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ABSTRACT 

Protein-protein and protein-peptide interactions play a central role in various 

aspects of the structural and functional organization of the cell. While the most complete 

structural characterization is provided by X-ray crystallography, many biological 

interactions occur in complexes that will not be amenable to direct experimental analysis. 

Therefore, it is important to develop computational docking methods that start from the 

structures of component proteins and predict the structure of their complexes, preferably 

with accuracy close to that provided by X-ray crystallography. This thesis details three 

applications of computational protein modeling, including the study of antibody 

maturation mechanisms, and the development of protocols for peptide-protein interaction 

prediction and template-based modeling of protein complexes.   

The first project, a comparative analysis of docking an antigen structure to 

antibodies across a lineage, reveals insights into antibody maturation mechanisms. A 

linear relationship between near-native docking results and changes in binding free 

energy is established, and used to investigate changes in binding affinity following 

mutation across two antibody-antigen systems: influenza and anthrax. The second project 

demonstrates that a motif-based search of available protein crystal structures is sufficient 
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to adequately represent the conformational space sampled by a flexible peptide, 

compared to that of a rigid globular protein.  This observation forms the basis for a global 

peptide-protein docking protocol that has since been implemented into the Structural 

Bioinformatics Laboratory’s docking web server, ClusPro. Finally, as structure 

availability remains a roadblock to many studies, researchers turn to homology modeling, 

in which the desired protein sequence is modeled onto a related structure. This is 

particularly challenging when the target is a protein complex, further restricting template 

availability. To address this problem, the third project details the development of a new 

template-based modeling protocol to be integrated into the ClusPro server. The 

implementation of a novel template-based search enables users to model both homomeric 

and heteromeric complexes, greatly expanding ClusPro server functionality.  
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1 INTRODUCTION 

1.1 Motivation 

  Protein-protein interactions (PPIs) are involved in a variety of signaling pathways 

critical for regulating cellular function. The study and characterization of these 

interactions is an important step in the understanding of many disease mechanisms. 

While the number of available structures determined through experimental methods such 

as X-ray crystallography is constantly growing, there are still complexes in which 

structural elucidation is not possible. Computational methods can prove insightful 

alternatives for these cases, and can also be used for more efficient screening of potential 

drug-candidates, via structure-based drug design (Halperin, Ma, Wolfson, & Nussinov, 

2002; Ritchie, 2008; G. R. Smith & Sternberg, 2002). For this reason, the development of 

docking methodologies capable of predicting protein complexes when structures are not 

available has immediate application to the drug discovery field. 

 In the last few decades, the use of antibodies and peptides as therapeutic agents 

has seen a dramatic rise in the pharmaceutical industry. The first antibody therapeutic 

was approved by the Food and Drug Administration (FDA) in 1986. Since then, 

improved research and production techniques have led to an increase in the number of 

antibody drugs approved each year (Awwad & Angkawinitwong, 2018). More recently, 

peptide therapeutics have seen a surge in popularity. Over 60 drugs have been FDA 

approved, with hundreds in clinical and pre-clinical trial phases (Erak, Bellmann-Sickert, 

Els-Heindl, & Beck-Sickinger, 2018). The growing therapeutic market for both peptide 

and antibody drugs establishes a strong need for structure-based computational methods 
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that supplement continued studies of these structures. Docking and modeling protocols 

capable of predicting protein-protein complexes, such as antibody-antigen interactions, 

and protein-peptide binding may prove advantageous tools for the future.   

  

1.2 Protein-Protein Docking 

The first computational protein-protein docking approaches emerged in the late 

1970s (Greer & Bush, 1978; Vakser, 2014; Wodak & Janin, 1978) and largely focused on 

global sampling assuming rigid body motion for component proteins. Along with an 

increased number of available structures and improvements in computing resources, the 

introduction of efficient sampling techniques, particularly the fast Fourier transform 

(FFT) correlation approach proposed by Katchalski-Katizir et al in 1992 (R. Chen, Li, & 

Weng, 2003; Katchalski-Katzir et al., 1992; Sternberg, 2000; Vakser, 1996) marked a key 

advancement in the field. Several groups have since incorporated this method into their 

docking servers, including the BU Structural Bioinformatics lab’s protein-protein 

docking server ClusPro (Kozakov et al., 2013). The ClusPro protocol uses an FFT-Based 

approach to sample 109-1010 conformations of the putative complex, followed by 

clustering of lowest energy conformers, which are then ranked by population and 

minimized. ClusPro is heavily used; by June 2019 it had 12,000 registered users 

(registration is not a requirement), and completed over 280,000 docking calculations.  

