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Abstract 

 

There is still limited information on the diversity of (–)ssRNA viruses that infect fungi. Here, we 

have discovered two novel (–)ssRNA mycoviruses in the shiitake mushroom (Lentinula edodes). 

The first virus has a monopartite RNA genome and relates to that of mymonaviruses 

(Mononegavirales), especially to Hubei rhabdo-like virus 4 from arthropods and thus designated 

as Lentinula edodes negative-strand RNA virus 1. The second virus has a putative bipartite RNA 

genome and is related to the recently discovered bipartite or tripartite phenui-like viruses 

(Bunyavirales), associated with plants and ticks, and designated as Lentinula edodes negative-

strand RNA virus 2 (LeNSRV2). LeNSRV2 is likely the first segmented (–)ssRNA virus known 

to infect fungi. Its smaller RNA segment encodes a putative nucleocapsid and a plant MP-like 

protein, using a potential ambisense coding strategy. These findings enhance our understanding 

of the diversity, evolution and spread of (–)ssRNA viruses in fungi. 
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Highlights 

► Two novel fungal (–)ssRNA viruses, LeNSRV1 and LeNSRV2, were discovered in Shiitake 

mushroom through deep sequencing. 

► LeNSRV1 is the first example of a mymonavirus infecting basidiomycetes and has the 

largest genome among known mymonaviruses. 

► LeNSRV2 is the first example of a fungal (–)ssRNA virus with a segmented genome and is 

related to recently discovered plant phenui-like viruses, having a potential ambisense 

transcription strategy. 

► These findings enhance our understanding of the diversity, evolution, and spread of fungal 

(–)ssRNA viruses. 
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1. Introduction  

 

Negative-strand (−) single-stranded RNA (ssRNA) viruses include many important pathogens of 

humans (e.g, Ebola, Rabies, Rift Valley fever, and influenza A viruses), as well as livestock (e.g, 

vesicular stomatitis Indiana and Peste-des-petits-ruminants viruses) and plants (e.g, tomato 

spotted wilt and rice stripe viruses) (King et al., 2011; Kormelink et al., 2011). The most of the 

(−)ssRNA viruses are divided into two large viral lineages based on whether their RNA genomes 

are non-segmented or segmented (Ruigrok et al., 2011). The nonsegmented (−)ssRNA viruses as 

well as some bipartite (−)ssRNA viruses, i.e., members of the genera Dichorhavirus and 

Varicosavirus) belong to the single order Mononegavirales, which currently comprises 11 

families, such as Rhabdoviridae, Paramyxoviridae and Filoviridae (Amarasinghe et al., 2018; 

Walker et al., 2018). In contrast, most of the segmented (−)ssRNA viruses belong to the order 

Bunyavirales, which contains 12 families, such as Arenaviridae (two or three segments), 

Peribunyaviridae (three segments), and Phenuiviridae (three segments except for tenuiviruses 

with four to six segments) (Maes et al., 2018), and families such as Orthomyxoviridae (six to 

eight segments), and Aspiviridae (formerly Ophioviridae, three or four segments) (García et al., 

2018; King et al., 2011). Recently, metaviromic (metatranscriptomic) analyses of invertebrate 

samples (mainly arthropods) have greatly expanded the diversity of (−)ssRNA viruses and led to 

the discovery of novel groups, such as the Chuviridae, Qinviridae and Yueviridae families, in 

addition to aspiviruses (ophioviruses), all of which have been placed in the major phylogenetic 

gap between the two large groups of (−)ssRNA viruses (Kuhn et al., 2019; Li et al., 2015; Shi et 

al., 2016; Wolf et al., 2018). 

 

Fungal viruses are widespread throughout the major taxonomic groups of fungi, including yeasts, 

mushrooms, plant-, insect-, and human-pathogenic fungi (Ghabrial et al., 2015; Pearson et al., 

2009; Quesada-Moraga et al., 2014). Currently, 18 families and one genus of fungal viruses have 

been officially ratified by the International Committee for the Taxonomy of Viruses (ICTV) 

(https://talk.ictvonline.org/taxonomy/) (Kotta-Loizou and Coutts, 2017). Most fungal viruses 

have either double-stranded RNA (dsRNA) or positive-strand (+)ssRNA genomes, however, 

recent reports have expanded our knowledge of fungal virus diversity by findings of fungal 

viruses with monopartite (−)ssRNA (family Mymonaviridae, in the order Mononegavirales) and 
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ssDNA genomes (geminivirus-related DNA mycoviruses) (Kondo et al., 2013a; Liu et al., 2014; 

Yu et al., 2010). Furthermore, recent large-scale meta-transcriptomic analyses of plant pathogenic 

fungi have also uncovered the presence of several fungal (−)ssRNA viruses, including 

mymonaviruses (Hao et al., 2018; Marzano and Domier, 2016; Marzano et al., 2016; Mu et al., 

2018; Wang et al., 2018b) and other fungal (−)ssRNA viruses related to bi- and tripartite 

(−)ssRNA viruses, such as phenuiviruses and peribunyaviruses (in the order Bunyavirales), and 

a group of multipartite (−)ssRNA viruses (ophioviruses) (Donaire et al., 2016; Marzano et al., 

2016; Osaki et al., 2016). However, there has been no direct evidence regarding the presence of 

fungal (−)ssRNA viruses with bi- or multipartite genomes. 

 

Most fungal viruses seem to have no significant effect on their fungal hosts, whereas some 

mycoviruses infecting plant-pathogenic fungi can reduce the growth, virulence (termed 

“hypovirulence”) or fungicide resistance of their hosts, therefore, many studies have so far 

focused on the fungal viruses as potential for biological control agents against fungal diseases 

(Kondo et al., 2013b; Niu et al., 2018; Nuss, 2005; Xie and Jiang, 2014). Interestingly, some 

viruses can enhance the fungal virulence (termed “hypervirulence”) of plant- and human-

pathogenic fungi (Ahn and Lee, 2001; Lau et al., 2018; Ozkan and Coutts, 2015). Fungal viruses 

are also important in mushroom cultivations because they are the causal viral agents for certain 

mushroom diseases, and are associated with economically important mushroom diseases of 

several fungal species, including white-button mushroom (Agaricus bisporus), enokitake 

mushroom (Flammulina velutipes), shiitake mushroom (Lentinula edodes), oyster mushrooms 

(Pleurotus eryngii and P. ostreatus) (Magae, 2012; Magae and Sunagawa, 2010; Qiu et al., 2010; 

Revill et al., 1994; Ro et al., 2007; Ro et al., 2006) . In addition, many others have also been 

identified from asymptomatic edible mushrooms (Ghabrial et al., 2015; Komatsu et al., 2019; 

Sahin and Akata, 2018 and references therein; Wang et al., 2018a). 

 

Shiitake is the second most important edible mushrooms among the industrially cultivated species, 

with that over 1,321,000 tons being produced in the southeast Asian countries (Miles and Chang, 

2004). In the 1970s, many fungal virus-like agents with different particle morphologies and 

dsRNA profiles have been discovered in Shiitake (Rytter et al., 1991; Ushiyama, 1979 and 

references therein). The presence of two fungal dsRNA viruses, Lentinula edodes mycovirus 

HKB (LeV-HKB) and Lentinula edodes partitivirus 1 (LePV1), belonging to the proposed genus 

“Phlegivirus” and the genus Betapartitivirus (in the family Partitiviridae), respectively, has been 
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reported in some diseased shiitake strains (Guo et al., 2017; Kim et al., 2013; Magae, 2012; Won 

et al., 2013). However, details of other shiitake-infecting viruses, especially fungal (−)ssRNA 

viruses, and their diversity is still limited. 

