
22  Informatica Economică vol. 15, no. 1/2011 

 

Deriving Trading Rules Using Gene Expression Programming 
 

Adrian VISOIU 
Academy of Economic Studies Bucharest - Romania 

Economic Informatics Department - collaborator 
adrian.visoiu@csie.ase.ro 

 
This paper presents how buy and sell trading rules are generated using gene expression 
programming with special setup. Market concepts are presented and market analysis is 
discussed with emphasis on technical analysis and quantitative methods. The use of genetic 
algorithms in deriving trading rules is presented. Gene expression programming is applied in a 
form where multiple types of operators and operands are used. This gives birth to multiple gene 
contexts and references between genes in order to keep the linear structure of the gene 
expression programming chromosome. The setup of multiple gene contexts is presented. The 
case study shows how to use the proposed gene setup to derive trading rules encoded by 
Boolean expressions, using a dataset with the reference exchange rates between the Euro and 
the Romanian leu. The conclusions highlight the positive results obtained in deriving useful 
trading rules. 
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Introduction 
Trading activity is a source of money. 

There are numerous markets were 
investments can be made. On these markets 
are traded: real goods like petrol or flowers, 
currencies, precious metals and shares. On 
these markets there are traders that use the 
goods for real, producers and consumers and 
traders that aim to use the goods as deposits of 
their money from which to obtain profit. On 
the markets, the prices are formed freely by 
demand and supply. There is a lot of research 
performed to analyze the evolution of prices 
from various markets. The basic rule of 
investment is to buy when the price is low and 
sell when the price is high. The analysis 
performed takes the forms: 
- Technical analysis: where only 

quantitative methods, mathematical and 
statistical principles are applied to decide 
when to buy and when to sell 

- Fundamental analysis, which is a 
qualitative approach and aims to identify 
the external factors that determine the 
evolution of the market. 

However, the quantitative approach is more 
objective than the qualitative approach and 
offers the possibility of applying various 
scientific techniques. It offers a large domain 

for research and practically has concrete 
measurable results to assess the performance 
of a certain method. 
 
2 Trading rules and genetic algorithms 
The use of genetic algorithms is found in 
scientific literature to be used for deriving 
trading rules. In [1] a genetic algorithm 
approach for trading rules is presented. 
Genetic programming is used to model the 
market and also statistical methods are 
presented at large. However the emphasis is 
on modeling the behavior of traders. 
In [2], also the set of traders of the market is 
modeled as a whole the trading rules being 
pre-established. 
In [3], training rules of a fixed form taking 
into account the price of a security and the 
relative magnitude of the increase or decrease 
of the price. If the price moves up at least a 
parameterized percent, the trader buys and 
holds the security until the price moves down 
at least a parameterized percent. The rule is 
fixed structure and genetic algorithms are 
used to optimize parameters. 
Genetic programming is presented in [4] 
along with methods to derive buy-sell rules. 
Complex expressions are built using a variety 
of operands and operators. 

1 
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A comprehensive approach of generating 
trading rules using genetic programming cited 
by many researchers is found in paper [5]. 
Rules are generated on an if-then-else 
skeleton using arithmetic, relational and 
logical operators. 
Genetic programming used in the above 
approaches is a particular type of genetic 
algorithm that not entirely follows the 
evolutionary principles as genetic operations 
apply directly to syntax trees not on linear 
structures like chromosomes. This happens 
due to the various flavors of operators that 
take different numbers of arguments and have 
different return types. This variety generates 
numerous restrictions when applying 
crossover and mutation like operations, as 
syntax trees must be kept valid after 
transformations are made. A criticism of 
genetic programming is found in [6]. 
In this paper gene expression programming is 
used to overcome drawbacks of genetic 
programming when deriving trading rules. 
Paper [7] uses gene expression programming 
for model generation. Homogenous 
expressions, in terms of operands and 
operators types are evolved to estimate certain 
phenomena. In this approach only real 
operands were used along with operators that 
take real arguments and return real values. 
 