1.2.1 FFT-Based Rigid Body Sampling  

The ClusPro server uses the PIPER program (Kozakov, Brenke, Comeau, & 

Vajda, 2006) to fully explore the conformational space of rigid body orientations between 
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a given ligand and receptor; this is accomplished through an exhaustive evaluation of an 

energy function in the discretized space of mutual orientations of the protein and ligand 

using a FFT correlation approach.  The energy-like scoring function (1.1) is expressed as 

a sum of P correlation functions across all possible translations of the ligand relative to 

the receptor structure: ߛ ,ߚ ,ߙ. Rp defines components of the correlation on the receptor, 

and Lp defines components on the ligand (Kozakov et al., 2006).  

,ߙ൫ܧ ,ߚ  ൯ߛ  =  ∑ ∑ ܴ௣(݅, ݆, ௣൫݅ܮ(݇ + ,ߙ  ݆ + ,ߚ  ݇ + ൯௜,௝,௞ߛ
௉
௣ୀଵ   (1.1) 

The center of mass of the receptor protein is fixed at the origin of the coordinate system, 

whereas the ligand is rotated and translated. The translational space is represented as a 

grid of 1.0 Å displacements of the ligand center of mass, and the rotational space is 

sampled using 70,000 rotations based on a deterministic layered Sukharev grid sequence, 

which quasi-uniformly covers the space. The expression is evaluated by using P forward 

(FT) and one inverse Fast Fourier (IFT) transforms, effectively improving efficiency of 

the approach from O(N6) to O(N3(logN3)). In the following expressions, i = √−1 , with 

N1, N2, and N3 representing the dimensions the grid along three coordinates. C is equal to 

1/(N1N2N3).  

,ߙ൫ܧ ,ߚ  ൯ߛ  = ∑൛ܶܨܫ ௣ൟ௉ܮ൛ܶܨ൛ܴ௣ൟ∗ܶܨ
௣ୀଵ ൟ(ߙ, ,ߚ  (1.2)    (ߛ

,݉,݈){ܨ}ܶܨ ݊) =  ∑ ,݅)ܨ ݆, ݇)݁ିଶగܑ(௟௜/ேభା௠௝/ேమ ା௡௞/ேయ)
௜,௝,௞   (1.3) 

,݅){݂}ܶܨܫ ݆, ݇) = ܥ  ∑ ݂(݈,݉, ݊)݁ଶగ௜(௟௜/ேభା௠௝/ேమ ା௡௞/ேయ)
௟,௠,௡   (1.4) 
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1.2.2 Energy Function  

The energy expression (1.5)  includes a simplified van der Waals energy Evdw 

with attractive (Eattr) and repulsive (Erep) contributions (1.6), electrostatic interaction 

energy Eelec, and a statistical pairwise potential Epair, representing other solvation effects 

(Chuang, Kozakov, Brenke, Comeau, & Vajda, 2008).    

ܧ = ௩ௗ௪ܧ ௘௟௘௖ܧଶݓ + +  ௣௔௜௥  (1.5)ܧଷݓ

௩ௗ௪ܧ = ௔௧௧௥ܧ +  ௥௘௣   (1.6)ܧଵݓ 

௘௟௘௖ܧ = ∑ ∑ ௤భ௤మ

ቌ௥೔ೕ
మା஽మ௘௫௣ቆ

షೝ೔ೕ
మ

రವమቇቍ

భ
మ

ேಽ
௝ୀଵ

ேೃ
௜ୀଵ   (1.7) 

௣௔௜௥ܧ      =  ∑ ∑ ௜௝ߝ
ேಽ
௝ୀଵ

ேೃ
௜ୀଵ     (1.8)  

The electrostatic interaction energy is defined in (1.7), where NR and NL represent the 

number of atoms in the receptor and ligand, respectively. D is an atom-type independent 

approximation of the generalized Born radius, and r the distance between atoms i and j. 

The weights for each energy term, w1, w2, w3, may be varied to favor different energetic 

contributions, depending on the type of protein complex being docked.  

