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Abstract

This study examined the influence of salt levels on antioxidant activity and content of carotenoids and anthocyanins of the A. 
hortensis leaves using two varieties: green orach (var. purpurea) and red orach (var. rubra). Seeds of Atriplex were exposed to 0, 90, 180 
and 260 mM NaCl for 3 months and seeds were sown in an earthen pot. Overall levels of ascorbate peroxidase (APX) and glutathione 
reductase (GR) activity were significantly elevated. Salt stress caused a significant decline in tissue concentrations of catalase (CAT) 
and superoxide dismutase (SOD). However, 90 mM NaCl did not modify these parameters, which remains similar to control values. 
Activities of APX and CAT were increase whether the shoots of A. hortensis var. purpurea were grown in the presence of 180 mM NaCl. 
Thus although some indications of oxidative stress accompany exposure of this salt-tolerant Atriplex varieties to salinity, mechanisms 
appear to exist within its shoot tissue to permit the tolerance of such oxidative stress. High salt concentration in the culture medium 
provokes oxidative damage in Atriplex leaves and induces a general increase in antioxidant enzyme activity. In particular, NaCl toxicity 
decreased content of carotenoids. It also decreased the concentration of anthocyanin pigments in leaves of Atriplex. This work therefore 

provides a starting point towards a better understanding of the role of antioxidant enzyme in the plant response against salt stress.
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Introduction

Salt stress has become one of the most damaging envi-
ronmental hazards to crop productivity all over the world 
(Ashraf and Ali, 2008). This adverse environmental condi-
tion impairs plant growth by both water deficit and ionic 
toxicity (Munns and Tester, 2008). Most plants can adapt 
to low or moderate salinities, but their growth is severely 
limited above 200 mM NaCl (Hasegawa et al., 2000). Sa-
linity stress leads to a series of changes in basic biosynthetic 
functions, including photosynthesis and photorespiration, 

and amino acid and carbohydrate synthesis (Seki et al., 
2002). To avoid the cellular damage due to reactive oxygen 
species (ROS) generation, plants produce a number of an-
tioxidant enzymes that are induced and provide secondary 
protection against oxidative stress (Mittova et al., 2003). 
It is generally accepted that stress-induced deregulation 
of plant metabolism leads to the enhanced production 
of ROS, the cellular titer of which is policed by the anti-
oxidant system (Beak and Skinner, 2003). Both ROS and 
soluble antioxidants are involved in signaling processes in 
plants: the picture that is emerging suggests that relatively 

stable oxidants (H2O2) and antioxidants (ascorbate, glu-
tathione) act as sensors of the ‘oxidative load’ on the cell 

(Noctor et al., 2002). Salinity may lead to the production 
of ROS and tissue damage (Adams et al., 2004). Antioxi-
dant metabolism plays an important role in protecting 

plants from a wide variety of environmental stresses, such 
as drought, extreme temperatures, pollutants, ultraviolet 
radiation and high levels of light (Amirjani, 2010; Sir-
ingam et al., 2011). The antioxidant systems, including 
antioxidants and antioxidant enzymes, can ameliorate 

the deleterious effects of ROS in vivo and in vitro. Anti-
oxidant enzymes including superoxide dismutase (SOD), 
catalase (CAT), and glutathione peroxidase (GPX) func-
tion, by catalyzing the decomposition of oxidants and free 
radicals. The ROS concentration in the tissues directly ex-
posed to salt are strongly influenced by the coordinated 
action of different antioxidative enzymes (Munns and 
Tester, 2008). Recently, it has been reported that salin-
ity provoked in plant leaves an imbalance between ROS 
production and antioxidant defenses, with the induction 
of oxidative stress (Valderrama et al., 2006). To counteract 
the toxicity of ROS, defense systems that scavenge cellular 
ROS have been developed in plants to cope with oxidative 
stress via the nonenzymatic and enzymatic systems (Noc-
tor and Foyer, 1998). Enhancement of antioxidant defense 
in plants can thus increase tolerance to different stress fac-
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The varieties used were A. hortensis var. purpurea (green) 
and A. hortensis var. rubra (red). The plants were cultivat-
ed in an experimental station and tested under greenhouse 
conditions between March and August in Tunis (10°14’ 
E, 36°50’ N). The plants were grown in randomised rows 
under mono-specific conditions (natural light, an average 
temperature of 28/20°C day/night, mean annual rainfall 
of 525 mm and a relative humidity of 65/90%).

