
22 Informatica Economică vol. 15, no. 1/2011

Deriving Trading Rules Using Gene Expression Programming

Adrian VISOIU
Academy of Economic Studies Bucharest - Romania

Economic Informatics Department - collaborator
adrian.visoiu@csie.ase.ro

This paper presents how buy and sell trading rules are generated using gene expression
programming with special setup. Market concepts are presented and market analysis is
discussed with emphasis on technical analysis and quantitative methods. The use of genetic
algorithms in deriving trading rules is presented. Gene expression programming is applied in a
form where multiple types of operators and operands are used. This gives birth to multiple gene
contexts and references between genes in order to keep the linear structure of the gene
expression programming chromosome. The setup of multiple gene contexts is presented. The
case study shows how to use the proposed gene setup to derive trading rules encoded by
Boolean expressions, using a dataset with the reference exchange rates between the Euro and
the Romanian leu. The conclusions highlight the positive results obtained in deriving useful
trading rules.
Keywords: Gene Expression Programming, Trading Rules, Genetic Algorithms, Exchange
Rate

Introduction
Trading activity is a source of money.

There are numerous markets were
investments can be made. On these markets
are traded: real goods like petrol or flowers,
currencies, precious metals and shares. On
these markets there are traders that use the
goods for real, producers and consumers and
traders that aim to use the goods as deposits of
their money from which to obtain profit. On
the markets, the prices are formed freely by
demand and supply. There is a lot of research
performed to analyze the evolution of prices
from various markets. The basic rule of
investment is to buy when the price is low and
sell when the price is high. The analysis
performed takes the forms:
- Technical analysis: where only

quantitative methods, mathematical and
statistical principles are applied to decide
when to buy and when to sell

- Fundamental analysis, which is a
qualitative approach and aims to identify
the external factors that determine the
evolution of the market.

However, the quantitative approach is more
objective than the qualitative approach and
offers the possibility of applying various
scientific techniques. It offers a large domain

for research and practically has concrete
measurable results to assess the performance
of a certain method.

2 Trading rules and genetic algorithms
The use of genetic algorithms is found in
scientific literature to be used for deriving
trading rules. In [1] a genetic algorithm
approach for trading rules is presented.
Genetic programming is used to model the
market and also statistical methods are
presented at large. However the emphasis is
on modeling the behavior of traders.
In [2], also the set of traders of the market is
modeled as a whole the trading rules being
pre-established.
In [3], training rules of a fixed form taking
into account the price of a security and the
relative magnitude of the increase or decrease
of the price. If the price moves up at least a
parameterized percent, the trader buys and
holds the security until the price moves down
at least a parameterized percent. The rule is
fixed structure and genetic algorithms are
used to optimize parameters.
Genetic programming is presented in [4]
along with methods to derive buy-sell rules.
Complex expressions are built using a variety
of operands and operators.

1

Informatica Economică vol. 15, no. 1/2011 23

A comprehensive approach of generating
trading rules using genetic programming cited
by many researchers is found in paper [5].
Rules are generated on an if-then-else
skeleton using arithmetic, relational and
logical operators.
Genetic programming used in the above
approaches is a particular type of genetic
algorithm that not entirely follows the
evolutionary principles as genetic operations
apply directly to syntax trees not on linear
structures like chromosomes. This happens
due to the various flavors of operators that
take different numbers of arguments and have
different return types. This variety generates
numerous restrictions when applying
crossover and mutation like operations, as
syntax trees must be kept valid after
transformations are made. A criticism of
genetic programming is found in [6].
In this paper gene expression programming is
used to overcome drawbacks of genetic
programming when deriving trading rules.
Paper [7] uses gene expression programming
for model generation. Homogenous
expressions, in terms of operands and
operators types are evolved to estimate certain
phenomena. In this approach only real
operands were used along with operators that
take real arguments and return real values.