All energy expressions are defined on the grid. In order to evaluate the energy 

function E by FFT, it must be written as a sum of correlation functions. The first two 

terms, Evdw and Eelec, satisfy this condition, whereas Epair is written as a sum of a few 

correlation functions (1.8), using an eigenvalue-eigenvector decomposition (Kozakov et 

al., 2006).  
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1.2.3 DARS Potential 

The pairwise structure-based potential used in the PIPER energy function is 

referred to as DARS, or Decoys As the Reference State (Chuang et al., 2008). DARS 

represents desolvation contributions to the interaction energy in (1.5). The statistical 

potential of two atom types I and J as ߝூ௃ is expressed as follows: 

ூ௃ߝ    =  (1.9)   (ூ௃݌)݈݊ܶ݇− 

k is the Boltzmann constant, T is the temperature and pIJ represents the probability that 

the two atom types will interact. This probability is approximated by (1.10) where ݒூ௃௢௕௦   

and ݒூ௃
௥௘௙represent the number of interacting atom pairs observed and the expected 

number of interacting pairs in a reference state, respectively.   

ூ௃݌    =  
௩಺಻
೚್ೞ

௩಺಻
ೝ೐೑    (1.10) 

DARS uses docking decoys as the reference set, which allows for discrimination of near-

native conformations from other docking results. DARS performs particularly well for 

enzyme-inhibitor complexes, where it was shown that performance did not heavily 

depend on complex selection used for decoy generation (Chuang et al., 2008). Since its 

initial development, an asymmetric implementation has been created specifically for 

antibody-antigen complexes (Brenke et al., 2012). 

1.2.4 Clustering 

In ClusPro, the lowest energy structures are clustered using a greedy clustering 

algorithm. For k structures, we calculate the k × k matrix of pairwise backbone Root 
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Mean Square Deviations (RMSD). We count the number of neighbors each structure has 

within a defined cluster radius. The members of the largest cluster are removed from the 

pool of structures, and the procedure is repeated until no structures remain, resulting in 

clusters ranked according to their size (Kozakov, Clodfelter, Vajda, & Camacho, 2005). 

The cluster centers are then minimized (Section 1.2.5) and presented as final results.  

Clusters represent isolated, highly populated low energy basins of the energy 

landscape, and the large clusters are thus more likely to include native structures. The 

globally sampled conformational space can be considered as a canonical ensemble with 

the partition function (1.11), where we sum the associated energy Ej over all poses j. For 

the kth cluster, the partition function is given by (1.12), where the sum is restricted to 

poses within the cluster. Based on these values, the probability of the kth cluster is given 

by (1.13). 

   ܼ = ∑ ݁ିாೕ/ோ்
௝     (1.11) 

   ܼ௞ =  ∑ ݁ିாೕ/ோ்
௝,   ௝∈ ௞    (1.12) 

   ௞ܲ =  ܼ௞/ܼ    (1.13)   

Since the low energy structures are selected from a relatively narrow energy range, and 

the energy values are calculated with considerable error, it is reasonable to assume that 

these energies do not differ, i.e., Ej=E for all j in the low energy clusters.  

   ܼ = ܰ݁ିா/ோ்    (1.14) 

   ௞ܲ =  ܼ௞/ܼ =  ௞ܰ/N   (1.15) 
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This simplification implies that ௞ܲ = ேೖ
௓
 and thus the probability Pk is proportional ,ܴܶ/ܧ−݁

to Nk, where Nk is the number of structures in the kth cluster (Kozakov et al., 2013). 

1.2.5 Minimization  

For each of final structures retained after clustering, minimization is performed 

using the polar hydrogen PARAM19 like forcefield with CHARMM (Brooks et al., 

2009). The protocol consists of 300 steps (with fixed backbone) using only the van der 

Waals term of the CHARMM potential, removing steric overlap with only small 

conformational changes in the protein complex (Kozakov et al., 2017). 

 

1.3 ClusPro in CAPRI 

Community-wide assessments CAPRI (Critical Assessment of Predicted 

Interactions) and CASP (Critical Assessment of protein Structure Prediction) are both 

important platforms used to evaluate protein-protein docking and protein structure 

prediction methodologies, respectively. CAPRI, which was modeled on CASP, was 

launched in 2001, with the aim of providing structures to participating groups who would 

then submit blind docking predictions for evaluation (Janin et al., 2003). Since then, the 

competition has evolved, with the addition of certain data-assisted targets, and scoring 

categories.  

This first joint CASP-CAPRI round was held in 2014 (CASP11-CAPRI), and has 

continued on a bi-annual basis (Lensink et al., 2018). Sequences are typically provided to 

CASP participants, who will then provide structural predictions which will serve as 
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inputs for complex prediction by CAPRI groups. However, more recently, CAPRI groups 

have adopted template-based modeling techniques to produce their own component 

structures.  