 

In this study, deep sequencing was used to investigate the virome of a single strain of shiitake, 

which is derived from the fruiting body grows on the hardwood logs in Japan. As a result, a 

multiple viral infection was identified, including novel fungal (−)ssRNA viruses related to 

mymonaviruses and phenuiviruses. Sequence comparisons and phylogenetic analyses revealed 

that these two (−)ssRNA viruses were considered to be unreported fungal viruses, and therefore, 

they were designated as Lentinula edodes negative-strand RNA virus 1 (LeNSRV1) and Lentinula 

edodes negative-strand RNA virus 2 (LeNSRV2). The genome information of two novel fungal 

(−)ssRNA viruses provides interesting new insight into the diversity, evolution and spread of 

fungal (−)ssRNA viruses. In particular for LeNSRV2, being likely the first example of a fungal 

virus with a segmented genome that uses an ambisense transcription strategy. 

 

2. Results and discussions 

 

2.1.  Virome analysis of a single Lentinula edodes strain, HG3 

 

We attempted to search for (–)ssRNA virus-like sequences in the fungal NCBI database using a 

BlastP search with a query for the large protein L (replicase, containing RdRP domain) of known 

fungal (–)ssRNA viruses as a query. Blast search identified a partial sequence of a previously 

unreported mymona-like virus sequence (1.6 kb, accession no. JQ687141) from shiitake in South 

Korea (data not shown). Using a primer set specific for this sequence, we conducted RT-PCR 

analysis on commercially available shiitake fruiting bodies. RT-PCR analysis confirmed the 

infection of this virus-like agent, together with a known fungal dsRNA virus (LeV-HKB), in a 

fruiting body sample (referred to as HG3) that grows on the hardwood logs in Hyogo Prefecture, 

Japan; but it was not found in other examined shiitake fruiting bodies that are grown on artificial 

sawdust media (mushroom bed) in Okayama and Nagasaki Prefectures (Fig. 1A and B and data 

not shown). To further characterize the genomic structure of the novel mymona-like virus and 

other possibly hidden fungal viruses, we conducted high-throughput sequencing of the total RNA 

(depleted ribosomal RNA) sample from the HG3 mycelia (Fig. 1C) using the Illumina HiSeq 

4000 platform. 
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A total of 111,394,862 reads were obtained from the deep sequencing analysis. The assembled 

7,630 contigs (>1,000 nt) were subsequently subjected to local tBlastN analysis against NCBI 

virus Refseq records. We found the presence of at least 13 virus-like contigs with a size of 2,773–

11,566 nt and average coverage of 1,184–183,332 reads (YL, MF, and HK unpublished results). 

These virus-like contigs represent nine putative fungal viruses and two their variants (see below) 

and seem to cover most of the viral genomic regions. The largest contig was derived from a 

previously identified mymona-like virus sequence (contig no. 585, 11566 nt) (Fig. 2A). Three 

contigs were derived from the variants of known two fungal viruses: LeV-HKB (contig no. 74, 

11340 nt) and LePV1 (a betapartitivirus, contig nos. 19 and 266, 2361 nt and 2220 nt, 

respectively). Other virus-like contigs appear to be sequences from a putative (–)ssRNA virus 

related to phenui-like viruses (contig nos. 296 and 1574, 7074 nt and 2773 nt, respectively), the 

previously unreported fungal ssRNA virus (contig nos. 315 and 10, related to accession no. 

AB647256), and four novel fungal (+)ssRNA viruses related to hypo-, fusari-, tymo-like and 

mitoviruses (Fig. 3A and LY, MF, and HK unpublished results). 

 

To verify the presence of known fungal viruses (LeV-HKB and LePV1) and two novel (–)ssRNA 

virus-related RNAs in the shiitake sample, we performed RT-PCR using the specific primer sets 

for each of the fungal virus-like sequences. Using seven sets of primers (Table S1), we 

successfully amplified virus targets in the RNA samples extracted from the HG3 mycelia; but 

were unable to amplify any targets in the HG3 genomic DNA sample (Fig. 1D). After direct 

sequencing, the amplified cDNA fragments revealed identical sequences to the corresponding 

virus-like sequences obtained via deep RNA sequencing (data not shown). The remaining seven 

virus-like sequences (contig nos. 315, 10, and others) originating from novel or unpublished 

fungal (+)ssRNA viruses will be reported elsewhere. 

 

Deep sequencing technologies can be utilized for the analysis of the RNA virome, uncovering a 

mixed-infection within single fungal strains of ascomycete (Fusarium poae) and basidiomycete 

(Rhizoctonia solani, Sclerotium rolfsii and Agaricus bisporus) (Bartholomäus et al., 2016; Deakin 

et al., 2017; Osaki et al., 2016; Zhu et al., 2018). Our deep sequencing analysis also successfully 

detected a mixed infection of diverse fungal RNA viruses, consisting of at least nine fungal 

viruses including two novel (–)ssRNA viruses (see details below, and LY, MF, and HK 
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unpublished results) in a single shiitake fungal strain (HG3). Because the shitake HG3 strain is 

co-infected with multiple fungal viruses, it is difficult to assess the phenotypic effects of each 

virus on the host fungus. For stable mushroom production, further studies using virus-cured and 

reintroduced strains are necessary to examine the effect of these fungal viruses on the host, 

particularly on fruiting body formation. 

 

2.2.  A novel non-segmented (−)ssRNA virus related to mymonaviruses 

 

To verify the sequence of mymonavirus-like contig no. 585, obtained from next-generation 

sequencing (NGS) (Fig. 2A), overlapping RT-PCRs were performed and the amplified products 

were directly Sanger-sequenced from both directions (data not shown). The genome termini were 

determined by RNA ligase mediated (RLM) amplification of cDNA ends (RACE) (Fig. S1). The 

complete genome sequence of the mymona-like virus was 11,563 nt in length (Fig. 2B) and was 

deposited in the DNA Data Bank of Japan (DDBJ) (accession no. LC466007). This virus is the 

first mymonavirus known to infect basidiomycetes and has a significantly larger genome (11.6 

kb) than other known mymonaviruses and mymonavirus-like agents (approximately 7.9–10 kb) 

(Liu et al., 2014; Marzano and Domier, 2016; Marzano et al., 2016; Wang et al., 2018b). We have 

tentatively designated the viral isolate as “Lentinula edodes negative-strand RNA virus 1 

(LeNSRV1)”. The morphological characteristics of LeNSRV1 are still unknown, but two known 

mymonoviruses, Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV1) and 

Fusarium graminearum negative-stranded RNA virus 1 (FgNSRV-1), are thought to have 

filamentous virion and helical rod-like nucleocapsids, respectively (Liu et al., 2014; Wang et al., 

2018b). The GC content of the LeNSRV1 RNA is 50.8%, slightly higher than that of other 

mymonaviruses (38.8–48.5%). The genome termini do not show obvious complementarity: only 

three terminal nucleotides share complementary, 3′-GAC…GUC-5′ (Fig. 2C). The viral genome 

(viral complimentary RNA strand, vcRNA) is predicted to have seven non-overlapping open 

reading frames (ORFs) (> 300 nt) (Fig. 2B). A semi-conserved AU-rich sequences is present in 

the putative untranslated sequences between ORFs in the LeNSRV1 genome (viral RNA strand, 

vRNA) (3′-AAAAUG/CUUUUUUUG-5′: type A for ORF1/2 and 3′-AAAAUUGUUUUUUUG-

5′: type B for ORF4/5/6) (Fig. 2B and 2D). These semi-conserved sequences are most likely the 
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gene-junction sequences that commonly exist in the members of the order Mononegaviridae and 

are important for the transcription termination/polyadenylation and transcription initiations 

(Conzelmann, 1998). The 3' RACE analysis revealed that the 3'-terminal sequences of LeNSRV1 

mRNAs were: ...UUUUAGAAAAAAA(A)n-3′ for ORF2 (N) protein 

and ...UUUUGAAAAAAA(A)n-3′ for ORF7 (L) protein (data not shown). Thus, the G residue 

following A/U-rich tracks (Fig. 2D, arrow), which is commonly found in the gene-junction of 

other mononegaviruses, such as rhabdoviruses (Kondo et al., 2014), might be important for the 

efficient transcription termination of the upstream gene, as demonstrated by previously (Barr et 

al., 1997; Whelan et al., 2000). The putative gene-junction sequence, in particular the type B 

sequence of LeNSRV1, is similar, but not identical, to those of mymona- and mymona-like 

viruses (Liu et al., 2014; Marzano et al., 2016; Wang et al., 2018b) (Fig. 2E), suggesting that the 

transcriptional regulation of mymonaviral genomes might also be well conserved. 