3 Gene expression programming algorithm
design
In order to apply a genetic type algorithm to a
real life problem, an analysis phase is
necessary in order to establish how real life
elements map to abstract elements in
evolutionary algorithms.
The chromosome is an abstract encoding of

the characteristics that make up a modeled
individual. If the individual is a neural
network, then the chromosome encodes
characteristics like weights and thresholds. If
the individual is an estimation model then the
chromosome encodes the expression of the
model.
The gene is a component of a chromosome
that encodes homogenous characteristics
within the model. When the chromosome
corresponds to a neural network, a gene inside
a chromosome may encode a certain layer. In
the case of a model, a gene may encode a
sub-expression or a branch.
Chromosomes are made up of one or more
genes. Chromosomes with more than one
gene are called multigenic.
The symbol is the basic element that
corresponds to the simplest part of the
modeled element. In a chromosome modeling
a neural network a symbol corresponds to
weight or a threshold in the network. In a
chromosome encoding an estimation model,
the symbol encodes an operand or an
operator.
When modeling trading rules there must be
established the correspondence between the
studied domain and the genetic structures.
The hypothesis has to be made that trading
rules are buy or sell Boolean expressions
made up of Boolean operands and Boolean
operators. Taking into account the available
data about exchange rates, and the fact that
quotations are real numbers, further analysis
has to be made to divide the problem into
smaller problems that can be easily solved.
The mapping between the concepts and the
genetic structures is given in Table 1.

Table 1. Correspondence between concepts and genetic structures

Genetic structure Trading concept
Chromosome Trading rule
Gene Expression
Symbol Operand or Operator

When dealing with expression generation and
all the operators are of the same type and
operators are all of the same type and also fit
to be passed as arguments to the operators,

genes encode sub-expressions.
In a simple scenario, in order to obtain the
individual, sub-expressions encoded by the
genes may be simply aggregated by a linking

24 Informatica Economică vol. 15, no. 1/2011

function. A more advanced handling uses a
extra special gene made up of operators used
to link the other genes. The gene G0 from

Table 2 is the linking gene and the whole
chromosome encodes the expression
(a+b) * (c-d) / (f+g).

Table 2. Expression encoded by multigenic chromosome

Gene G0 G1 G2 G3
symbols */ +ab -cd +fg

These extra genes may also take part in the
evolutionary process and evolve on the same
rules as the other genes.
A more general scenario is obtained when the
encoded expressions are made up of operands
and operators of different types.
in this scenario, genes are encoders of
homogenous expressions. The operators of
each gene type are homogenous, meaning
they all take arguments of the same type as
inputs and they all return the same type. The
operators of each gene type are of the same
type as the arguments the operators take. They
may be simple symbols of required types or
references to other genes where the
aggregation operator also returns a
compatible type.
This involves that each gene type to have a
context which defines:

- the head size;
- the tail size; this is dependent on the head

size and the maximum number of
arguments the type of operators specific to
the genes takes; this varies with the type
of gene and has to be treated in the same
context;

- the set of operators; the operators are
homogenous inside the same type of gene

- the set of operands; it consists of multiple
sets; the set of constants contains
constants of the same type as the
arguments; the set of variables contains
variables from the dataset that are
compatible with the required type; in the
operand set there is also found the set of
gene references that point to genes where
operators return the compatible type.

Table 3. Multigenic chromosome with linking function gene

G0 G1 G2 G3 G4 G5 G6
|| && G1 G2 G3 <a G6 >G4 G5 >b c +d f -g h *ij

The multigenic chromosome in table 3 shows
an expression containing:
- in linking gene G0 – operators that take

Boolean arguments and return Boolean
values

- in genes G1, G2 and G3 – operators that
take real arguments and return Boolean
values

- in genes G4, G5, G6 – operators that take
real arguments and return real values

The encoded expression is:
(a<G3)||(G4>G5)&&(b>c)
which furtherer is expanded by dereferencing
into
(a<(i*j)) || ((d+f)>(g-h)) && (b>c)
which is valid regarding the compatibility of
types.
Judging by the above three contexts are

identified
- the context C1 of operators taking

Boolean arguments and returning Boolean
values; Operators={ ||, && } Operands ={
G1, G2, G3}

- the context C2 of operators taking real
arguments and returning Boolean values;
Operators = { <,>}, Operands = {a, b, c, d,
f, g, h, i, j, G4, G5, G6}

- the context C3 of operators taking real
arguments and returning real values;
Operators = { +, -} Operands={ a, b, c, d,
e, f, g}

This approach permits a linear representation
of complex expressions, the chromosome
being made up of genes in a certain order,
given by the designer of the algorithm. Given
a certain order of genes, crossover operations

Informatica Economică vol. 15, no. 1/2011 25

will always result in valid chromosomes ready
to be evaluated.