The initial version of ClusPro participated in CAPRI assessments beginning in 

2003 (Comeau et al., 2007), after which PIPER with DARS was added into the protocol. 

This latest iteration of ClusPro has been a CAPRI participant since Round 13 (Round 47 

is the most recent, in 2019), including all joint CASP-CAPRI rounds, and has repeatedly 

ranked among the top servers (Kozakov et al., 2013; Kozakov et al., 2010; Vajda et al., 

2017). The results of the latest CASP-CAPRI assessment will be discussed in Chapter 4.  

 

1.4 Contributions 

Bing Xia performed peptide weight optimization docking runs and helped to add 

the peptide docking feature (Chapter 2) into the ClusPro web server. The work in Chapter 

3 was a collaboration between myself and Zhuyezi Sun. Istvan Kolossvary performed all 

MD simulations for the study. The Chapter 4 docking runs for the CASP11-12 

homodimer evaluation were performed by Israel Desta. Dzmitry Padhorny helped to 

automate extensive template searches used in ClusPro TBM.  
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2 PEPTIDE-PROTEIN DOCKING 

2.1 Introduction 

 While ClusPro is designed to dock two proteins that are relatively rigid, i.e., their 

backbones do not substantially change conformations upon binding, many ClusPro users 

attempt to dock flexible linear peptides; the rigid body docking algorithm currently in 

ClusPro is not suitable for docking such flexible peptides. In spite of this shortcoming, 

many users pre-generate peptide conformations and attempt the docking. The demand for 

peptide-protein docking is high because a significant fraction of proteins actually bind to 

flexible peptide-like regions, called short linear interacting motifs (SLIMs) of the partner 

protein (Stein & Aloy, 2008). In addition, peptide docking is frequently required in the 

process of drug discovery. Peptide-mediated interactions are involved in a number of 

critical cellular processes, prompting the emergence of peptide-like compounds for 

favorable drug targeting. Of the publicly accessible peptide-protein docking servers, few 

globally sample the receptor structure, i.e. they require information on the approximate 

location of the binding site. Those that do use computationally less efficient Monte Carlo 

and Molecular Dynamics (MD) approaches (Ben-Shimon & Niv, 2015; Blaszczyk et al., 

2016; Dagliyan, Proctor, D'Auria, Ding, & Dokholyan, 2011; Kurcinski, Jamroz, 

Blaszczyk, Kolinski, & Kmiecik, 2015; Lee, Heo, Lee, & Seok, 2015; London, Raveh, 

Cohen, Fathi, & Schueler-Furman, 2011; Schindler, de Vries, & Zacharias, 2015). It is 

clear that peptide docking is an unmet need, and the development of a fairly accurate 

algorithm and its addition to ClusPro provides an important tool to the biomedical 

research community. 
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 As described in Section 1.2, the FFT-based approach implemented in the current 

version of the ClusPro server was developed for docking relatively rigid proteins, and was 

not applicable to flexible systems, such as peptide-protein interactions. Existing peptide 

docking methods are local, i.e. require information on the approximate location of the 

binding site, or use computationally less efficient Monte Carlo and MD. In spite of 

performing local rather than global docking, such methods are too resource demanding for 

server implementation. However, the peptides in SLIMS frequently have conserved 

sequence motifs which makes the peptide-protein problem amenable to an FFT-based 

approach. For example, cyclins recognize the RXL motif, where R (arginine) and L 

(leucine) are fixed as amino acids, and X represents any amino acid. It has been shown 

that motif regions are limited to a small ensemble of potential conformations within a 

protein environment (Wang et al., 2013). The key idea of our approach is that we generate 

this ensemble by searching for proteins containing the motif of interest in the Protein Data 

Bank (PDB) and extract the regions that match the motif. Conceptually similar approaches 

of mining fragments from the PDB have previously been used for protein structure 

prediction in the Rosetta program (Simons, Kooperberg, Huang, & Baker, 1997). While 

Rosetta was based on sequence and secondary structure similarity, our method uses motif- 

based fragment extraction to focus on a relevant subset of conformations, taking 

advantage of the specific features of the motif docking challenge. By combining this 

resulting fragment library with systematic FFT grid-based sampling using accurate 

molecular mechanics potentials (Chuang et al., 2008; Kozakov et al., 2006), we efficiently 

sample and discriminate near native docked peptide models with success rates similar to 
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protein docking, despite significant peptide flexibility. The method was validated by 

application to the PeptiDB v2 dataset for which the interacting motif had been reported 

(Lavi et al., 2013). To prevent inherent bias, structures of proteins with more than 30% 

sequence identity to the target were excluded from the search for motif backbones, and 

only information about sequence motifs available before the publication of the solved 

complex structure were included.  