Atriplex seeds were planted in pots 14 cm in diameter 
and 25 cm in depth; each pot containing 3.5 kg of soil. 
The soil was characterized as: sandy loam in texture with 
52.3%, 10.5% and 12% of sand, silt, and clay, respectively; 
pH 8.75 and organic matter 1.5%. The field capacity (FC) 
of soil, measured according to the technique reported by 
Bouyoucos (1983), was 12%.

The salt concentration in the water solution was in-
creased up to 260 mM NaCl following this scheme, to give 
salinity treatments of 0, 90, 180 and 260 mM NaCl. Salt 
stress was initiated 21 days after seed germination. Pots 
were arranged in a completely randomized design within 
treatment trays and the position of the trays was changed 
weekly to avoid a position effect in the greenhouse. Pots 
were placed in trays with standing salt stress. The same nu-
trients amount was used at any salinity level. During this 
period, the plants were watered with Hoagland nutrient 
solution once a week.

Analyses
For enzyme extracts and assays, leaves were sampled ev-

ery 6 d. 0.2 g of leaves were frozen in liquid nitrogen and 
then ground in 4 mL solution containing 50 mM phos-
phate buffer (pH 7.0), 1% (w/v) polyvinylpolypyrroli-
done, and 0.2 mM ascorbic acid (ASA). The homogenate 
was centrifuged at 15,000 g for 30 min, and supernatant 
was collected and used for enzyme assays.

SOD was assayed by the nitroblue tetrazolium (NBT) 
method as described by Gong et al. (2005). The reaction 
mixture (3 mL) contained 50 mM K-phosphate buf-
fer, pH 7.3, 13 mM methionine, 75 mM NBT, 0.1 mM 
EDTA, 4 mM riboflavin and enzyme extract (0.2 mL). 
Riboflavin was added last, and the glass test tubes were 
shaken and placed under fluorescent lambs (60 mmol m-2 
s-1). The reaction occurred for 5 min and was then stopped 
by switching off the light. The absorbance was measured 
at 560 nm. Blanks and controls were run in the same man-
ner, but without illumination and enzyme extractions, re-
spectively. One unit of SOD was defined as the amount of 
enzyme that produced 50% inhibition of NBT reduction 
under the assay conditions.

APX activity was determined by following the decrease 
of ascorbate and measuring the change in absorbance at 
290 nm for 1 min in 2 mL of a reaction mixture containing 
50 mM potassium phosphate buffer (pH 7.0), 1 mMED-
TA-Na2, 0.5 mM ascorbic acid, 0.1 mMH2O2 and 50 mL 
of crude enzyme extract at 25°C. APX was determined 
according to Nakano and Asada (1981). The decrease in 

tors. Antioxidants (ROS scavengers) include enzymes such 
as CAT and SOD, as well as enzymes such as APX, GR, 
carotenoids, and anthocyanins. Photosynthesis provides 
a strong reducing power and a high risk for generation of 
ROS particularly under environmental constrains (Foyer 
et al., 1994). Under unfavorable conditions, the biosynthe-
sis and the activity of these antioxidants increase (Horling 

et al., 2003; Mittler et al., 2004; Rossel et al., 2002) and 
stabilize the chloroplast redox poise (Asada, 2000; Foyer 
et al., 1994).

