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We propose the concept of atom-mediated spontaneous
parametric down-conversion (SPDC), where photon-
pair generation can only take place in the presence of
a single 2-level emitter, relying on the bandgap evanes-
cent modes of a nonlinear periodic waveguide. Using a
guided signal mode, an evanescent idler mode, and an
atom-like emitter with idler’s transition frequency em-
bedded in the structure, we find a heralded excitation
mechanism, where the detection of a signal photon out-
side the structure heralds the excitation of the embed-
ded emitter. We use a rigorous Green’s function quan-
tization method to model this heralding mechanism in
a 1D periodic waveguide and determine its robustness
against losses. © 2017 Optical Society of America
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Photonic crystals (PCs) are structures with a periodically varying
permittivity. They offer strong control of light-matter interac-
tions on the subwavelength scale [1] and are a valuable resource
in integrated and large-scale implementations of quantum opti-
cal technologies [2]. The dispersion properties of Bloch modes
in nonlinear PCs can be designed to enhance [3] and engineer
[4] sources of photon-pairs. Furthermore, PCs enable engineer-
ing of the emission and interaction of single-emitters, e.g. cold
atoms [5–7] or solid-state emitters [8–11].

In most applications with an emitter, PCs are used to alter
the density of states (DOS), and thereby enhance or inhibit the
emission [9]. However, when the emitter’s transition frequency
is within the bandgap of the PC, where evanescent modes have
zero DOS [12], it is the emitter that alters the PC, making the
DOS non-zero by adding a free state to the system. Such a state
is referred to as an atom-photon bound state [13] or an atom-
induced cavity [6], which allows engineering of atom-atom and
atom-photon interactions [6, 7].

In this Letter, we suggest new possibilities in tailoring quan-
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Fig. 1. Schematic of atom-mediated SPDC.

tum light-matter interactions through a combination of nonlin-
ear parametric processes and atom-induced states. Specifically,
we consider SPDC, a process widely used to generate photon-
pairs for quantum optical applications [14], in which a pump
photon splits into a pair of entangled lower frequency photons,
called signal and idler. SPDC sources can produce photon-pairs
of widely tunable frequencies and degrees of entanglement [15],
although multi-pair emission limits their purity [16]. We find
that a single emitter placed in a nonlinear PC can mediate SPDC,
where parametric generation of one photon becomes conditional
on the absorption of a paired photon by the emitter, while simul-
taneous generation of extra pairs gets suppressed.

To investigate atom-mediated SPDC, we consider a simplified
model: an infinite 1D periodic dielectric stack, shown in Fig. 1,
where the χ(2) nonlinearity only exists within 0 < x < L, x being
the propagation direction along the periodicity of the structure.
The phase-matching condition is set to be satisfied between a
propagating pump, a propagating signal, and a bandgap idler
mode. We show that the zero DOS of the evanescent idler mode
completely prohibits SPDC, yet it can be mediated by a single
2-level emitter with the idler’s transition frequency, placed near
or inside the nonlinear region, providing a single state for the
idler’s quantum of excitation. Then, the detection of a signal
photon would herald the emitter’s excitation.

We aim to describe SPDC involving evanescent modes and
also account for possible losses. Since under such conditions
the modes are non-power-orthogonal, one cannot expand the
state of the system into photons as quanta of energy associated
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to a certain mode [17]. Consequently, throughout this work,
we use the term "photon" loosely, to refer to quanta of local
excitation in the medium-assisted field with the local bosonic an-
nihilation operator f̂ (r, ω), satisfying the commutation relation
[ f̂ (r, ω), f̂ †(r′, ω′)] = δ(r− r′)δ(ω−ω′) [18]. To simplify nota-
tions, we assume that the only non-zero element of the quadratic

nonlinear tensor is χ
(2)
zzz = χ(2) and the dipole moments for the

atoms are oriented along z. Consequently, in the 1D system
only the z-components of vectors participate in the interactions,
creating a scalar scenario. We note that our approach can also
account for vectorial effects if required.

We use a recently developed theoretical framework for
analysing SPDC in the presence of 2-level emitters [19] based
on the Green’s function (GF) quantization method [18], that
is capable of taking into account evanescent modes of the sys-
tem. To investigate SPDC with and without the mediation of
the idler atom, we formally introduce a signal atom to model
a single-photon detector. Then, we compare two quantities:
Pis(rs, ri, ωs, ωi) the probability of two atoms of transition fre-
quencies ωs and ωi (we refer to them as signal and idler atoms)
placed at rs and ri both being excited through SPDC with no
excitation remaining in the medium-assisted field, and Ps(rs, ωs)
the probability of the signal atom at position rs being excited
through SPDC with the idler photon remaining in the field and
not being absorbed by the idler atom.