3 Gene expression programming algorithm 
design 
In order to apply a genetic type algorithm to a 
real life problem, an analysis phase is 
necessary in order to establish how real life 
elements map to abstract elements in 
evolutionary algorithms. 
The chromosome is an abstract encoding of 

the characteristics that make up a modeled 
individual. If the individual is a neural 
network, then the chromosome encodes 
characteristics like weights and thresholds. If 
the individual is an estimation model then the 
chromosome encodes the expression of the 
model.  
The gene is a component of a chromosome 
that encodes homogenous characteristics 
within the model. When the chromosome 
corresponds to a neural network, a gene inside 
a chromosome may encode a certain layer. In 
the case of a model, a gene may encode a 
sub-expression or a branch. 
Chromosomes are made up of one or more 
genes. Chromosomes with more than one 
gene are called multigenic. 
The symbol is the basic element that 
corresponds to the simplest part of the 
modeled element. In a chromosome modeling 
a neural network a symbol corresponds to 
weight or a threshold in the network. In a 
chromosome encoding an estimation model, 
the symbol encodes an operand or an 
operator. 
When modeling trading rules there must be 
established the correspondence between the 
studied domain and the genetic structures. 
The hypothesis has to be made that trading 
rules are buy or sell Boolean expressions 
made up of Boolean operands and Boolean 
operators. Taking into account the available 
data about exchange rates, and the fact that 
quotations are real numbers, further analysis 
has to be made to divide the problem into 
smaller problems that can be easily solved. 
The mapping between the concepts and the 
genetic structures is given in Table 1. 

 
Table 1. Correspondence between concepts and genetic structures 

Genetic structure Trading concept 
Chromosome Trading rule 
Gene Expression 
Symbol Operand or Operator 

 
When dealing with expression generation and 
all the operators are of the same type and 
operators are all of the same type and also fit 
to be passed as arguments to the operators, 

genes encode sub-expressions. 
In a simple scenario, in order to obtain the 
individual, sub-expressions encoded by the 
genes may be simply aggregated by a linking 
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function. A more advanced handling uses a 
extra special gene made up of operators used 
to link the other genes. The gene G0 from 

Table 2 is the linking gene and the whole 
chromosome encodes the expression 
(a+b) * (c-d) / (f+g). 

 
Table 2. Expression encoded by multigenic chromosome 

Gene G0 G1 G2 G3 
symbols */ +ab -cd +fg 

 
These extra genes may also take part in the 
evolutionary process and evolve on the same 
rules as the other genes. 
A more general scenario is obtained when the 
encoded expressions are made up of operands 
and operators of different types. 
in this scenario, genes are encoders of 
homogenous expressions. The operators of 
each gene type are homogenous, meaning 
they all take arguments of the same type as 
inputs and they all return the same type. The 
operators of each gene type are of the same 
type as the arguments the operators take. They 
may be simple symbols of required types or 
references to other genes where the 
aggregation operator also returns a 
compatible type. 
This involves that each gene type to have a 
context which defines: 

- the head size; 
- the tail size; this is dependent on the head 

size and the maximum number of 
arguments the type of operators specific to 
the genes takes; this varies with the type 
of gene and has to be treated in the same 
context; 

- the set of operators; the operators are 
homogenous inside the same type of gene 

- the set of operands; it consists of multiple 
sets; the set of constants contains 
constants of the same type as the 
arguments; the set of variables contains 
variables from the dataset that are 
compatible with the required type; in the 
operand set there is also found the set of 
gene references that point to genes where 
operators return the compatible type. 

 
Table 3. Multigenic chromosome with linking function gene 

G0 G1 G2 G3 G4 G5 G6 
|| && G1 G2 G3 <a G6 >G4 G5 >b c +d f -g h *ij 

 
The multigenic chromosome in table 3 shows 
an expression containing: 
- in linking gene G0 – operators that take 

Boolean arguments and return Boolean 
values 

- in genes G1, G2 and G3 – operators that 
take real arguments and return Boolean 
values 

- in genes G4, G5, G6 – operators that take 
real arguments and return real values 

The encoded expression is: 
(a<G3)||(G4>G5)&&(b>c) 
which furtherer is expanded by dereferencing 
into 
(a<(i*j)) || ((d+f)>(g-h)) && (b>c) 
which is valid regarding the compatibility of 
types. 
Judging by the above three contexts are 

identified 
- the context C1 of operators taking 

Boolean arguments and returning Boolean 
values; Operators={ ||, && } Operands ={ 
G1, G2, G3} 

- the context C2 of operators taking real 
arguments and returning Boolean values; 
Operators = { <,>}, Operands = {a, b, c, d, 
f, g, h, i, j, G4, G5, G6} 

- the context C3 of operators taking real 
arguments and returning real values; 
Operators = { +, -} Operands={ a, b, c, d, 
e, f, g} 

This approach permits a linear representation 
of complex expressions, the chromosome 
being made up of genes in a certain order, 
given by the designer of the algorithm. Given 
a certain order of genes, crossover operations 
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will always result in valid chromosomes ready 
to be evaluated. 