The question of a functional significance of anthocya-
nin pigments in leaves has received substantial attention 
in the recent literature (Archetti et al., 2009; Chalker-
Scott, 1999; Manetas, 2006). Comparatively little atten-
tion has been given to the question of why only certain 
species change leaf colour from green to red during certain 
ontogenetic stages or seasons while others do not. Most 
research seeking to determine a functional role of antho-
cyanins in evergreen leaves has focused on their putative 
roles in photoprotection (Hughes et al., 2005; Hughes 
and Smith, 2007; Kytridis et al., 2008).

Anthocyanins are thought to minimize oxidative 
damage (Hughes et al., 2005), and/or through neutral-
izing ROS directly as antioxidants (Kytridis and Man-
etas, 2006). Specifically, anthocyanin synthesis is known 
to be inducible under high salinity (Eryilmaz, 2006) and 
drought (Yang et al., 2000). Furthermore, species with 
high levels of foliar anthocyanin seem to be common in 
environments characterized by low soil moisture (Spyro-
poulos and Mavormmatis, 1978), and are more tolerant of 
drought conditions (Paine et al., 1992). Carotenoids are 
responsible for quenching of singlet oxygen (Knox and 
Dodge, 1985) hence their comparative levels in a variety 
may determine its relative tolerance. Salt stress is a com-
plex phenomenon that involves morphological and de-
velopmental changes. With the aim of obtaining a better 
comprehension of the effect of salinity on oxidative stress 
defense system, we have analyzed oxidative stress param-
eters, the behavior of the well-known antioxidant enzymes 
CAT, GR, APX and SOD, as well as the response of caro-
tenoids and anthocyanins to different NaCl concentra-
tions. In view of the above, the present study was designed 
to investigate the oxidative damage and antioxidant system 
of two Atriplex (Atriplex hortensis) varieties subjected to 

high salt levels in the medium. The results show that NaCl 
toxicity causes oxidative damage in Atriplex leaves and that 
antioxidant defences, particularly related to APX and GR, 
are increased. 

Materials and methods 

Plants and Growth Conditions
Atriplex hortensis (L.), a C3 xero-halophyte of the family 

Chenopodiaceae, is an annual species that is well adapted 
to saline and drought conditions. Seeds of two varieties of 
A. hortensis were obtained from CN Seeds Ltd. (Ely, UK). 
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ascorbate concentration was followed as a decline in the 
optical density at 290 nm, and activity was calculated us-
ing the extinction coefficient (2.8 mM-1 cm-1 at 290 nm) 
for ascorbate. 

CAT activity was determined as a decrease in absor-
bance at 240 nm for 1 min following the decomposition 
of H2O2 (Cakmak et al., 1993). The reaction mixture (3 
mL) contained 50 mM phosphate buffer (pH 7.0), 15 mM 
H2O2 and 50 mL of crude enzyme extract at 25°C. The 
activity was calculated using the extinction coefficient (40 
mM-1 cm-1) for H2O2 (Kato and Shimizu, 1987).

Reduced glutathione (GSH) was assayed by the en-
zymatic recycling procedure in which it is sequentially 
oxidized by 5,5,-dithiobis (2-nitrobenzoic acid) (DTNB) 
and reduced by nicotinamide adenine dinucleotide phos-
phate (NADPH) in the presence of glutathione reductase 
according to Griffith (1980). The ground tissue (approxi-
mately 1 g fresh wt.) was, homogenized in 4 ml 5% sulfos-
alicyclic acid and centrifuged at 10,000 × g for 10 min. A 
330 µl aliquot was removed and neutralized by addition 
of 18 µl 7.5 M triethanolamine. One 150 µl sample was 
then used to determine concentrations of sure GSH plus 
(GSSG). Another was pretreated with 3 µl 2-vinylpyridine 
for 60 min at 20°C to mask the GSH by derivatization and 
to allow the subsequent determination of GSSG alone. 