The probability Ps =
∫

d3ri
∫ ∞

0 dωi| 〈 f |V(2)|i〉 |2, account-
ing for all the spatial and spectral possibilities for the gener-
ated idler photon, is calculated using second-order perturba-
tion theory. Here V(2) = (−i

h̄ )2 ∫ +∞
−∞ dt1

∫ t1
−∞ dt2Ĥint(t1)Ĥint(t2),

with interaction Hamiltonian Ĥint = ĤNL + Ĥs, initial vac-
uum state |i〉 = |0〉, and final state | f 〉 = f̂ †(ri, ωi)â†

s |0〉.
The probability Pis = | 〈 f |V(3)|i〉 |2 is calculated us-
ing the third-order perturbation theory, where V(3) =

(−i
h̄ )3 ∫ +∞

−∞ dt1
∫ t1
−∞ dt2

∫ t2
−∞ dt3Ĥint(t1)Ĥint(t2)Ĥint(t3), Ĥint =

ĤNL + Ĥi + Ĥs, |i〉 = |0〉, and | f 〉 = â†
i â†

s |0〉. ĤNL(t) ∝
ε0
∫

d3rχ(2)(r)Ep(r, t)Ê(r, t)Ê(r, t) is the semi-classical nonlin-
ear Hamiltonian for the pair generation process in the in-
teraction picture. The classical pump pulse Ep(r, t) =∫ +∞
−∞ dωpEp(r, ωp)e−iωpt is treated in the undepleted pump ap-

proximation assuming a weak interaction. The electric field oper-
ator in the interaction picture is Ê(r, t) =

∫ +∞
0 dωÊ(r, ω)e−iωt +

H.c., with Ê(r, ω) = i
√

h̄
πε0

ω2

c2

∫
d3s
√

ε′′(s, ω)G(r, s, ω) f̂ (s, ω).

Here, ε′′ is the imaginary part of the relative permittivity of the
material and G is the Green’s function satisfying [(∇×∇×)−
ω2

c2 ε(r)]G(r, r′, ω) = δ(r − r′). Ĥi,s(t) = −(âi,sdi,se−iωi,st +

â†
i,sd∗i,seiωi,st)Ê(ri,s, t) are the dipole interaction Hamiltonians,

where a†
i,s are the atoms’ raising operators and di,s are the

dipole moments. The calculation, making use of the GF identity
Im [G(r, r′, ω)] = ω2

c2

∫
d3sε′′(s, ω)G(r, s, ω)G∗(r′, s, ω), results

in:

Ps ∝
∣∣∣ 16πd2

s
h̄ε0

∣∣∣ ω4
s

c4

∫ ∞
0 dωi

ω2
i

c2

∫
d3r
∫

d3r′Γ(r, ωp)Γ∗(r′, ωp)

×Im [G(r, r′, ωi)] G(rs, r, ωs)G∗(rs, r′, ωs), (1)

Pis ∝
∣∣∣ 4πdids

h̄ε0

∣∣∣2 ω4
s ω4

i
c8

∣∣∫ d3rΓ(r, ωp)G(ri, r, ωi)G(rs, r, ωs)
∣∣2 ,(2)

with ωp = ωi + ωs and Γ(r, ωp) ≡ χ(2)(r)Ep(r, ωp).
By comparing Pis and Ps, we can determine the effect of the

idler atom in the SPDC process, as in both cases the signal pho-
ton has been detected (absorbed by the signal atom), but in Ps
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Fig. 2. The absolute value and imaginary part of the dimen-
sionless Green’s function Gn(x, x′, ω), where maximum values
are taken over spatial coordinates x and x′, for ε′′ = 0.001 and
ε′′ = 0.0001. The gray shaded area is the bandgap region.

the idler photon remains in the field and in Pis it excites the
idler atom. We see from Eq. (1) that Ps is exactly zero with an
evanescent idler mode, as Im[G(r, r′, ωi)] = 0 when ωi is within
the bandgap of an infinitely extended periodic structure. This
means that SPDC with an idler photon remaining in the field of
a purely evanescent mode is completely prohibited, as a mode
with zero DOS is incapable of accepting a photon. On the other
hand, according to Eq. (2), Pis is dependent on the total GF and
henceforth is not zero, as the evanescent mode still has a purely
real-valued GF. In other words, the presence of the idler atom
provides a free state for the quantum of excitation to be gener-
ated into, exciting the idler atom and mediating the previously
prohibited SPDC process. An important implication is that in
the event of a signal photon detection, we know with certainty
that an idler atom has been present and excited through SPDC.
This creates a heralding mechanism, where the detection of the
signal photon heralds the excitation of the idler atom.