2.2 PeptiDock Method 

 Our motif-based approach is composed of four main steps, and hinges on the 

observation that extracting representative fragments based on a known motif will 

adequately sample the peptide conformational space.  Figure 2.1 demonstrates the steps 

of our protocol on an example application, the interaction between cyclin (structure of 

free cyclin, PDB ID 1H1R) and a peptide derived from CDC6 (HTLKGRRLVFDN) 

(Cheng et al., 2006) (structure of the complex, PDB ID 2CCH). The RxL peptide motif 

(Arginine, followed by any amino acid, and Leucine) was defined based on a literature 

search (Cheng et al., 2006).  We use a set of rules (further described in Section 2.2.1) to 

extend and refine this initial motif, until a search in the PDB results in a comprehensive 

set of fragment hits  (note that for protocol validation homologs of complex structures 

are, of course, excluded). In this example (Figure 2.1A), the peptide sequence covering 

the initial motif (i.e. RRL) was first extended in the N-terminal direction towards a polar 

residue, to yield a pentamer sequence KGRRL (applying rule Sp). Since this motif is 

found only nine times in the PDB, we made it more general by introducing a wild-card at 

the smallest residue, G, to obtain KXRRL (rule E). This motif is found frequently enough 
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to proceed to the next step (in 472 PDB structures, homologs of the solved CDC6-cyclin 

structure (PDB ID 2CCH) excluded). Once the docking motif is defined, we extract the 

matching fragments from the PDB (1051 fragments) and cluster them with a 0.5 Å 

RMSD cluster threshold (resulting in 40 clusters for this example, see Figure 2.1B and 

Table A.3). Representatives from the top 25 largest clusters are then each docked to the 

receptor structure (Figure 2.1C).  All solutions are pooled and clustered with a 3.5 Å 

RMSD threshold, and representatives of each cluster are further minimized to produce 

the final 100 models (Figure 2.1D and Table A.4). In the cyclin-CDC6 peptide example, 

the third ranked model lies within 1.9 Å RMSD (Figure 2.1E).  

 
Figure 2.1: Overview of the PeptiDock algorithm. A) Given a peptide complex of interest and a reported 
binding motif, the motif is expanded until a sufficient number of fragments can be extracted from the PDB. 
B) The large pool of fragments is clustered together and ranked by population. C) The top 25 cluster 
centers are docked to the receptor structure. D) The lowest 250 structures from each are retained and 
clustered a final time. E) Final peptide conformers are minimized. 
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2.2.1 Input Structures and Motif Selection  

The structure of the free receptor is represented as an independent binding unit 

that is defined as either a single domain, or repeated, non-decomposable domains (Lavi et 

al., 2013). Unstructured terminal tails are removed. On the peptide side we start with a 

peptide sequence that covers the initial motif, and expand the sequence if the original 

motif is too short (less than 5 residues). We further generalize it by introducing wildcards 

based on motif information, or restrict it by further expansion. The generalization 

protocol is iterative, based on available PDB information, to ensure reasonable structural 

coverage (i.e., a library of 100-1000 conformations). Tables A.1 and A.2 show the motif 

building process for systems in both the PeptiDB v2 data set and the “Recent PDB” set 

used for validating the protocol.  

Successful definition of a good motif for peptide fragment selection is the critical 

step of our protocol: A general, non-biased protocol should define a motif that is both 

loose enough to provide good coverage, and informative enough to enrich for relevant 

conformations. We start from the peptide sequence of interest and a known motif, and 

apply the following rules: (1) Start (S): Start with a peptide sequence of minimal length 

of 5 residues (to allow for a motif of 4 and more residues and one or more wild cards if 

necessary). This sequence should cover the initial motif, and if needed be extended by 

including additional positions in the peptide sequence. The preferential direction of 

extension is defined based on the type of residues, according to the following priority: 

(Sp) Polar, (Sa) Aromatic, and (So) other residues. Small amino acids (GSTA) are not 

considered for extension, except as a bridge to the next extended residue (e.g. extension 
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of PXQ motif to PQQATD for the peptide PQQATDD, leading to a 6 residue long 

starting motif), or if this is the only possible option to extend the motif to the minimal 

length. This initial sequence will usually result in very few fragment hits in the PDB, and 

we therefore expand the motif in the following step(s). (2) Expand (E): Insert wildcards 

back (X, or redundant positions of the motif), starting with the smallest residues. Refrain 

from introducing adjacent wild cards if possible, and do not introduce X at the termini of 

the peptide. (3) Large (L): If more than 1000 hits to PDB structures are found, introduce 

specific residues back into the motif, starting with the largest residues. If this does not 

help, try to extend, if possible. (4) Stop when there are between 100 and 1000 hits to PDB 

structures (or more if further extension of motif is not possible). (5) Complement F/Y 