Extraction and quantification of anthocyanins
For measurements of anthocyanin content, leaf discs 

were powdered in liquid nitrogen and extracted with 

methanol containing 1% HCl. Anthocyanins were ex-
tracted as previously described (Close et al., 2000) before 
absorbance measurements at 530 and 657 nm. Quantita-
tion of anthocyanins was performed using the following 
equation: Q (anthocyanins) = (A530 - 0.25 A657) × M-1, 
where Q (anthocyanins) is the concentration of antho-
cyanins, A530 and A657 are the absorptions at the wave-
lengths indicated, and M is the fresh weight (in grams) 
of the plant tissue used for extraction. The numbers of 
samples used for the measurements are indicated in each 
figure. Error bars indicate the SD of the average anthocya-
nin contents.

Carotenoids pigments
At the end of the experiment period, carotenoids pig-

ments in fully expanded leaves (a randomly selected mix-
ture of old and young leaves) from each treatment were 
extracted using 0.05 g of fresh material in 10 mL of 80 % 
aqueous acetone. After filtering, 1 mL of the suspension 
was diluted with a further 2 mL of 80 % aqueous acetone, 
and carotenoids (Cx + c) contents were determined with 
a spectrophotometer, using wavelength (470.0 nm). Con-
centrations of pigments [µg g fresh weight (f. wt)-1] were 
obtained by calculation, using the method of Lichtentha-
ler (1987).

Cx+c = 1000 A470 - 2.270 Ca - 81.4 Cb/227

Ca = Chlorophyll a, Cb = Chlorophyll b, Cx+c = Caro-
tenoids.

Statistical analysis 
The experiment consisted of pots in a randomized com-

plete block design with six replications (pots). Data were 
the means of five plants (± SE). Differences were analysed 
using one-way ANOVA, followed by post-hoc comparisons 
using Statistica Software (2007). Differences were consid-
ered significant for p < 0.05. All calculations were made 
using Statistica V6.1 software (StatSoft). 

Results and discussion

Activities of antioxidant enzymes
In order to get further insight into the effect all salt-

stress on oxidative stress parameters, CAT, APX, GR and 
SOD activities were determined. As shown in Fig. 1, a de-
crease of CAT activity occurred in plants treated with 90 
and 260 mM NaCl, respectively, whereas no difference re-
spect to controls for a var. purpurea were observed in 180 
NaCl-treated plants. As shown in 260 mM NaCl caused 
a 43% and 33% enhancement of SOD activity of two va-
rieties respect to controls. On the other hand, under 90, 
180 and 260 mM NaCl, there was no significant differ-
ence in SOD activity, but a significant inhibition was ob-
served respect to controls (Fig. 3). Analysis revealed that 
these activities are correlated with increase APX and GR 
activities, were increased under 90 mM NaCl, and no dif-
ferences were observed respect to controls under 260 mM 
salt (Fig. 2 and 4). Treatment with 180 mM NaCl caused 
an increase in APX and GR activities of A. hortensis var. 
purpurea (green).

Activity of GR increased steadily with NaCl concen-
tration and it nearly doubled in response to 90 mM NaCl 
for red variety. In contrast, there was not much increase in 

Fig. 1. Effect of different salt concentrations on catalase activ-
ity. Enzyme activity was measured as described in Experimental 
section. Columns represent means (n = 5) and error bars rep-
resent ±SE of the means. Columns for each variety with a dif-
ferent lower-case letter were significantly different at p < 0.05 
compared to control
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reports indicate that oxidative stress induces an increase in 
the responses of enzymatic systems linked to ROS-scav-
enging process ( Jones and Smirnoff, 2005). In fact, GR is 
a key enzyme in providing protection against a variety of 

environmental and abiotic stresses (Dalton, 1995; Rome-
ro-Puertas et al., 2006). Activity of GR and hence GSH 
production is generally elevated in plants upon exposure 
to xenobiotics and various environmental stresses (Foyer 
et al., 1991). APX and GR which are, respectively, are re-
sponsible for H2O2 detoxification in green leaves (Foyer 
and Harbinson, 1994). APX is considered to be a key anti-
oxidant enzyme in plants (Orvar and Ellis, 1997) and GR 
has a central role in maintaining the reduced glutathione 