In a realistic structure however, we do not have purely evanes-
cent modes, as loss is ever present due to either material absorp-
tion or fabrication imperfections. To quantify the heralding
efficiency, we calculate the pair generation in the presence of the
imaginary part (ε′′) of the permittivities of the layers.

Our first step is to evaluate the GF. The GF expression for
a periodic structure can be found using the unconjugated reci-
procity theorem [20, 21], so that it can include all Bloch modes,
guided, evanescent, or lossy. The result is:

G(x, x′, ω) = [e+(x, ω)e−(x′, ω)eik+(ω)(x−x′)Θ(x− x′)

+e−(x, ω)e+(x′, ω)eik+(ω)(x′−x)Θ(x′ − x)]

× iac
2ω

n+
g (ω)

S
∫ a

0 dx ε(x) e+(x)e−(x)
≡ a
S Gn(x, x′, ω), (3)

where we assumed a single mode present at each frequency, with
e(x) = e(x + a) being the Bloch mode profile, k(ω) the wave-
vector, and ng ≡ c/vg the complex group-index [20] of that
Bloch mode. Θ(x) is the Heaviside function. S is a transverse
normalization area in the yz-plane and Gn is a dimensionless
GF normalized to S . The + and − indices refer to forward and
backward propagating modes, respectively.

We analytically find [22] the band diagram and the electric-
field profiles for the 1D structure of Fig. 1 with parameters ε1 =
3 + iε′′, ε2 = 12 + iε′′, and d1 = d2 = 0.5a, which we use to
numerically construct Gn(x, x′, ω) for different values of ε′′. To
visualize the main physics in the GF, we take the maximum of
both the absolute value and the imaginary part of Gn(x, x′), and
plot them in Fig. 2 as a function of ω. We see that Im[G] is much
smaller for the evanescent modes in the bandgap region, but
it is non-zero due to the presence of a finite ε′′. Furthermore,
we see that Im[G] in the bandgap decreases with decreasing ε′′.
G(x, x′) becomes purely real-valued for a bandgap mode in the
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Fig. 3. The normalized pair-generation probabilities with the
idler photon (a,c) absorbed by the idler atom at position xi,
Wis(xs = 55a, xi), and (b,d) not absorbed by the idler atom,
Ws(xs). Parameters are (a,b) ωs = ωi = 0.15 (both propagat-
ing) and (c,d) ωi = 0.16 (evanescent) and ωs = 0.15 (propa-
gating). Plots in (a-d) are averaged over every unit cell, and
(e) shows the non-averaged (a) near the edge of the nonlinear
region. χ(2) 6= 0 for 0 < x < 50a. Blue solid and red dashed
curves correspond to ε′′ = 10−4 and ε′′ = 10−3, respectively.

lossless structure. Finally, we see that abs[G] is of comparable
magnitudes for guided and evanescent modes, except for the
slow modes at the bandedge.

To proceed with the numerical analysis, we assume that for
ωp = ωs + ωi, the phase-matching condition kp = Re[ks + ki] is
satisfied. Such modal phase-matchings for a three-wave-mixing
process can be reached for realistic photonic crystal designs
[23, 24]. Then, we consider only the phase-matched pump spa-
tial harmonic as Ep(r, ωp) = Ep(ωp)eikp(ωp)x. We assume a
constant nonlinearity profile χ(2)(r) = χ(2). We then define the
normalized pair-generation probabilities Wis and Ws, that are in-
dependent of the strength of the nonlinearity, the pump pulse’s
spectrum, and the atomic-dipole moments, and only include the
physics associated with the photonic band gap:

Pis ∝
∣∣∣∣ didsχ(2)Ep(ωi+ωs)

aS h̄ε0

∣∣∣∣2 Wis(ωi, ωs, xi, xs), (4)

Wis ≡ 16π2 a8ω4
s ω4

i
c8

∣∣∣∫ dx
a eikp xGn(xi, x, ωi)Gn(xs, x, ωs)