Given the contexts above, the structure of the
chromosome is shown in Table 4.

Table 4. Multigenic chromosome with multiple gene contexts

Context C2 C2 C2 C2 C3 C3 C3
Gene G0 G1 G2 G3 G4 G5 G6

Given the multigenic chromosomes shown in
table 5 made up of genes corresponding to the
contexts where ci denotes a gene of context i,

crossover at gene 2 leads to the new
chromosomes shown in Table 6, which are
chromosomes of the same gene structure.

Table 5. Multigenic chromosomes before cross-over

c1’ c2’ c2’ c2’ c3’ c3’ c3’
c1’’ c2’’ c2’’ c2’’ c3’’ c3’’ c3’’

Table 6. Multigenic chromosomes after crossover

c1’ c2’ c2’’ c2’’ c3’’ c3’’ c3’’
c1’’ c2’’ c2’ c2’ c3’ c3’ c3’

Also the validity maintains when the
crossover point is at a random position that
falls inside a gene, due to the basic properties
of the gene expression programming
chromosomes. Given the genes Gi and Gi+1 of
the same context C3, viewed at a closer level

as shown in Table 7 crossover at position 34
leads to the situation presented in table 8,
which further conserves the validity of the
chromosome. Note that genes Gi and Gi+1
have different head sizes.

Table 7. Genes from a chromosomes involved in cross-over at arbitrary position before the

operation
Gene Gi Gi+1
Position 30 31 32 33 34 35 36 37
Symbol - b c + * n m p
Gene Gi Gi+1
Position 30 31 32 33 34 35 36 37
Symbol * f g / - h i j

Table 8. Genes from chromosomes involved in cross-over at an arbitrary position after the

operation
Gene Gi Gi+1

Position 30 31 32 33 34 35 36 37
Symbol - b c + - h i j
Gene Gi Gi+1

Position 30 31 32 33 34 35 36 37
Symbol * f g / * n m p

Mutation operations must take into account
the peculiar context the gene containing the
position in the chromosome where the
mutation takes place. The exchanged symbols
must come from the corresponding sets of

operands and operators.
Given the gene from Table 9, mutation at
position 33, being located in the head of the
gene must change the symbol but keep it of
type operator. Changing the symbol 34 to “+”

26 Informatica Economică vol. 15, no. 1/2011

gives the result presented in Table 10.

Table 9. Gene before suffering a mutation
Gene Gi Gi+1
Position 30 31 32 33 34 35 36 37
Symbol * f G / * N m p

Table 10. Gene after suffering a mutation

Gene Gi Gi+1
Position 30 31 32 33 34 35 36 37
Symbol * f G / + n m p

By these examples the idea of using gene
expression programming along with
linearization of expressions by means of
homogenous context genes is highlighted.
Coding two elements inside the same
chromosome is achieved by creating
disjunctive chains of references. In the case
study, both buy and sell rule were encoded
inside a chromosome. Gene G0 encodes the
expression for the buy rule; gene G1 encodes
the expression for the sell rule. From gene G0
there are references to genes that encode
sub-expressions of homogenous types, that
themselves contain references to other genes.
The same goes for gene G1 but the chain of
references from G0 to the leaf level and the
chain of references from G1 to the leaf level
do not have common genes. This has impact
in the evaluation of chromosomes when for a
row of input data, containing he values of the
variables participating in expressions, the
evaluation is done either for the buy or for the
sell. If the buying rule is verified, then the
evaluator uses the expression in the chain of
genes starting with G0; if the evaluator checks

the sell rule, it will evaluate the expression
encoded in the chain starting with G1 gene.
The evaluation stage is particular to the model
considered for the problem.