 

The largest LeNSRV1 ORF (ORF7) encodes a large protein L (1969 aa, 221.8 kDa) with two 

typical domains, RdRp (accession no. cl15638, 6e-128) and mRNA capping region V (cl16796, 

1e-08), and a conserved “GDNQ” tetra-peptide sequence in the RdRp core motif C, commonly 

found in mononegaviruses, including mymonaviruses. Among the seven LeNSRV1-encoded 

proteins, ORF2 and L proteins show moderate and significant amino acid sequence similarities 

to the putative nucleocapsid (or nucleoprotein, N) and L proteins of Hubei rhabdo-like virus 4 

(HbRLV4), a mymonavirus identified from arthropods (host species unknown) meta-

transcriptomics (N = 27.7% and L = 29.9%, respectively) (Shi et al., 2016), and L protein of other 

mymona- and mymona-like viruses (L = ~29.3–38.4%, respectively) (Kondo et al., 2013a; Liu et 

al., 2014; Marzano and Domier, 2016; Marzano et al., 2016; Wang et al., 2018b) (Table 1 and 

Fig. S2A for pairwise comparisons of viral proteins). However, the remaining five ORF (ORFs 

1, 3–6) proteins do not have any significant similarity with other known viral proteins. The gene 

order of mymonaviruses does not seem to follow the general pattern in those of the mononegaviral 

genome (3′-N-P-M-G-L-5′) (Easton and Pringle, 2011). Unlike other mononegaviruses, except 

for orthopneumoviruseses, the genomes of LeNSRV1 and other characterized mymonaviruses 

contain a gene (ORF1 gene) upstream of the putative N (ORF2) gene (Liu et al., 2014; Marzano 

and Domier, 2016; Marzano et al., 2016; Wang et al., 2018b) (Fig. 2B), and the ORF6 of 
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LeNSRV1, whose position corresponds to that of glycoprotein G for mononegavirus, appeared to 

lack common structural features of the G protein (data not shown). In addition, whereas most 

known mymonaviruses have an additional small gene downstream of the L gene, it is absent in 

the genomes of LeNSRV1, HbRLV4 and other mononegaviruses (Fig. 2B). Thus, it is suggested 

that the acquisition of two small genes located at the 3′- (ORF1 gene) and 5′- terminal (a small 

ORF following the L gene) regions of the viruses may have occurred in ancestral mymonaviruses 

before and after the divergence of a group of LeNSRV1 and HbRLV4 (see below for the 

grouping). 

 

In the maximum likelihood (ML) phylogenetic analysis using L proteins, the known 

mymonaviruses that infect ascomycete fungi (Sclerotinia sclerotiorum, Fusarium graminearum 

and Botrytis cinerea) and those associated with soybean plant leaves (except for soybean leaf-

associated negative-stranded RNA virus 4 [SLaNSRV4, accession no. ALM6222]), and 

mymonavirus-like fungal TSA sequences (Sclerotinia homoeocarpa) formed two distinct sister 

clades (clades I and II) within the Mymonaviridae family (Fig. 3A and Table 1). In contrast, 

LeNSRV1, HbRLV4 and Kiln Barn virus—a mymona-like virus that infect the fruit fly 

(Drosophila suzukii) (accession no. AWA82236, a 3.7 kb contig sequence)—were placed in a 

well-supported distinct clade III within the Mymonaviridae family (Medd et al., 2018; Shi et al., 

2016) (Fig. 3A and Table 1). This clade also consists of two mymonavirus-like transcriptome 

shotgun assembly (TSA) sequences (accession nos. GFHZ01022276 and GFLP01469011, 

respectively) derived from hybrid cultivars of sugarcane (Saccharum sp.) plants, in addition to a 

putative endogenous virus element (EVE) derived from a dicot powdery mildew fungus 

(Golovinomyces cichoracearum, formerly Erysiphe cichoracearum) whole genome shotgun 

sequence (WGS, accession no. MCBQ01018032) (Wu et al., 2018) (Figs. 3A, S2 and Table 1). 

A close phylogenetic relationship among LeNSRV1, HbRLV4 and putative G. cichoracearum 

EVE (accession no. RKF63845 and RKF80079) is also shown via the neighbor-joining (NJ) 

analysis based on N-like sequences (Fig. 3B and Table 1). The putative EVE sequences related 

to myomonaviral L proteins have also been discovered in the genome of other powdery mildew 

fungi, Erysiphe pisi and Golovinomyces orontii, representing possible molecular fossil records of 

ancient mymonavirus infection in their genomes (Kondo et al., 2015; Kondo et al., 2013a) (Fig. 
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S3). These EVE-like sequences are related to each other and are closely related to the clade III 

mononegaviruses (Fig. 3 and data not shown), showing an interesting insight into the long-term 

mymonaviral evolution and fungal host-virus coevolution. 

 

2.3.  A putative segmented (−)ssRNA virus related to phenuiviruses 

 

The two phenuivirus-like elements identified from the HG3 NGS data (contig nos. 296 and 1574, 

with similar average coverage of 3182 and 3078 reads, respectively) might be derived from a 

novel (−)ssRNA virus related to the previously reported bipartite- or tripartite phenui-like viruses 

that are associated with plants and ticks (Navarro et al., 2018a; Navarro et al., 2018b; Tokarz et 

al., 2018; Xin et al., 2017) (see details below). Therefore, we tentatively designated this potential 

(−)ssRNA virus as “Lentinula edodes negative-strand virus 2 (LeNSRV2)”. The entire sequence 

of LeNSRV2 was confirmed using direct sequencing of overlapping RT–PCR amplification 

products (data not shown) and RLM-RACE analysis of their termini (Fig. S1). The complete 

sequences of LeNSRV2 RNAs, namely RNA1 (contig no. 296) and RNA2 (contig no. 1574), 

were 7082 nt and 2754 nt, respectively (DDBJ Accession nos. LC466008 and LC466009) (Fig. 

4B). The GC content of the two virus RNA elements was 37.2% for RNA1 and 40.5% for RNA2, 

which are similar values to the above mentioned plant- and tick-associated phenui-like viruses 

(35.7–38.5% for RNA1 and 35.1–40.1% for RNA2 and/or RNA3 segments). However, their 

entire RNA sequences have no significant similarity to that of other known viral genomes (data 

not shown). RNA1 and RNA2 (vRNA strand, negative sense) shared the first 10 nucleotides at 3′ 

terminus (3′-ACACAAAGAC…) and the first nine nucleotide at 5′ terminus (…UCUUUGUGU-

5′) (Fig. 4B and C). Moreover, the first 9 nucleotide sequences of 3′ and 5′ termini of each RNA 

strand are complementary to each other (Fig. 4D). Such complementarity is common among many 

segmented (−)ssRNA viruses (Ferron et al., 2017), in particular in plant- and tick-associated 

phenui-like viruses. For example, citrus concave gum-associated virus (CCGaV, bipartite genome, 

a member of the newly established floating genus Coguvirus, which naturally infects citrus and 

apple trees) (Navarro et al., 2018a; Rott et al., 2018) and Laurel Lake virus (LLV, tripartite 

genome, derived from a pool of adalt Ixodes scapularis ticks) (Tokarz et al., 2018) , respectively. 

Sequence similarities are also found in a known phenuivirus, severe fever with thrombocytopenia 
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syndrome virus (SFTSV, in the genus Banyangvirus) (Fig. 4C), suggesting the potential of these 

sequences to form viral dsRNA panhandle structures that may plays a role in viral RNA 

encapsidation and the circularization viral RNA genome during formation of phenuiviral 

ribonucleoprotein (RNP) complex (Ferron et al., 2017; Hornak et al., 2016). 

