore, fr = 1.27 kHz without the
transformer, and fr = 1.0 kHz with it. Decoupling equations
are used to control the dq-axis dynamics, independently [24].
The control system gives n = 2. The sampling (fs) and
switching (fsw) frequencies are equal. Two designs has been
carried out in order to highlight the contributions of this paper:

1) In the first case damping is achieved at the design stage
2) In the second case damping is provided with a first-order

all-pass filter.

B. Achieving Damping at the Design Stage

Since the LCL filter values and n have been already set, only
ts can be modified to provide active damping at the design
stage. Fig. 5 shows φp when fs changes. For fs ≈ 5 kHz,
φp ≈ 0 deg. Fig. 6 shows the frequency response of P2(z)
and G2(z) when fs = 5 kHz. The controller C2(z) has been
calculated with φm = 45 deg and implemented as shown in
(5). The phase of C2(z) at ωr is φc = −1 deg, so it hardly
affects φ+m and φ−m. The phase margins are φm = 45 deg,
φ−m = −78.4 deg, and φ+m = 77.1 deg, while Am1 = 7 dB
and Am2 = 22 dB.

The oscillating frequency (ωu) of the plant is 500 Hz, ap-
proximately, and it is slightly affected when C2(z) is applied.

C. Active Damping with First-Order All-Pass Filters

Fig. 7 shows the frequency response of P2(z) and G2(z)
when fs = 9 kHz and D(z) compensates the plant phase at
the resonance frequency (φp). The value of φp is 80.95 deg,
so D(z) is necessary. The minimum number of D′(z) filters
is calculated with (17), yielding m = 2.002. In this particular
case, the equivalent phase required can be obtained by making
D(z) = z−2 since m ≈ 2. However, to demonstrate the
validity of the proposed design procedure, condition (17) is
applied strictly so m = 3. Therefore, D(z) is designed to

Fig. 6. Open-loop frequency response of (dotted) P2(z) and (dashed) G2(z)
when damping is provided at the design stage changing (fs = 5 kHz).

Fig. 7. Frequency response of (dotted) P2(z) (fs = 9 kHz) and (solid)
G2(z), when D(z) is used to provide damping and C2(z) is PI controller
with φm = 45 deg.

provide φd = −φp, giving d′ = 0.65. The controller C2(z)
is calculated in continuous time with φm = 45 deg. The
phase margins are φm = 45 deg, φ−m = −77.5 deg, and
φ+m = 76.3 deg, while the gain margins are Am1 = 7.2 dB,
Am2 = 21 dB, and Am3 = 44 dB.

The plant oscillating frequency (ωu) is approximately
850 Hz, and is reduced to 500 Hz when D(z) and C2(z)
are applied.

D. Simulation Results

Fig. 8 shows the simulation results of a 25 A step change
in i∗2−q , for different current controllers. Fig. 8 (a) shows the
results when fs = 5 kHz. It can be seen that the transient is
fast and that oscillations are well damped. Fig. 8 (b) shows the
results for the same experiment, but in this case fs = 9 kHz
and D(z) is not used. There are large oscillations in the grid



Fig. 8. Simulation results of the closed-loop system for (a) fs = 5 kHz,
fs = 9 kHz (b) without and (c) with D(z). (d) fs = 9 kHz with D(z) and
Lg = 5 mH.

current and the system is very close to become unstable. Fig. 8
(c) shows the results when fs = 9 kHz, but in this case D(z) is
applied. The transient is now well damped and the oscillation
in Fig. 8 (b) has disappeared. It can be observed that the
transient response is very similar to that in Fig. 8 (a). Finally,
Fig. 8 (d) shows the transient response when fs = 9 kHz,
D(z) is used, and Lg = 5 mH (Rg = 0 Ω). It can be seen
that the transient response is slow, but the closed-loop system
is still stable and that the high-frequency oscillation is well
damped.

VII. EXPERIMENTAL RESULTS

1) Active Damping Provided at the Design Stage: The
sampling frequency is fs = 5 kHz, so active damping is
provided at the design stage as shown in Fig. 6 (D(z) is not
necessary). Fig. 9 (top) shows the transient performance of the
VSC when the i∗2−q is changed from 0 to 20 A (RMS). It can
be seen that the transient response of the closed-loop system
is perfectly damped and that there are no oscillations in the
output current.

2) Active Damping Provided by the Controller: Fig. 10
shows the VSC output current when D(z) is connected in
series with the current controller. The sampling frequency is
fs = 9 kHz (see Fig. 7). It can be seen that the high-frequency
oscillation disappears when D(z) is connected. Fig. 9 (bottom)
shows the transient performance of the VSC when the q-axis
set-point is modified from 0 to 20 A (RMS). It can be seen
that the transient response is slightly slower compared to the
one in Fig. 9 (top), but sill fast.

VIII. CONCLUSION

This paper has shown a method to damp LCL filter res-
onances with a single control loop that is based on making

Fig. 9. Output current (i2(t)) for a step-change in i∗2−q [k] when (top)
fs = 5 kHz and (bottom) fs = 9 kHz with D(z).

Fig. 10. Converter output current for fs = 9 kHz when D(z) is connected
in series with the current controller.

zero the open-loop phase at the resonance frequency. It has
been shown that this goal can be achieved at the design
stage by changing a) the sampling period or b) the resonance
frequency. However, when this is not possible, a solution based



on all-pass filters has been proposed. It has been shown that
the simplest solution is to guarantee stability at the design
stage: this simplifies the PI controller design and provides fast
transient responses because no additional additional delay is
added to the control loop. However, when this is not possible,
a first-order all-pass filter is a simple solution. This solution
is robust against changes in the grid impedance, but it slightly
slows down the transient response. All the proposed control
improvements have been verified by simulation and in a 15 kW
prototype of a VSC connected to the grid with an LCL filter.
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