4 Case study
In the case study performed, rules of
investment have been derived. The dataset
used contains 1475 records of EUR-RON
daily exchange rates from the National Bank
of Romania, along with the derived indicators
of simple moving average for 5 days, 10 days,
20 days, 50 days and 100 days, denoted by,
respectively y, MA5, MA10, MA20, MA50
and MA100. Only the spot price and the
moving averages were chosen, because the
data comes from a public data source which
does not provide information at a higher level
of detail than daily values. In order to
compute other technical indicators, more data
would have been needed, like opening price,
closing price and inner evolution during the
transaction time span. The evolution of the
daily EUR-RON exchange rate for the studied
period is presented in Figure 1.

Informatica Economică vol. 15, no. 1/2011 27

Fig. 1. The EUR-RON exchange rate for 1475 days

Commonly used trading rules state principles
like:
- buy when the quotes climb above a

conveniently chosen moving average; sell
when the opposite happens; e.g. buy when
y>MA50, sell when y<MA50;

- buy when moving average from n days
climbs above the moving average from
2*n days; sell when the opposite; e.g. buy
when MA10>MA20, sell when
MA10<MA20.

These common rules have a general nature
and may not be used as they are on any
dataset. Gene expression programming in the
form presented in the previous chapter is used
do find proper rules for the buying and selling
signals for this dataset.
The hypotheses used in the case study are:
- the investor has an initial sum of 1000

RON for investment;
- the initial state of the investor is

BUYING; this means the investor waits a
buying signal like a rule that applies; the
rule is described by a Boolean expression
that is assessed for each day;

- if the Boolean expression that describes
the buying rule is true, the investor uses all
the money to buy the EUR currency; the
investor changes its state to SELLING; no
more buying occurs as all the money in
RON have already been used to buy the
currency;

- in SELLING state the investor waits for a
sell signal; this comes when the selling
rule described by a Boolean expression
becomes true; when selling all the money
in the foreign currency are transformed
into RON;

- all the transactions are made after the
signals are received, in the first moment
the quotation is favorable, meaning selling
when the quotation is greater than last
time when buying, and buying when the
quotation is less than the last time when
selling;

- at the end of the investment period the last
sum earned in RON is considered and
compared against the initial sum of 1000
RON.

The setup of the genetic algorithm uses three
main gene contexts, customized per
chromosome part. The chromosome encodes
both buy and sells rules.
For the buying rules, the gene contexts are:
- bbcontext1- the context of operators

taking Boolean operators and returning
Boolean values : Operators = { ||, &&,
@}, where @ is an identity operator,
Operands = {G2,G3};

- dbcontext1 – the context of operators
taking double arguments and returning
Boolean values: Operators = { <,>},
Operands = { y, MA5, MA10, MA20,
MA50, MA100, G6,G7};

28 Informatica Economică vol. 15, no. 1/2011

- ddcontext1 – the context of operators
taking double arguments and returning
double values; Operators = {-},
Operands={ y, MA5, MA10, MA20,
MA50, MA100}.

For the selling rules, the gene contexts are:
- bbcontext2- the context of operators

taking Boolean operators and returning
Boolean values : Operators = { ||, &&,
@}, where @ is an identity operator,
Operands = {G4,G5};

- dbcontext2 – the context of operators
taking double arguments and returning
Boolean values: Operators = { <,>},
Operands = { y, MA5, MA10, MA20,
MA50, MA100, G8,G9};

- ddcontext2 – the context of operators
taking double arguments and returning
double values; Operators = {-},
Operands={ y, MA5, MA10, MA20,
MA50, MA100}.

The structure of the chromosome is {G0, G1,
G2, G3, G4, G5, G6, G7, G8, G9}. The
buying rule is encoded by the genes {G0, G2,

G3, G6, G7}. The selling rule is encoded by
{G1, G4, G5, G8, G9}. Genes G0, G1 belong
to a bbcontext, genes G2, G3, G4, G5 belong
to a dbcontext, genes G6, G7, G8 and G9
belong to a ddcontext.
The chromosome,

[@ G3 G3][@ G5 G5][< G7 G6][< G6
G7][<G9 G8][< G8 G9][- MA5 MA10][-
MA20 y][- MA10 y][- MA5 MA20]
encodes the rules
BUY :(MA5-MA10<MA20-y)
SELL :(MA10-y<MA5-MA20)

The dataset has been divided into two series: a
training series containing a proportion of 0.6
of the records, used for deriving the rules and
a testing series containing a proportion of 0.4
of the records, used for assessing the
performance of the derived rules. After
subsequent runs of the algorithm several rules
have been generated and chosen as seen in
Table 11.