 

LeNSRV2 RNA1 (vcRNA strand) potentially codes for the large protein L (ORF1 protein: 2309 

aa, 267.3 kDa), containing a Bunya_RdRp super family protein domain (accession no. cl20265, 

E-value = 2e-39) and the conserved “SDD” tri-peptide sequence in the RdRp catalytic motif C 

that are commonly found in the L protein of most segmented (−)ssRNA viruses. In addition, 

alignment of the N-terminal regions L protein of LeNSRV2 and those of related phenui-like 

viruses, uncovered the presence of a putative endonuclease domain with the key residue of cation 

dependent nucleases (the His+ endonucleases with the PD and the D/ExK motifs) (Holm et al., 

2018; Sun et al., 2018) (Fig. S4). The L proteins endonuclease activity of phenuiviruses and most 

of other segmented (−)ssRNA viruses is likely to be essential for a unique mechanism known as 

“cap-snatching”, in which the viral polymerase cleaves host mRNA via the endonuclease activity 

and utilizes its capped fragment for viral transcription (Holm et al., 2018; Sun et al., 2018). A 

BlastP analysis revealed that LeNSRV2 L protein shows significant amino acid sequence 

similarity (29.3–32.2% identity) to that of CCGaV and putative plant coguviruses, citrus virus A 

(CiV-A, bipartite genome, infects citrus trees, in association with no specific symptoms), 

watermelon crinkle leaf-associated virus 1 and 2 (WCLaV-1 and WCLaV-2, tripartite genome) 

(Navarro et al., 2018a; Navarro et al., 2018b; Rott et al., 2018; Wright et al., 2018; Xin et al., 

2017), a tick-associated phenui-like virus (LLV) (Tokarz et al., 2018), and a previously 

unreported phenui-like fungal virus named Entoleuca bunyavirus 1 (EBV1: Accession no. 

AVD68666), from the ascomycete fungus Entoleuca sp. (the family Xylariaceae) (Table 1 and 

Fig. S2B for pairwise comparisons of viral proteins). The L protein also shows moderate amino 

acid sequence similarities (23.2–24.8% identity) to that of SFTSV isolates (data not shown). 

 

LeNSRV2 RNA2 contains two ORFs (ORF2a and ORF2b), which are translated in the opposite 

direction to each other (Fig. 4B). These ORFs are separated by a noncoding 451-nt intergenic 

region (IGR, AU content 68.7%) that potentially forms a long A/U rich stem-loop structure (Fig. 
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S5). A similar coding scheme, with an intergenic A/U rich stem-loop structure, was observed for 

the RNA2 segments of two coguviruses (CCGaV and CiV-A) and therefore an ambisense coding 

strategy for these segments was proposed; this ambisense nature is similar to phleboviruses (tri-

segment viruses) and tenuiviruses (multi-segment viruses) in the family Phenuiviridae (Navarro 

et al., 2018a; Navarro et al., 2018b) (see Fig. 4B). Therefore, the LeNSRV2 genome structure 

appears to be more closely related to that of bipartite coguviruses (CCGaV and CiV-A) than that 

of tripartite coguviruses (WCLaV-1 and WCLaV-2) or the tick-associated phenui-like virus 

(LLV) (Fig. 4B). No conserved domain was found in the LeNSRV2 ORF 2a protein (318 aa, 35.2 

kDa), whereas ORF 2b protein (423 aa, 47.7 kDa) contains a conserved domain of the 

nucleocapsid protein (N) of phleboviruses and tenuiviruses (Tenui_N super family; accession no. 

cl05345, E-value = 3e-13) (Fig. 4B). BlastP analyses indicated that the ORF2a protein has 

moderate amino acid sequence similarities (21.8–23.5% identity) to that of the putative cell-to-

cell movement protein (MP) of some coguviruses and a hypothetical protein (p2) of LLV (Table 

1). The alignment based on both sequence and secondary structure similarities showed that 

LeNSRV2 ORF 2a protein, MP-like proteins of related phenui-like viruses and MPs of plant 

ophioviruses, members of the 30K MP superfamily (Borniego et al., 2016; Hiraguri et al., 2013) 

appeared to share similar key features including predicted beta-strand domains and a highly 

conserved aspartate (D) residue (see Mushegian and Elena, 2015; Navarro et al., 2018a) (Fig. S6). 

The ORF2b protein also shows moderate similarity (25.7–30.5% identity) to the putative N 

proteins of coguviruses, LLV, and apple rubbery wood virus 1 and 2 (ARWV-1 and ARWV-2, 

trip-segment viruses, in the suggested genus “Rubodvirus”) (Rott et al., 2018; Wright et al., 2018) 

(Table 1). Although LeNSRV2 and two bipartite coguviruses (CCGaV and CiV-A) predictably 

have ambisense coding strategy, their tripartite relatives (WCLaV-1 and WCLaV-2) do not. 

Moreover, the RNA2 and 3 segments of the WCLaVs have long U-rich 3′-terminal sequences and 

lack 5′- and 3′-terminal ends complementarity (Xin et al., 2017). In the case of our and previous 

studies, the NGS read coverage for the IGR of the ambisense viral segments was significantly 

low (Shi et al., 2018) (see also Fig. 4A). Thus, as also suggested by Navarro et al. (Navarro et al., 

2018b), it cannot exclude the possibility that RNA2 and 3 of WCLaVs may be two contig 

fragments derived from a single ambisense RNA segment. 
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Based on the results, LeNSRV2 is most likely the first example of a segmented fungal (–)ssRNA 

virus related to phenuiviruses with the ambisense coding strategy. However, we could not find 

any additional LeNSRV2 segment(s) encoding for a precursor of glycoproteins (Gn/Gc) that are 

commonly encoded by a particular segment (namely M segment) of phenuiviruses and the 

recently discovered leishbuviruses (members of the newly established family Leishbuviridae, in 

the order Bunyavirales), which infect invertebrates and protists (Grybchuk et al., 2018) (see Fig. 

5A for their phylogenetic relationships). Generally, the G protein(s) forms the membrane spikes 

of (–)ssRNA viral virions and are thought to play a critical role in host cell entry (Hornak et al., 

2016). Thus, LeNSRV2 and related phenui-like viruses (coguviruses, rubodviruses and LLV) 

(Navarro et al., 2018a; Navarro et al., 2018b; Rott et al., 2018; Tokarz et al., 2018; Wright et al., 

2018; Xin et al., 2017), may lack the M segment and/or G proteins because they have non-

vertebrate hosts and thus probably do not have extracellular modes of transmission via enveloped 

virions. It is generally accepted that the replication of the (–)ssRNA viruses requires not only L 

polymerase but also the N protein, which is an essential viral factor for the formation of the RNP 

complex and scaffold for the replication process (Sun et al., 2018). Therefore, fungal (−)ssRNA 

viruses that are related to segmented (−)ssRNA viruses in the orders Bunyavirales and Aspiviridae 

(see the Introduction section) might also have additional RNA segment(s) encoding for the N 

protein and probably other viral protein(s). 

 

An ML phylogenetic tree was constructed using L protein sequences derived from: representative 

members of 10 genera in the family Phenuiviridae (Maes et al., 2018); coguviruses; rubodviruses; 

LLV; and selected phenui-like viruses recently reported found in invertebrates (Li et al., 2015; 

Shi et al., 2016; Tokarz et al., 2018) and in fungi (Marzano et al., 2016; Osaki et al., 2016); and 

their recently discovered relatives, including leishbuviruses from invertebrates and protists 

(trypanosomatids, relatives of the human parasite Leishmania) (Grybchuk et al., 2018). The 

resulting ML tree shows that LeNSRV2 forms a well-supported clade together with coguviruses 

(CCGaV, CiV-A, WCLaV-1 and WCLaV-2), LLV, and the possible fungal phenui-like virus 

(EBV1) (Fig. 5A). LeNSRV2 is also distantly related to “rubodviruses” (ARWV-1 and ARWV-

2) and representative phenuiviruses (shown as a triangle in the ML tree), as well as with other 

phenui-like viruses that infect an ascomycete fungus (S. sclerotiorum) and some invertebrate 
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species (Fig. 5A). Similar topology was also observed for the NJ trees based on N (ORF2b/ORF3) 

and MP-like (ORF2a/ORF2) proteins (Fig. 5B), indicating that the RNA2-encoded proteins of 

LeNSRV2 are more closely related to their analogs of plant coguviruses and related-viruses (LLV 

and EBV1) than those of plant “rubodviruses”. Our phylogenetic analyses suggested that 

LeNSRV2 and related phenui-like viruses including members of the floating genus Coguvirus 

belong to the family Phenuiviridae. However, it is safer to wait until more phenui-like viruses are 

discovered to establish a novel genus (or genera) accommodating for LeNSRV2 and other related 

viruses (EBV1 and LLV) or to assign these viruses to the genus Coguvirus. 