∣∣∣2 , (5)

Ps ∝
∣∣∣ d2

s
aS h̄ε0

∣∣∣ ∫ ∞
0 dωi

∣∣∣χ(2)Ep(ωi + ωs)
∣∣∣2 Ws(ωi, ωs, xs), (6)

Ws ≡ 16π
a6ω4

s ω2
i

c6

∫ dx
a
∫ dx′

a eikp(x−x′)

×Im [Gn(x, x′, ωi)] Gn(xs, x, ωs)G∗n(xs, x′, ωs). (7)

We use the numerically evaluated Gn(x, x′) in Eqs. (5) and (7)
to evaluate these normalized pair-generation probabilities. The
results are plotted in Fig. 3 as a function of the position of the
atoms, xi and xs. Plots (a-d) are averaged over every unit cell to
give better visibility to slower variations. A non-averaged plot is
shown in Fig. 3(e) as a sample, displaying periodic variations. To
focus on the xi functionality in plotting Wis, we fixed xs = 55a
to outside of the nonlinear region, as the detection probability of
the guided signal photon only decays slowly further away from
the nonlinear region. In Figs. 3(a) and (b) we consider the case
where both signal and idler are guided modes. The probability
of an idler photon to be absorbed by an atom, Wis, shows a
quadratic rise as a function of xi, similar to the quadratically
rising intensity of a guided mode that is pumped with a lossless
and phase-matched source of nonlinear polarization [22]. The
probability of the idler photon to be generated but not absorbed

W
is

/ 
W

s

(a) (c)(b)
''=1e 5 ''=1e 4 ''=1e 3

0

0.5

1

Fig. 4. (a) Wis/Ws for three different values of ε′′. We fix ωs =
0.15 and vary ωi. The solid squares mark where each plot
passes the bandedge. The gray shaded area is the bandgap
region. (b) The heralding efficiency H for idler-atom’s vacuum
absorption probability Pabs = 0.01. (c) H for ωi = 0.16 (evanes-
cent) and ωs = 0.15 (guided) as a function of ε′′ and Pabs. For
all plots L = 50a, xs = 50a and xi = 25a.

by an atom, Ws, shows the same behavior as Wis, which means
that having the photon of a guided mode absorbed by the atom
or remaining in the field does not qualitatively affect the SPDC
process, as G and Im[G] are comparable for a guided mode, as
shown in Fig. 2. The small periodic modulations of the graphs
are due to the out-of-phase backward process. The considered
losses have negligible effect on the process on this length scale.

In Figs. 3(c) and (d), the idler mode is evanescent and the
signal mode is guided. Wis increases from both ends of the
nonlinear region inwards, and saturates after about twice the
decay length of the evanescent mode. The saturation causes the
overall SPDC efficiency to be much smaller compared to the case
of both guided modes, as can be seen by comparing the numbers
to Figs. 3(a) and (b). Importantly, we see that Ws is now much
smaller than Wis, due to the effect of the evanescent mode, but it
is not exactly zero due to the presence of the finite loss. We see
that for an order of magnitude larger ε′′, Ws also increases by
an order of magnitude, clearly showing how loss can degrade
our heralding mechanism. Finally, Wis is bound to the region
inside and near χ(2) 6= 0, because the evanescent field can not
propagate beyond the generation region. So the idler atom can
only be excited near χ(2) 6= 0 regions, whereas the generated
guided signal photon can escape the nonlinear structure.

For the final stage of our analysis, we define the heralding
efficiency H ≡ Pis/(Pis + Ps), which is the probability of the
idler atom’s excitation, in the event of a signal photon’s detection.
With a purely evanescent idler mode Ps = 0 and H = 1, and
with loss Ps 6= 0 and H < 1. Assuming a narrow rectangular
spectrum for the pump, centered at ωs + ωi with bandwidth
∆ωp, over which the GF does not change considerably, we can
put

∫ ∞
0 dωi ≈ ∆ωi = ∆ωp, where ∆ωi is the bandwidth of the

generated idler photon remaining in the field. Hence we get:

H = Pis/(Pis + Ps) ≈ 1/(1 + 2π2a/λi
Pabs

Ws
Wis

), (8)

where Pabs = 2π2 |di|2 /(h̄ε0∆ωiλiS) � 1 is the probability of
the idler atom in vacuum (in 1D) absorbing a single photon
wave-packet of central wavelength λi and with a rectangular
spectrum of bandwidth ∆ωi, which is straightforward to calcu-
late using the first-order perturbation theory [18].