Table 11. Trading rules evolved via the gene expression programming
Rule id Raw output
R1 [@ G3 G3][@ G5 G5][> MA5 MA20][> MA5 MA100][>

MA100 MA50]
[< MA5 MA100][- MA20 MA50][- y MA100][- y y][-
MA100 MA100]
BUY :(MA5>MA100)
SELL:(MA5<MA100)
Training performance:1209.70
Testing performance: 1148.84

R2 [@ G2 G3] [&& G4 G4] [< MA100 MA10][< G6
MA10][< MA10MA100]
[> MA20MA100][- MA10 y][- MA50 MA10][- MA10
MA10][- MA10 y]
BUY :(MA100<MA10)
SELL:((MA10<MA100)&&(MA10<MA100))
Training performance:1303.02
Testing performance: 1109.20

R3 [@ G3 G2][@ G5 G4][> MA10 MA10][> MA20
MA50][> MA10 MA50]
[< MA20 MA50][- MA100 MA100][- y MA20][- MA10
MA10][- MA50 MA20]
BUY :(MA20>MA50)
SELL:(MA20<MA50)
Training performance:1329.55

Informatica Economică vol. 15, no. 1/2011 29

Testing performance:1170.27
R4 [@ G2 G2][@ G4 G5][< y MA20][> MA50 G7][> y

MA20]
[> MA50 G9][- MA20 MA100][- y MA50][- MA10
MA5][- MA5 MA100]
BUY :(y<MA20)
SELL :(y>MA20)
Training performance:1132.14
Testing performance:1068.60

R5 [&& G2 G2] [@ G4 G4] [> MA5
MA50] [> y G6] [< MA5 MA50] [>
MA10 G8] [- y MA5] [- MA50MA100] [
- MA10 MA5] [-MA100 MA50] has
Training performance:1079.39
Testing performance:1196.78
BUY :((MA5>MA50)&&(MA5>MA50))
SELL:(MA5<MA50)

R6 BUY :(MA20-MA50>MA50-MA10)
SELL :(MA20-MA50<MA50-MA10)
It took -320414
Training performance:1345.60
Testing performance:1223.26

For the rule R3:

BUY :(MA20>MA50)
SELL:(MA20<MA50)

the sequence of operations from the
testing period is
Buying when y is 3.7271
Selling when y is 3.7835
Buying when y is 3.7794
Selling when y is 4.2348
Buying when y is 4.1977
Selling when y is 4.2216
Buying when y is 4.2157
Selling when y is 4.2249
Buying when y is 4.1484
Selling when y is 4.2347.

It is observed that buying and selling occur at
favorable moments avoiding losses.
From the list of raw outputs it is seen that for
the considered dataset, many of the generated
rules take into account moving averages that
are in the relation {n , more than two times n}
as is {n, 10*n}, e.g. buy when y>MA10, sell
when y<MA10, buy when MA10>MA100,
sell when MA10<MA100, buy when
MA5>MA50, sell when MA5<MA50. This is
specific to this dataset and is a rule detected

by the evolutionary algorithm.
It is observed that for rule R6,
BUY :(MA20-MA50>MA50-MA10)
SELL :(MA20-MA50<MA50-MA10)
a more complex expression has been obtained
through evolution. The rule is rewritten as
BUY :(MA20 > MA50 + (MA50 - MA10))
SELL:(MA20 < MA50 + (MA50 - MA10))
and it is observed that the evolution of the
rules tries to obtain other values based on the
existing values of the variables, in a manner
similar to the estimation of unknown
parameters through evolving arithmetical
expressions between initial random constants.
The generated rules along with the hypotheses
made avoid losses and give profit to the
trader.

5 Conclusions
Useful trading rules are derived using genetic
algorithms, in general and gene expression
programming in particular. Gene expression
programming is a very powerful method that
allows solving of very complex problems that
require generating expressions. Gene
expression programming follows very closely
the principles of genetic evolution.