 

It has been proposed that the vertebrate- and plant-infecting bunyaviruses (within the order 

Bunyavirales) had been originated from arthropod-infecting progenitors and diverged to include 

important arthropod-borne pathogens of humans, animals, and plants (Li et al., 2015; Marklewitz 

et al., 2015). A similar evolutionary scenario could be accounted for host transitions of phenui-

like viruses between ticks and fungi, such as in the case of the viral combinations (I) LLV and 

LeNSRV2 or EBV1, (II) Ixodes scapularis associated virus 5 and Fusarium poae negative-

stranded virus 2, and (III) Ixodes scapularis associated virus 6 and Rhizictonia solani negative-

strand virus 4 (Tokarz et al., 2018) (Fig. 5A). The close association between viruses that infect 

ticks and fungi has also been observed for reoviruses (in the family Reoviridae, have multi-

segment dsRNA genome), tick-borne vertebrate coltiviruses, and fungal mycoreoviruses 

(Hillman et al., 2004). Therefore, the cross-kingdom virus transmission between ticks and fungi 

might have occurred over the evolutionary time scales. Another interesting evolutionary insight 

into the phenui-like viruses is the relationships between the viruses that infect plants (coguviruses) 

and fungi (LeNSRV2). The RNA segment of coguviruses and “rubodviruses” (bi- and tripartite 

plant phenui-like viruses) encodes for the putative MP-like gene (Navarro et al., 2018a; Navarro 

et al., 2018b; Rott et al., 2018; Wright et al., 2018; Xin et al., 2017), which might have been 

acquired by ancestral phenuivirus(es) to adapt to the plant hosts during their evolution (Dasgupta 

et al., 2001). A related MP-like gene is also presented in the LeNSRV2 RNA2 segment (Figs. 4B 

and 5B). Even though its function in the host(s) is still unknown, it gives rise to an interesting 

question whether this fungal virus could infect plants as an alternative viral host. Cross-kingdom 

viral infections between fungi and plants or fungi and arthropods (a mushroom fly) have recently 
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been demonstrated in the artificial and natural conditions (Andika et al., 2017; Liu et al., 2016; 

Mascia et al., 2014; Mascia et al., 2019; Nerva et al., 2017). Thus, it could be speculated that 

fungal species have potential as an alternative reservoir for coguviruses in natural environment. 

The investigations to prove these notions would provide a novel insight on the cross-kingdom 

viral infection of (–)ssRNA viruses between fungi and plants and/or fungi and ticks. 

 

3. Conclusion 

 

We have identified two novel fungal (–)ssRNA viruses, LeNSRV1 and LeNSRV2, that were 

discovered from shiitake via deep sequencing. Our finding on LeNSRV1 provides the first 

examples of a mymonavirus infecting basidiomycetes and shows that it has the largest genome 

compared to currently known other members. The second virus, LeNSRV2, is likely the first 

example of an fungal (–)ssRNA virus with a potential segmented genome, and is closely related 

to the recently discovered plant and tick phenui-like viruses and has a putative ambisense 

transcription strategy. The close relation between LeNSRV2 and other phenui-like viruses raise 

the possibility of cross-kingdom virus transfer between fungi and plants or fungi and ticks in 

ancient times and probably also present time. These findings enhance our understanding of the 

diversity, evolution, and spread of fungal (–)ssRNA viruses. 

 

4. Materials and methods 

 

4.1.  Lentinula edodes strains 

Commercially available fruiting bodies of shiitake (containing four cultured strains derived from 

different location, see Fig. 1A) were subject to screening for infection with unreported mymona-

like virus infection. A shiitake strain (HG3) obtained from a fruiting body sample was grown on 

a cellophane-membrane over potato dextrose agar (PDA; BD Difco Laboratories, Detroit, MI, 

USA) plates at 22–25°C for further studies. For fungal species verification, fungal genomic DNA 

was isolated using DNeasy® Blood and Tissue Kit (Qiagen, Hilden, Germany) following the 

manufacturer's instructions and used for a template of polymerase chain reaction (PCR) 

amplification of the intergenic spacer region (ITS) using a primer set, ITS1 (5′-

TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) of 

ribosomal RNA (White et al., 1990) (results not shown). 
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4.2.  RNA extraction and RT-PCR 

Total RNA from mushroom’s fruiting bodies and mycelia was extracted using conventional 

phenol/chloroform treatment or TaKaRa RNAiso Plus Reagent (TaKaRa Biotech. Co., Shiga, 

Japan) using the acid guanidine-phenol-chloroform (AGPC) method, following the 

manufacturer's instructions. DsRNA fractions from fruiting bodies were isolated using CC41 

cellulose (Whatman, USA) with the method as described previously (Sun and Suzuki, 2008). The 

total RNA and dsRNA-enriched fractions were analyzed using electrophoretic mobility on 1% 

agarose gel in 1× TAE buffer and stained with ethidium bromide. For reverse transcription (RT)-

PCR detection, the cDNA strands were synthesized using MMLV or SuperScript II reverse 

transcriptase (Thermo Fisher Scientific, Waltham, MA, USA) and used as templates for PCR 

amplification with QuickTaq HS Dye Mix or KOD FX Neo Taq polymerase (Toyobo, Osaka, 

Japan). PCR products were then sequenced using the Sanger sequencing method. 

 

4.3. Next-generation sequencing and reads assembly 

Total RNA sample (645 ng/µL, RIN = 8.9) from shiitake HG3 strain was depleted rRNA with 

Ribo-Zero kit (Illumina, San Diego, CA, USA) and subjected to cDNA library construction using 

the TruSeq RNA Sample Preparation kit v2 (Illumina). The cDNA library was then subjected to 

deep sequencing (100 bp pair-end reads) using the Illumina HiSeq. 4000 platform (Illumina). The 

library construction and deep sequencing were performed by Macrogen Inc (Tokyo, Japan). After 

deep sequencing (Raw data: total read base, 11,250,881,062 bp; total reads, 111,394,862; GC 

content, 46.3%), the adaptors were trimmed and then the sequence reads (111,394,862 reads) 

were de novo assembled into 7,630 contigs (916–21,873 nt in length, set for a minimum contig 

length of 900 nt) using CLC Genomics Workbench (version 11, CLC Bio-Qiagen, Aarhus, 

Denmark). The assembled contigs were subjected to local BLAST searches against the viral 

reference sequence (RefSeq) dataset of National Center for Biotechnology Information (NCBI). 

 

4.4.  Reconfirmation of and terminal sequence determination of viral RNA sequences 

To verify the sequence of the entire viral genomes, RT-PCR was performed using the sets of 

overlapping primers, and the amplified products were directly sequenced from both directions. 

Sequences of the primers used in overlapping RT‐PCR are available upon request. For the 5′ and 

3′ termini of the viral RNAs, 3′-RLM-RACE (Lin et al., 2012) was performed using total RNA 

extracted from the HG3 mycelia. Briefly, a 5′-phosphorylated oligodeoxynucleotide (3RACE-
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adaptor, Table S1) was ligated to each of the 3′ termini of RNAs using T4 RNA ligase (Takara). 