Given the contexts above, the structure of the 
chromosome is shown in Table 4.  

 
Table 4. Multigenic chromosome with multiple gene contexts 

Context C2 C2 C2 C2 C3 C3 C3 
Gene G0 G1 G2 G3 G4 G5 G6 

 
Given the multigenic chromosomes shown in 
table 5 made up of genes corresponding to the 
contexts where ci denotes a gene of context i, 

crossover at gene 2 leads to the new 
chromosomes shown in Table 6, which are 
chromosomes of the same gene structure. 

 
Table 5. Multigenic chromosomes before cross-over 

c1’ c2’ c2’ c2’ c3’ c3’ c3’ 
c1’’ c2’’ c2’’ c2’’ c3’’ c3’’ c3’’ 

 
Table 6. Multigenic chromosomes after crossover 

c1’ c2’ c2’’ c2’’ c3’’ c3’’ c3’’ 
c1’’ c2’’ c2’ c2’ c3’ c3’ c3’ 

 
Also the validity maintains when the 
crossover point is at a random position that 
falls inside a gene, due to the basic properties 
of the gene expression programming 
chromosomes. Given the genes Gi and Gi+1 of 
the same context C3, viewed at a closer level 

as shown in Table 7 crossover at position 34 
leads to the situation presented in table 8, 
which further conserves the validity of the 
chromosome. Note that genes Gi and Gi+1 
have different head sizes. 

 
Table 7. Genes from a chromosomes involved in cross-over at arbitrary position before the 

operation 
Gene Gi Gi+1 
Position 30 31 32 33 34 35 36 37 
Symbol - b c + * n m p 
Gene Gi Gi+1 
Position 30 31 32 33 34 35 36 37 
Symbol * f g / - h i j 

 
Table 8. Genes from chromosomes involved in cross-over at an arbitrary position after the 

operation 
Gene Gi Gi+1 

Position 30 31 32 33 34 35 36 37 
Symbol - b c + - h i j 
Gene Gi Gi+1 

Position 30 31 32 33 34 35 36 37 
Symbol * f g / * n m p 

 
Mutation operations must take into account 
the peculiar context the gene containing the 
position in the chromosome where the 
mutation takes place. The exchanged symbols 
must come from the corresponding sets of 

operands and operators. 
Given the gene from Table 9, mutation at 
position 33, being located in the head of the 
gene must change the symbol but keep it of 
type operator. Changing the symbol 34 to “+” 
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gives the result presented in Table 10. 
 

Table 9. Gene before suffering a mutation 
Gene Gi Gi+1 
Position 30 31 32 33 34 35 36 37 
Symbol * f G / * N m p 

 
Table 10. Gene after suffering a mutation 

Gene Gi Gi+1 
Position 30 31 32 33 34 35 36 37 
Symbol * f G / + n m p 

 
By these examples the idea of using gene 
expression programming along with 
linearization of expressions by means of 
homogenous context genes is highlighted. 
Coding two elements inside the same 
chromosome is achieved by creating 
disjunctive chains of references. In the case 
study, both buy and sell rule were encoded 
inside a chromosome. Gene G0 encodes the 
expression for the buy rule; gene G1 encodes 
the expression for the sell rule. From gene G0 
there are references to genes that encode 
sub-expressions of homogenous types, that 
themselves contain references to other genes. 
The same goes for gene G1 but the chain of 
references from G0 to the leaf level and the 
chain of references from G1 to the leaf level 
do not have common genes. This has impact 
in the evaluation of chromosomes when for a 
row of input data, containing he values of the 
variables participating in expressions, the 
evaluation is done either for the buy or for the 
sell. If the buying rule is verified, then the 
evaluator uses the expression in the chain of 
genes starting with G0; if the evaluator checks 

the sell rule, it will evaluate the expression 
encoded in the chain starting with G1 gene. 
The evaluation stage is particular to the model 
considered for the problem. 
 