(GSH) pool during stress (Pastori et al., 2000). SOD is the 
major scavenger of superoxide (O2˙¯) to form H2O2 and 
O2, and plays an important role in defense activity against 
the cellular damage caused by environmental stress (Melo-
ni et al., 2003). In rice leaf, the salt, preferentially enhances 
the activities of SOD, APX and GPX, decreases the CAT 
one and has little effect on the activity of GR (Lee et al., 
2001). Gossett et al. (1994) reported that in cotton, NaCl 
increases the SOD, GPX and GR activities and decreases 
that of CAT and APX. 

Anthocyanins and carotenoids content
In this study, the response of these two varieties to sa-

linity was evaluated. Given that they have different color, 
we expected that there would be distinct differences in 
their metabolic responses to salinity. Anthocyanins are 
a functionally diverse group of secondary products with 
roles in pigmentation, plant-microbe interaction, and re-
production. In our experiment, the Anthocyanins path-
way was induced during salinity stress in A. hortensis var. 
rubra, but not in A. hortensis var. purpurea. This study was 
undertaken to evaluate in Atriplex leaves, the response of 

the activity of GR for green variety at the concentrations 

(180 and 260 mM) compared with the control. However, 
at higher concentrations GR activity of var. rubra showed 
a significant (p < 0.05) decrease compared with the con-
trol. In this current work Atriplex varieties showed differ-
ent responses to salt stress in terms of growth and antioxi-
dative enzyme activity. Oxidative stress, which frequently 
accompanies high temperature, salinity, or drought stress, 
may cause denaturing of functional and structural pro-
teins (Mandhania et al., 2006; Shanker et al., 2004). As 
a consequence, these diverse environmental stresses often 
activate similar cell signaling pathways (Foyer et al., 1997; 
Zhu, 2001) and cellular responses, such as the production 
of stress proteins and up regulation of antioxidants (Vi-
erling and Kimpel, 1992; Zhu et al., 1997). A number of 

Fig. 2. Effect of different salt concentrations on glutathione 
activity. Enzyme activity was measured as described in Experi-
mental section. Columns represent means (n = 5) and error bars 
represent ±SE of the means. Columns for each variety with a 
different lower-case letter were significantly different at p < 0.05 
compared to control

Fig. 3. Effect of different salt concentrations on superoxide dis-
mutase activity. Enzyme activity was measured as described in 
Experimental section. Columns represent means (n = 5) and er-
ror bars represent ±SE of the means. Columns for each variety 
with a different lower-case letter were significantly different at p 
< 0.05 compared to control

Fig. 4. Effect of different salt concentrations on ascorbate per-
oxidase activity. Enzyme activity was measured as described in 
Experimental section. Columns represent means (n = 5) and er-
ror bars represent ± SE of the means. Columns for each variety 
with a different lower-case letter were significantly different at p 
< 0.05 compared to control
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mechanisms underlying the coordinated regulation of the 
antioxidative enzyme activities under salt stress.

Conclusions

For successful scavenging of ROS by a scavenging 
system, some antioxidant enzymes must cooperate with 
each other. Exposure to salinity induced oxidative stress 
through the enhanced generation of ROS, which was ac-
companied by membrane damage, enhanced carotenoids 

levels, anthocyanins accumulation and by activation of 
antioxidant enzyme systems. Increased levels of scavenging 
enzymes indicate their induction as a secondary defense 
mechanism in response to salt stress. 

However, more research about the reaction of Atriplex 
plant to other factors accompanying climate change (such 
as elevated temperature) and their interaction with salin-
ity tolerance would be desirable.
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