The ligates were used as templates for cDNA synthesis in the presence of an oligodeoxynucleotide 

primer, complementary to the 3′-half of the 3RACE-adaptor (3RACE-1st, Table S1). The 

resulting cDNA was then amplified via PCR using the primer set 3RACE-2nd (which is 

complementary to the 5′ half of 3RACE-adaptor, Table S1) and virus-specific primers. To 

determine the 3′ termini of viral transcripts (mRNA), the 3′-RACE was performed using the 

FirstChoice® RLM-RACE kit (Ambion, Thermo Fisher Scientific), following the manufacturer's 

instructions. All PCR products were directly sequenced using the Sanger sequencing method. 

 

4.5.  Database search and sequence analysis 

Viral sequence data were analyzed using GENETYX-MAC (Genetyx Co., Tokyo, Japan) or 

Enzyme X v3.3.3 (nucleobytes.com/enzymex/index.html). Sequence similarities were calculated 

using the BLAST program available from NCBI (nucleotide collection, nr/nt; transcriptome 

shotgun assembly, TSA) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Pairwise sequence identity was 

calculated using the Sequence Demarcation Tool (SDT) version 1.2 with the MUSCLE alignment 

(Muhire et al., 2014). The conserved protein domains were searched using the NCBI conserved 

domain database (CDD) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). RNA secondary structures 

(stem-loop RNA structures) were predicted using Mfold version 2.3 (Zuker, 2003) 

(http://mfold.rna.albany.edu/). For MP-like proteins, multiple alignments of protein sequences 

and structures were performed using PROMALS3D 

(http://prodata.swmed.edu/promals3d/promals3d.php) (Pei et al., 2008). 

 

4.6.  Phylogenetic analyses 

For phylogenetic reconstruction, maximum-likelihood (ML) tree construction was carried out 

according to a method as described previously (Kondo et al., 2019; Kondo et al., 2017). Multiple 

amino acid alignments were obtained by using MAFFT (Multiple Alignment using Fast Fourier 

Transform) verson 7 (Katoh and Standley, 2013) and refined using Gblocks 0.91b (Talavera and 

Castresana, 2007) with the stringency levels lowered for all parameters. ML phylogenetic trees 

were then generated using PhyML 3.0 (Guindon et al., 2010) with automatic model selection by 

Smart Model Selection (SMS) (http://www.atgc-montpellier.fr/phyml-sms/). The neighbor 

joining (NJ) trees (Saitou and Nei, 1987) were constructed based on the amino acid alignments 

using MAFFT. The phylogenetic trees (mid-point rooted) were visualized and refined using 

FigTree version 1.3.1 software (http://tree.bio.ed.ac.uk/software/). 
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Table 1. BlastP results for Lentinula edodes negative-strand virus 1 (LeNSRV1) and Lentinula edodes negative-strand 
virus 2 (LeNSRV2) proteins 

Query: LeNSRV1 L protein**                   
Lentinula edodes helical virus   RdRp 23% 0.0 99.6% AGH07920 
Hubei rhabdo-like virus 4   RdRp 90% 0.0 29.9%
 YP_009336595 
Golovinomyces cichoracearum EVE1***   RdRp 58% 0.0 35.1% RKF58740 
Kiln Barn virus   HP* 51% 0.0 38.4% AWA82236 
Sclerotinia sclerotiorum negative-stranded RNA virus 1 L 61% 2e-139 29.3% YP_009094317 
Sclerotinia sclerotiorum negative-stranded RNA virus 3 RdRp 59% 4e-139 30.2% YP_009129259 
Soybean leaf-associated negative-stranded RNA virus 4 RdRp 54% 1e-137 31.4% ALM62229 
Query: LeNSRV1 ORF2 protein              
Golovinomyces cichoracearum EVE2   HP_GcM1 66% 3e-14 25.2% RKF63845  
Hubei rhabdo-like virus 4    HP2 63% 4e-13 27.7%
 YP_009336594 
Golovinomyces cichoracearum EVE3   HP_GcM3 19% 1e-05 38.2% RKF77081 
 
Query: LeNSRV2 L protein (RNA1) **              
citrus concave gum-associated virus   RdRp 79% 0.0 32.2% AXR98526 
watermelon crinkle leaf-associated virus 1   RdRp 77% 0.0 31.8% ASY01340 
watermelon crinkle leaf-associated virus 2   RdRp 78% 0.0 31.7% ASY01343 
citrus virus A   RdRp 77% 0.0 31.8% AYN78568 
Laurel Lake virus   RdRp 87% 0.0 29.5% ASU47549 
Entoleuca bunyavirus 1   replicase 76% 0.0 29.3% AVD68666 
severe fever with thrombocytopenia virus   RNA pol. 73% 4e-101 24.7% ATW62994 
Query: LeNSRV2 MP-like protein (RNA2, 2a protein)                  
citrus concave gum-associated virus   p46 53% 8e-17 23.5% AXR98528 
citrus virus A   MP* 58% 2e-15 23.1% AYN78569 
Laurel Lake virus   P2 47% 2e-12 28.4% AUW34409 
watermelon crinkle leaf-associated virus2   MP 55% 1e-06 21.8% ASY0134 
Query: LeNSRV2 nucleocapsid-like protein (RNA2, 2b protein) **                 
Laurel Lake virus   NP* 63% 1e-16 25.7% ASU47550 
citrus concave gum-associated virus.   NP 52% 1e-11 27.3% AXR98527 
apple rubbery wood virus 1   CP* 65% 4e-08 29.6% AWC67524 
Tacheng tick virus 2   NP 43% 2e-07 30.5% AJG39316 
apple rubbery wood virus 2   CP  56% 1e-05 27.1% AWC67532 
Kismayo virus   NP 46% 2e-05 26.0% AIU95035 
Changping tick virus 1   NP 47% 4e-05 27.4% AJG39302 

 

Query/Virus or virus-like sequence name    protein   QC*  E-value   Identity   Accession 

*: Query cover; HP: hypothetical protein; NP: nucleocapsid protein; CP: capsid protein; MP: putative movement protein. 
**: selected top seven hits.  
***: Golovinomyces cichoracearum WGS sequences, putative endogenous viral elements (EVEs). 



 

 

 

 

Fig. 1. The presence of fungal viruses in shiitake (Lentinula edodes) strains. (A) shiitake fruiting 
bodies that grow on hardwood logs (HG3 strain) in Hyogo and some other commercially available 
strains that are grown on artificial sawdust media (mushroom bed) in Okayama (OK1 and OK2, 
two different suppliers) and Nagasaki (NS) prefectures. (B) RT-PCR detection of a putative 
mymonavirus and LeV-HKB using total RNA preparations from shiitake fruiting bodies. **: 
asterisks show non-specific amplification products; 1kb: DNA size marker (GeneRuler 1 kb DNA 
ladder, Thermo Fisher Scientific., Inc., Waltham, MA, USA). (C) Colony morphology of shiitake 
strain HG3. The isolate was grown on PDA for three weeks and photographed. (D) RT-PCR and 
genomic PCR detection of the fungal virus-like sequences (see Table 1) in the total RNA or DNA 
samples derived from the HG3 strain. DNA was stained with ethidium bromide. Primer sets used 
for RT-PCR (B and D) are listed in Table S1. The quality of DNA used for genomic PCR was 
validated by amplification of ITS region using a primer set (ITS1 and ITS4) (data not shown).