4 Case study 
In the case study performed, rules of 
investment have been derived. The dataset 
used contains 1475 records of EUR-RON 
daily exchange rates from the National Bank 
of Romania, along with the derived indicators 
of simple moving average for 5 days, 10 days, 
20 days, 50 days and 100 days, denoted by, 
respectively y, MA5, MA10, MA20, MA50 
and MA100. Only the spot price and the 
moving averages were chosen, because the 
data comes from a public data source which 
does not provide information at a higher level 
of detail than daily values. In order to 
compute other technical indicators, more data 
would have been needed, like opening price, 
closing price and inner evolution during the 
transaction time span. The evolution of the 
daily EUR-RON exchange rate for the studied 
period is presented in Figure 1. 
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Fig. 1. The EUR-RON exchange rate for 1475 days 

 
Commonly used trading rules state principles 
like: 
- buy when the quotes climb above a 

conveniently chosen moving average; sell 
when the opposite happens; e.g. buy when 
y>MA50, sell when y<MA50; 

- buy when moving average from n days 
climbs above the moving average from 
2*n days; sell when the opposite; e.g. buy 
when MA10>MA20, sell when 
MA10<MA20. 

These common rules have a general nature 
and may not be used as they are on any 
dataset. Gene expression programming in the 
form presented in the previous chapter is used 
do find proper rules for the buying and selling 
signals for this dataset.  
The hypotheses used in the case study are: 
- the investor has an initial sum of 1000 

RON for investment; 
- the initial state of the investor is 

BUYING; this means the investor waits a 
buying signal like a rule that applies; the 
rule is described by a Boolean expression 
that is assessed for each day; 

- if the Boolean expression that describes 
the buying rule is true, the investor uses all 
the money to buy the EUR currency; the 
investor changes its state to SELLING; no 
more buying occurs as all the money in 
RON have already been used to buy the 
currency; 

- in SELLING state the investor waits for a 
sell signal; this comes when the selling 
rule described by a Boolean expression 
becomes true; when selling all the money 
in the foreign currency are transformed 
into RON; 

- all the transactions are made after the 
signals are received, in the first moment 
the quotation is favorable, meaning selling 
when the quotation is greater than last 
time when buying, and buying when the 
quotation is less than the last time when 
selling; 

- at the end of the investment period the last 
sum earned in RON is considered and 
compared against the initial sum of 1000 
RON. 

The setup of the genetic algorithm uses three 
main gene contexts, customized per 
chromosome part. The chromosome encodes 
both buy and sells rules. 
For the buying rules, the gene contexts are: 
- bbcontext1- the context of operators 

taking Boolean operators and returning 
Boolean values : Operators = { ||, &&, 
@}, where @ is an identity operator, 
Operands = {G2,G3}; 

- dbcontext1 – the context of operators 
taking double arguments and returning 
Boolean values: Operators = { <,>}, 
Operands = { y, MA5, MA10, MA20, 
MA50, MA100, G6,G7}; 



28  Informatica Economică vol. 15, no. 1/2011 

 

- ddcontext1 – the context of operators 
taking double arguments and returning 
double values; Operators = {-}, 
Operands={ y, MA5, MA10, MA20, 
MA50, MA100}. 

For the selling rules, the gene contexts are: 
- bbcontext2- the context of operators 

taking Boolean operators and returning 
Boolean values : Operators = { ||, &&, 
@}, where @ is an identity operator, 
Operands = {G4,G5}; 

- dbcontext2 – the context of operators 
taking double arguments and returning 
Boolean values: Operators = { <,>}, 
Operands = { y, MA5, MA10, MA20, 
MA50, MA100, G8,G9}; 

- ddcontext2 – the context of operators 
taking double arguments and returning 
double values; Operators = {-}, 
Operands={ y, MA5, MA10, MA20, 
MA50, MA100}. 

The structure of the chromosome is {G0, G1, 
G2, G3, G4, G5, G6, G7, G8, G9}. The 
buying rule is encoded by the genes {G0, G2, 

G3, G6, G7}. The selling rule is encoded by 
{G1, G4, G5, G8, G9}. Genes G0, G1 belong 
to a bbcontext, genes G2, G3, G4, G5 belong 
to a dbcontext, genes G6, G7, G8 and G9 
belong to a ddcontext. 
The chromosome, 
 
[@ G3 G3][@ G5 G5][< G7 G6][< G6 
G7][<G9 G8][< G8 G9][- MA5 MA10][- 
MA20 y][- MA10 y][- MA5 MA20] 
encodes the rules 
BUY :(MA5-MA10<MA20-y) 
SELL :(MA10-y<MA5-MA20) 
 
The dataset has been divided into two series: a 
training series containing a proportion of 0.6 
of the records, used for deriving the rules and 
a testing series containing a proportion of 0.4 
of the records, used for assessing the 
performance of the derived rules. After 
subsequent runs of the algorithm several rules 
have been generated and chosen as seen in 
Table 11. 