As can be seen in Eq. (8), the Wis/Ws ratio plays a key role in
determining the heralding efficiency and is plotted in Fig. 4(a) for
three different values of loss. Here we fixed the signal frequency
to a guided mode, and varied the idler frequency. The ratio
Wis/Ws is much larger in the bandgap region, showing the effect
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of an evanescent idler mode in prohibiting Ws. This effect gets
even stronger for smaller losses. We plot H in Fig. 4(b) for a
particular value of Pabs = 0.01. We see that H is much closer to
1 in the bandgap region compared to the in-band region, and
gets even closer to 1 for smaller losses. We also plot H for a
fixed frequency pair of a guided signal and an evanescent idler
as a function of Pabs and ε′′ in Fig. 4(c). We see that a smaller
Pabs, meaning either a shorter pump pulse in time or a weaker
dipole moment of the atom, lowers H, but this could always
be amended in a less lossy system. These results show the
robustness of this heralded excitation mechanism against loss.

In order to assess the practical feasibility of emitter-mediated
SPDC, we consider a PC waveguide (PCW) made of GaAs, a
material with χ(2) nonlinearity, which can be fabricated with a
layer of quantum dots (QDs) embedded in it [10]. The bandgap
region in GaAs PCWs is around a/λ ≈ 0.3, hence for covering a
QD’s central wavelength of λi = 940 nm, we need a periodicity
of a ≈ 280 nm. GaAs itself is transparent at 940 nm. However,
an equivalent ε′′ ≈ cε′/(ngωLdecay) [25] must be assigned to
the structure, where Ldecay is the scattering losses’ decay length
caused by fabrication imperfections. For Ldecay ≈ 1 cm [26],
we get ε′′(ωi) ≈ 10−4. We rewrite Pabs = 3λ2

i Γ0/(4S∆ωi
√

ε′),
where Γ0 = ω3

i |d|
2
√

ε′/(3πh̄ε0c3) is the spontaneous emission
rate of the emitter placed in bulk [8]. The cross-section S of such

PCWs is roughly around (λi/
√

ε′)2, giving us Pabs ≈ Γ0
√

ε′

∆ωi
. For

a QD with Γ0/2π = 0.1 GHz [10], using a pump bandwidth of
∆ωp/2π = 30 GHz gives us Pabs ≈ 0.01, which according to
Fig. 4(c) gives a heralding efficiency larger than 0.98. To get a
signal photon at the telecom wavelength of λs = 1550 nm, one
can use a pump central wavelength λp = 585 nm. This λp is
outside the transparency window of GaAs, resulting in a very
short decay length for the pump, but this could be solved using
a pump-from-above scheme [27]. Considering the remarkable
experimental advances made in interfacing PCs with emitters,
an implementation of this proposal is within reach.

Finally, it is clear from Fig. 3(d), where Ws rises almost lin-
early with the length L while Wis saturates after a short length,
that reducing L should increase Wis/Ws and result in H → 1.
However, a realistic structure is finite, causing a reflection of
evanescent modes from its ends, which creates DOS at those
ends that decay exponentially towards the inside of the struc-
ture [28]. Hence, L has to be still large enough so that the idler
atom can be placed inside the structure far enough from the ends
to not get affected by this created DOS. This means an optimum-
length exists in a practical design based on the amount of loss
[24] to maximize the heralding efficiency.

In summary, we showed analytically that SPDC involving
an evanescent idler mode is prohibited, but it can be mediated
by embedding a 2-level emitter near the nonlinear structure,
giving rise to a unique heralded excitation mechanism. In gen-
eral, interfacing matter-based and photonic qubits is of vital
importance for the implementation of quantum repeaters [29],
and we believe that atom-mediated SPDC can bring about new
possibilities for the engineering of such components, eventually
needed for constructing a quantum network [30]. Specifically, as
the 2-level emitter is only capable of accepting one quantum of
excitation, this hybrid source naturally suppresses multi-photon-
pair generation, a constant hurdle for heralded single photon
sources that creates a trade-off between the generation rate and
the fidelity of the heralded state [16]. Our proposal could offer a
path to lifting this fundamental trade-off. Finally, the increase
in the counts of the signal photon is a sign of the presence of an

idler atom near the nonlinear structure, and the close to 1 herald-
ing efficiency essentially means a low noise sensing, offering a
new scheme for nonlinear quantum spectroscopy [31].
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