 

 

 

 

 
Fig. 2. Genome organization and phylogeny of a novel mononegavirus from the shiitake strain 
HG3. (A) Read depth coverage across the novel mononega virus-assembled contig (no. 585, 
11568 nt) (B) Schematic representation of the genomic organization of Lentinula edodes 
negative-strand RNA virus 1-HG3 (LeNSRV1-HG3) and three related mymona- or mymona-like 
viruses, Hubei rhabdo-like virus 4 (HbRLV4, derived from an arthropod mix, accession number 
NC_032783), Sclerotinia sclerotiorum negative-stranded RNA virus 1 and 2 (SsNRV1 and 2, 



 

 

KJ186782 and KP900931, respectively) and Fusarium graminearum negative-stranded RNA 
virus 1 (FgNSRV-1, MF276904). (v) and (vc) are indicate genomic and anti-genomic RNAs, 
respectively. The triangles in the genomic RNA and the boxes in the anti-genomic RNA show 
putative gene junctions and open reading frames (ORFs), respectively. The putative conserved 
domains for RNA-dependent RNA polymerase (RdRp) and mRNA capping are indicated below 
the ORF. Genome organizations of mymona- or mymona-like viruses are shown with the anti-
genomic RNA strands. (C) Complementarity between the 3′- and 5′-terminal sequences of 
LeNSRV1 genomic RNA (3′–5′, negative). Vertical lines between the sequences indicate 
complementary nucleotides. (D) Comparison of putative gene-junctions between ORFs in the 
LeNSRV1 genome. Alignment of the putative junction sequences are shown in the 3′-to-5′ 
orientation. Conserved sequences are highlighted. (E) Consensus sequences of gene junction 
regions in mymonaviral genomes. The gene junction sequences compared here are derived from 
other mymona- or mymona-like viruses, whereas some junction sequences are not well conserved. 
Arrows indicate the conserved G residue following A/U-rich tracks, which is commonly found in 
the gene-junction of other mononegaviruses. W: A or U; S: C or G (the IUB code). 



 

 

 
 
Fig. 3. Phylogenetic relationships of LeNSRV1 and related mymona- or mymona-like viruses 
from fungi and animals (mainly metatranscriptome of arthropod samples). (A) The maximum-
likelihood (ML) tree was constructed using a multiple amino acid sequence alignment of entire L 
polymerases. The results of this multiple alignment together with that of subsequent analyses for 
other viral proteins, are available upon request. L proteins from unclassified mymona- or 
mymona-like viruses, mymonavirus-like transcriptome shotgun assemblies (TSAs), and a 



 

 

putative endogenous virus element (EVE) derived from the powdery mildew fungus 
(Golovinomyces cichoracearum) are also included in this analysis. (B) The neighbor joining (NJ) 
tree was constructed using a multiple amino acid sequence alignment of nucleocapsid (N) or N-
like proteins encodedby each ORF2 in the virus genomes. The putative G. cichoracearum EVEs 
are also included. Virus names are followed by GenBank accession numbers (see Table S2 for 
the virus names in the collapsed triangles). Three sister clades within the family Mymonaviridae 
are indicated (clades I–III). The scale bar represents amino acid distances. The numbers at the 
nodes are bootstrap values of > 90%. 
 



 

 

 

 
Fig. 4. Genome organization and phylogeny of a novel (–)ssRNA virus with a potential segmented 
genome from the shiitake strain HG3. (A) Read depth coverage across the novel (–)ssRNA-
assembled contigs (nos. 296 and 1574, 17085 nt and 2779 nt, respectively). The arrows show a 
miss-assembly site in contig no. 296 (the actual genome sequence was verified by cDNA 
sequencing) and the region in the contig no. 1574 where the read coverage is significantly low, 
respectively. (B) Schematic representation of the putative genomic organization of Lentinula 
edodes negative-strand RNA virus 2-HG3 (LeNSRV2-HG3) and two plant phenui-like viruses, 
citrus concave gum-associated virus (CCGaV, accession numbers RNA1 and 2: KX960112 and 
KX960111, respectively) and watermelon crinkle leaf-associated virus 1 (WCLaV-1, RNA1–3: 
KY781184–6). Also a tick-associated phenui-like virus, Laurel Lake virus (LLV, RNA1–3: 
KX774630, MG256515 and KX774631). (v) and (vc) indicate genomic and anti-genomic RNAs, 
respectively. The putative RNA2 segment of LeNSRV2 and CCGaV shows potential ambisense 
coding strategy. The putative conserved domains or sequences for RdRp and tenuiviral 



 

 

nucleocapsid protein (Tenui_N) are indicated below the LeNSRV2 ORFs. Stem loops in the 
intergenic region of both RNA2 strands of LeNSRV2 and CCGaV (see also Fig. S4) and 3′-
terminal long A-rich sequences (vc strand of WCLaV-1) are indicated by the small filled- and 
open-boxes, respectively. (C) Comparison of LeNSRV2 genomic RNA termini with those of 
CCGaV, LLV, and severe fever with thrombocytopenia syndrome virus (a banyangvirus, in the 
family Phenuiviridae). (D) Complementary structure between the 3′ and 5′ termini in the putative 
LeNSRV2 genome. 
 



 

 

 
 
Fig. 5. Phylogenetic relationships of LeNSRV2 and related phenui- or phenui-like (–)ssRNA 
viruses from fungi, plants, and animals. (A) The ML tree was constructed by using a multiple 
amino acid sequence alignment of the entire sequence of L polymerases. L proteins from 
representative members of 10 genus in the family Phenuiviridae, coguviruses, rubodviruses, LLV 
and recent reported selected phenui-like viruses from invertebrates and fungi are included in this 



 

 

analysis. Phenuivirus-related viruses (family Leishbuviridae) derived from the invertebrates and 
unicellular eukaryotes (Leptomonas moramango and Phytomonas sp. in the family 
Trypanosomatidae) are also included. (B) NJ phylogenetic trees were constructed using MAFFT 
version 7 based on the multiple amino acid sequence alignment of the potential nucleoproteins 
(NC) (left side tree) and putative movement protein (MP)-like or p2 (unknown faction) proteins 
(right side tree). Virus names are followed by GenBank accession numbers (see Table S2 for the 
virus names in the collapsed triangle). The scale bar represents amino acid distances. The numbers 
at the nodes are bootstrap values of > 90%.  
 
 



 

 

Supplementary Material 

Table S1. Primer list  

Lentinula edodes mycovirus HKB (LeV-HKB)              
LeV-HKB F GCTTCACGGAGAGTGAGTACACCCG  RT-PCR for ORF2  Fig. 1B 
LeV-HKB R CTAAATGGTCAGCCCTCTGTTTGCG  RT-PCR for ORF2  Fig. 1B  
HG3_LeV-HKB-F TGTTGTATAAGACAGGCGGTGTGGG RT-PCR for ORF2  Fig. 1D 
HG3_LeV-HKB-R  GGGTATATCTCAGCAAGCCTATGC RT-PCR for ORF2  Fig. 1D 

Lentinula edodes partitivirus 1 (LePV)               
HG3_LePVRd-F AGCCTTTGACGATGTATCCGACTAC  RT-PCR for RNA1  Fig. 1D  
HG3_LePVRd-R GGGTTATGATTGCGAGAGGCATT  RT-PCR for RNA1  Fig. 1D 
HG3_LePVCP-F ACTACCCGTATGGTCTCCATACCGG  RT-PCR for RNA2  Fig. 1D  
HG3_LePVCP-R CAAATGGTGAAAAAGCATTCGCT  RT-PCR for RNA2  Fig. 1D  

Lentinula edodes negative-strand RNA virus 1 (LeNSRV1)             
mymona like F1 AACCATGACCTGAAGCCAGAGGAGTG  RT-PCR for ORF7  Fig. 1B 
mymona like F3 GCTCACTGGACAAGGTGATAACGTTA  RT-PCR for ORF7  Fig. 1B 
mymona like R4 CCCACTCTGTCAGACGGGGACACAGGC  RT-PCR for ORF7  Fig. 1B 
mymona like R5 AGACTGAGTTTCCTAAGAGCTGAGGC  RT-PCR for ORF7   Fig. 1B 
HG3_c585_8111F CGAGACATCCTCGCGGCTGTAGAGG RT-PCR for ORF7  Fig. 1D 
HG3_c585_8487R CCGAGGTTACCAGCTCCGATTGTC RT-PCR for ORF7  Fig. 1D 
HG3_c585_Ra-F1 GGGGCGGATCAGCCGCTGGAAGCAC 3’-RLM-RACE for vRNA1  Fig. S3 
HG3_c585_Ra-F2 GTTGAATCCCTCATTGAACACACGC 3’-RLM-RACE for vRNA1  Fig. S3 
HG3_c585_Fa-F1 CGGAGTGTCAGTCTCAACCTCCGTC  3’-RLM-RACE for vcRNA1  Fig. S3 
HG3_c585_Fa-F2 CAGAGCAGACTGTCGAGCTGCGACG 3’-RLM-RACE for vcRNA1  Fig. S3 