 
Table 11. Trading rules evolved via the gene expression programming 
Rule id Raw output 
R1 [@ G3 G3][@ G5 G5][> MA5 MA20][> MA5 MA100][> 

MA100 MA50] 
[< MA5 MA100][- MA20 MA50][- y MA100][- y y][- 
MA100 MA100] 
BUY :(MA5>MA100) 
SELL:(MA5<MA100) 
Training performance:1209.70 
Testing performance: 1148.84 

R2 [@ G2 G3] [&& G4 G4] [< MA100 MA10][< G6 
MA10][< MA10MA100] 
[> MA20MA100][- MA10 y][- MA50 MA10][- MA10 
MA10][- MA10 y] 
BUY :(MA100<MA10) 
SELL:((MA10<MA100)&&(MA10<MA100)) 
Training performance:1303.02 
Testing performance: 1109.20 

R3 [@ G3 G2][@ G5 G4][> MA10 MA10][> MA20 
MA50][> MA10 MA50] 
[< MA20 MA50][- MA100 MA100][- y MA20][- MA10 
MA10][- MA50 MA20]   
BUY :(MA20>MA50) 
SELL:(MA20<MA50) 
Training performance:1329.55 
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Testing performance:1170.27 
R4 [@ G2 G2][@ G4 G5][< y MA20][> MA50 G7][> y 

MA20] 
[> MA50 G9][- MA20 MA100][- y MA50][- MA10 
MA5][- MA5 MA100] 
BUY :(y<MA20) 
SELL :(y>MA20) 
Training performance:1132.14 
Testing performance:1068.60 

R5  [   &&   G2   G2] [    @   G4   G4] [    >  MA5 
MA50] [    >    y   G6] [    <  MA5 MA50] [    > 
MA10   G8] [    -    y  MA5] [    - MA50MA100] [    
- MA10  MA5] [    -MA100 MA50]  has  
Training performance:1079.39 
Testing performance:1196.78 
BUY :((MA5>MA50)&&(MA5>MA50)) 
SELL:(MA5<MA50) 

R6 BUY :(MA20-MA50>MA50-MA10) 
SELL :(MA20-MA50<MA50-MA10) 
It took -320414 
Training performance:1345.60 
Testing performance:1223.26 

 
For the rule R3: 
 
BUY :(MA20>MA50) 
SELL:(MA20<MA50) 
 
the sequence of operations from the 
testing period is 
Buying when y is 3.7271 
Selling when y is 3.7835 
Buying when y is 3.7794 
Selling when y is 4.2348 
Buying when y is 4.1977 
Selling when y is 4.2216 
Buying when y is 4.2157 
Selling when y is 4.2249 
Buying when y is 4.1484 
Selling when y is 4.2347. 
 
It is observed that buying and selling occur at 
favorable moments avoiding losses. 
From the list of raw outputs it is seen that for 
the considered dataset, many of the generated 
rules take into account moving averages that 
are in the relation {n , more than two times n} 
as is {n, 10*n}, e.g. buy when y>MA10, sell 
when y<MA10, buy when MA10>MA100, 
sell when MA10<MA100, buy when 
MA5>MA50, sell when MA5<MA50. This is 
specific to this dataset and is a rule detected 

by the evolutionary algorithm. 
It is observed that for rule R6, 
BUY :(MA20-MA50>MA50-MA10) 
SELL :(MA20-MA50<MA50-MA10) 
a more complex expression has been obtained 
through evolution. The rule is rewritten as 
BUY :(MA20 > MA50 + (MA50 - MA10)) 
SELL:(MA20 < MA50 + (MA50 - MA10)) 
and it is observed that the evolution of the 
rules tries to obtain other values based on the 
existing values of the variables, in a manner 
similar to the estimation of unknown 
parameters through evolving arithmetical 
expressions between initial random constants. 
The generated rules along with the hypotheses 
made avoid losses and give profit to the 
trader.  
 
5 Conclusions 
Useful trading rules are derived using genetic 
algorithms, in general and gene expression 
programming in particular. Gene expression 
programming is a very powerful method that 
allows solving of very complex problems that 
require generating expressions. Gene 
expression programming follows very closely 
the principles of genetic evolution. 
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The design of the solution using a genetic 
algorithm is necessary. This affects the 
implementation of the algorithm. Also the 
flexibility of applying a certain solution to 
other similar problems must be taken into 
account. 
The generated rules are according to the 
practices in the domain, but they customize 
the behavior of the trader to the peculiarities 
of the dataset being considered. 
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