30 Informatica Economică vol. 15, no. 1/2011

The design of the solution using a genetic
algorithm is necessary. This affects the
implementation of the algorithm. Also the
flexibility of applying a certain solution to
other similar problems must be taken into
account.
The generated rules are according to the
practices in the domain, but they customize
the behavior of the trader to the peculiarities
of the dataset being considered.

References
[1] S. Heng Chen, Genetic algorithms and

genetic programming in computational
finance, Vol. 1, Springer, 2002.

[2] C. Lawrenz and F. Westerhoff, “Modeling
Exchange Rate Behavior with a Genetic
Algorithm”, Computational Economics,
Vol. 21, No. 3, pp. 209-229.

[3] L. Lin, L.B. Cao, J.Q. Wang and C.Q.
Zhang, “The applications of genetic
algorithms in stock market data mining
optimization,” In Proc The Fifth

International Conference on Data Mining,
Text Mining and Their Business
Applications, Malaga, Spain, 2004, pp.
273-280

[4] J. Y. Potvin, P. Soriano and M Valee,
“Generating trading rules on the stock
markets with genetic programming,”
Computers and Operations Research, No
31, 2004, pp. 1033-1034.

[5] F. Allen and R. Karjalainen, “Using
genetic algorithms to find technical trading
rules,” Journal of Financial Economics,
No. 51, 1999.

[6] C. Ferreira, Gene Expression
Programming: Mathematical Modeling by
an Artificial Intelligence 2nd Edition,
Springer Publishing, May 2006.

[7] A. Visoiu, “Structure Refinement for
Vulnerability Estimation Models using
Genetic Algorithm Based Model
Generators,” Informatica Economica
Journal, Vol. 13, No. 1, 2009.

Adrian VIŞOIU graduated the Bucharest Academy of Economic Studies, the
Faculty of Cybernetics, Statistics and Economic Informatics. He has a master
degree in Project Management. He has a PhD in the field of software quality.
He is a Software Engineer in telecom field and a collaborator of Economic
Informatics Department of the Bucharest Academy of Economic Studies. He
published articles alone or in collaboration and he is coauthor of three books.
His interests include: programming, genetic algorithms and neural networks.

	adrian.visoiu@csie.ase.ro
	This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use...
	Keywords: Gene Expression Programming, Trading Rules, Genetic Algorithms, Exchange Rate
	Introduction
	Trading activity is a source of money. There are numerous markets were investments can be made. On these markets are traded: real goods like petrol or flowers, currencies, precious metals and shares. On these markets there are traders that use the goo...
	- Technical analysis: where only quantitative methods, mathematical and statistical principles are applied to decide when to buy and when to sell
	- Fundamental analysis, which is a qualitative approach and aims to identify the external factors that determine the evolution of the market.
	However, the quantitative approach is more objective than the qualitative approach and offers the possibility of applying various scientific techniques. It offers a large domain for research and practically has concrete measurable results to assess th...
	2 Trading rules and genetic algorithms
	The use of genetic algorithms is found in scientific literature to be used for deriving trading rules. In [1] a genetic algorithm approach for trading rules is presented. Genetic programming is used to model the market and also statistical methods are...
	In [2], also the set of traders of the market is modeled as a whole the trading rules being pre-established.
	In [3], training rules of a fixed form taking into account the price of a security and the relative magnitude of the increase or decrease of the price. If the price moves up at least a parameterized percent, the trader buys and holds the security unti...
	Genetic programming is presented in [4] along with methods to derive buy-sell rules. Complex expressions are built using a variety of operands and operators.
	A comprehensive approach of generating trading rules using genetic programming cited by many researchers is found in paper [5]. Rules are generated on an if-then-else skeleton using arithmetic, relational and logical operators.
	Genetic programming used in the above approaches is a particular type of genetic algorithm that not entirely follows the evolutionary principles as genetic operations apply directly to syntax trees not on linear structures like chromosomes. This happe...
	In this paper gene expression programming is used to overcome drawbacks of genetic programming when deriving trading rules.
	Paper [7] uses gene expression programming for model generation. Homogenous expressions, in terms of operands and operators types are evolved to estimate certain phenomena. In this approach only real operands were used along with operators that take r...
	3 Gene expression programming algorithm design