Lentinula edodes negative-strand RNA virus 2 (LeNSRV2)             
HG3_c296_3396F AAGTATGGGGTAGTGATGATAGTGG  RT-PCR for RNA1 ORF1 Fig. 1D 
HG3_c296_3723R GAGGCTCCACCTTCCAATGTCTGAG  RT-PCR for RNA1 ORF1  Fig. 1D 
HG3_c296_Ra-R1 GAGTCAATGGGCAGTTACTGAGTAC 3’-RLM-RACE for vRNA1  Fig. S3 
HG3_c296_Ra-R2 GATAAGGGGACATCTGTCTCGTCAC 3’-RLM-RACE for vRNA1  Fig. S3 
HG3_c296_Ra-F1 TGCAGCACTAACCCAGTTCTGTAGG 3’-RLM-RACE for vcRNA1  Fig. S3 
HG3_c296_Ra-F 2 TCTTATCTGGATTCCTTACCTTCTC 3’-RLM-RACE for vcRNA1  Fig. S3 
HG3_c1574_842F GGCAAGCAGCCCTCTTCAATCTCGG  RT-PCR for RNA2 ORF2b, set 1  Fig. 1D 
HG3_c1574_1159R CTCGGCTGACCAGGCATGGATG  RT-PCR for RNA2 ORF2b, set 1  Fig. 1D 
HG3_c1574_2363F GAAGTGCAAGTCTTTCTTCTGGAGA  RT-PCR for RNA2 ORF2a, set 2  Fig. 1D 
HG3_c1574_2682R AAGCCGTTGAGAGAGAAGAAGCTCC  RT-PCR for RNA2 ORF2a, set 2  Fig. 1D 
HG3_c1574_Ra-R1 CCTAGGCAGTGTTACAGCCAACCTC 3’-RLM-RACE for vRNA1  Fig. S3 
HG3_c1574_Ra-R2 TACTGAGGCCATCCTATGTTTCCTGC 3’-RLM-RACE for vRNA1  Fig. S3 
HG3_c1574_Ra-F1 TTGACCTTACCAGGCTCTCTTCCAC 3’-RLM-RACE for vcRNA2  Fig. S3 
HG3_c1574_Ra-F2 CAAATCATAACTCCTAACAGATGCC 3’-RLM-RACE for vcRNA2  Fig. S3 

3’RNA ligase mediated amplification of cDNA ends  
3RACE-adaptor (PO4)-CAATACCTTCTGACCATGCAGTGACAGTCAGCATG 
3RACE-1st  CATGCTGACTGTCACTGCAT 
3RACE-2nd  TGCATGGTCAGAAGGTATTG 

Primer name sequence (5’ to 3’)   usage 

 



 

 

Table S2. List of virus and accession numbers of the L-polymerase compared in Figs 3 and 5 (shown as 
rectangles). 

Fig. 3 rectangles 
Order Mononegavirales  

Family Nyamiviridae 
Nyavirus   Nyamanini virus   YP_002905337  Fig. 3A 
Socyvirus  soybean cyst nematode virus 1  AEF56729  Fig. 3A 
Berhavirus Beihai rhabdo-like virus 3   KX884408  Fig. 3A 
Orivirus Orinoco virus   KX257488        Fig. 3A 
Crustavirus Wenzhou crab virus 1  AJG39154  Fig. 3A 
Tapwovirus Wenzhou tapeworm virus 1   KX884436 Fig. 3A 

 
Family Bornavirida 
Bornavirus  Borna disease virus 1  NP_042024 Fig. 3A 

 
Family Lispiviridae 
Arlivirus  Lishi spider virus 2   AJG39111 Fig. 3A 
 Sanxia water strider virus 4  AJG39115  Fig. 3A 
  Tacheng tick virus 6 AJG39142  Fig. 3A 

 
Fig. 5 rectangle 
Order Bunyavirales  

Family Phenuiviridae 
Goukovirus  Gouleako virus   AEJ38175  Fig. 5A 
Phasivirus Badu virus  AMA19446  Fig. 5A 
Phlebovirus Rift Valley fever virus   YP_003848704  Fig. 5A 
Tenuivirus  rice stripe virus   NP_620522  Fig. 5A 
Beidivirus Hubei diptera virus 3   APG79285  Fig. 5A 
Horwuvirus Wuhan horsefly virus  AJG39260  Fig. 5A 
Hudivirus Hubei diptera virus 4   APG79298  Fig. 5A 
Hudovirus Hubei lepidoptera virus 1   APG79261  Fig. 5A 
Pidchovirus Pidgey virus   KX852391  Fig. 5A 
Wubeivirus Wuhan fly Virus 1   AJG39259  Fig. 5A 

 
 

Taxa/  Virus name    Genbank/ Ref seq. 
Genus       accession 

 



 

 

 
 

Fig. S1. The RLM-RACE (RNA ligase-mediated RACE) analyses of two novel fungal (–)ssRNA 
viruses from the shiitake strain HG3. Agarose gel electrophoresis of 3´ RLM-RACE products 
derived from Lentinula edodes negative-strand RNA virus 1 (LeNSRV1-HG3) and Lentinula 
edodes negative-strand RNA virus 2 (LeNSRV2-HG3) RNA segments was performed. The 3′ 
terminal sequences of each viral RNA segments were determined by direct sequencing of the 3′ 
RLM-RACE amplification products.  
 



 

 

 

 
Fig. S2. Pairwise comparison of viral proteins encoded by LeNSRV1-HG3 and LeNSRV2-HG3. 
Each color represents the relative pairwise amino acid identities (%) between corresponding viral 
proteins, calculated using SDT version 1.2 (Muhire et al., 2014). 
 



 

 

 
 
Fig. S3. Schematic representation of mymonavirus-like endogenous viral elements (EVEs) and 
their flanking regions. EpMLLSs found in the Golovinomyces cichoracearum genomic DNAs. 
Top row for each genomic sequence shows a diagrammatic representation of the potential coding 
regions of G. cichoracearum EVEs and flanking genes/ORFs, indicated as boxes with red and 
yellow color, respectively. Bottom row shows potential transposable element sequences predicted 
using Censor (https://www.girinst.org/censor/index.php). 
 



 

 

 

Fig. S4. Multiple alignment of the local sequences (putative endonuclease domain) of L-
polymerase of LeNSRV2 and the recently discovered bipartite or tripartite phenui-like viruses 
associated with ticks and plants. The alignment was generated using MAFFT version 7 (Katoh 
and Standley, 2013) (http://mafft.cbrc.jp/alignment/server/), and conserved residues are shown in 
bold and highlighted. 
 



 

 

 
 
Fig. S5. Predicted stem loop in the intergenic region of the RNA2 positive strand of LeNSRV2, 
showing with a red box in the Fig 4B. 
 



 

 

 
 
Fig. S6. Multiple alignment of the center region of movement proteins (MP, members of the 30K 
superfamily) from ophioviruses and MP-like-proteins from LeNSRV2 and its related phenui-like 
viruses. Virus names are followed by GenBank accession numbers. Each sequence is colored 
according to PSIPRED (Jones, D.T., 1999. Protein secondary structure prediction based on 
position-specific scoring matrices. Journal of Molecular Biology 292, 195-202) secondary 
structure predictions (red: alpha-helix, blue: beta-strand) within the PROMALS3D program. 
Consensus predicted secondary structure are indicated at the top with symbols, h (alpha-helix) 
and e (beta-strand), respectively. The highly conserved aspartic acid (D) is presented in an 
adjacent part of the number 3 beta-strand. Abbreviations for ophioviruses: CPsV, citrus psorosis 
virus; lettuce ring necrosis virus, LeRNV; blueberry mosaic associated virus, BlMaV; Mirafiori 
lettuce big-vein virus, MiLBVV. 
 
 