(F): F & Y show very similar conformational preferences in the backbone dependent 

rotamer libraries (Ting et al., 2010). Once the motif has been designed and the set of 

fragments has been extracted, the amino acid sequence is changed back to the actual 

peptide sequence (using a backbone-dependent rotamer library) (Dunbrack & Karplus, 

1993).  

2.2.2 Clustering of Fragments  

The extracted peptide fragments are clustered using a greedy algorithm and a 

stringent clustering radius of 0.5 Å (a 2.0 Å cutoff was found to result in too few 

clusters).  The cluster center of each of the top 25 clusters is selected for docking in the 

next step. This selection method is similar to the 25 top-scoring fragments used in 

Rosetta ab initio modeling (Simons et al., 1997).  
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2.2.3 Docking of Peptide Fragments 

Each of the (up to 25) fragments is docked to the receptor structure using an FFT-

based sampling protocol.  Two sets of weights for the energy expression (Section 1.2.2) 

are used: the original set (w1 = 1.3, w2 = 160 and w3 = 2.6) and a set of weights that was 

recently shown to improve performance for polar-dominated interactions (w1 = 4, w2 = 

600, w3 = 0) the pairwise potential is omitted, and consequently the relative electrostatic 

contribution is increased). For consistency, we use the original set of weights as our 

default, and report on improvement for polar interactions in Table 2.3. 

 

2.2.4 Selection of Models  

The 250 lowest energy poses are retained from each of the 25 separate fragment-

docking runs. The resulting 6,250 docking solutions are then clustered based on backbone 

atoms, using a clustering radius of 3.5 Å, which represents the assumed radius of 

attraction for peptide-protein docking. Representatives of the top-ranking selected 

clusters are further locally minimized using the polar hydrogen PARAM19 like forcefield 

with CHARMM (Brooks et al., 2009). The protocol consists of 500 steps of 

unconstrained Adapted Basic Newton-Raphson (ABNR) minimization, where both 

protein and peptide are free to move, followed by the restoration of crystal protein 

coordinates, and 1000 steps of ABNR minimization of the peptide with the fixed protein. 

Any final solutions that overlap with domain-domain interfaces are removed.    
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2.3 Motif-Derived Fragment Sets 

The PeptiDock protocol was tested and optimized on a set of 16 complexes, 

selected from the larger PeptiDB v2 dataset (Lavi et al., 2013). Of the non-redundant 

complexes, we identified cases for which there was both an unbound receptor structure 

and a bound complex present in the PDB, and for which there was an interacting motif 

reported in literature (Table 2.1).  

Our motif search is based on the hypothesis that motif information limits the 

structural configuration space of the peptide conformers, and that some of those 

conformers are close enough to the native pose to produce a productive docking 

encounter complex. To illustrate the importance of motif information to our approach, we 

compare our motif-derived fragment sets to equivalently sized fragment sets selected 

from random sequences. We then produce histograms of the calculated fitted RMSD 

between all fragments of a particular set to the native peptide pose. For example, in the 

cyclin interaction described in Section 2.2, the motif-based fragment set consists of 1051 

structures extracted from the PDB using the motif KXRRL (note that the reported motif 

RXL is found too frequently, so the set of rules discussed in Section 2.2.1 was developed 

to extend and refine the motifs until a search in the PDB resulted in a comprehensive set 

of fragment hits).  To build the comparison fragment set, we randomly sampled 1051 

fragments, 5 residues in length, from all possible 5 residue fragments in the PDB. We 

extracted the bound KGRRL peptide from the CDC6-cyclin structure (PDB ID 2CCH) 

for our alpha carbon RMSD calculations.  
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Table 2.1: Set of peptide-protein complexes from the PeptiDB v2 set. We model a diverse set of 16 
domain-motif interactions. The docking protocol was validated on a set of 5 motif-domain complexes 
recently published in the PDB. For each complex, a bound and free receptor structure is available in the 
PDB, and an interaction motif has been reported. 

 Bound a Free b Peptide c Motif reported d 
PeptiDB v2  set 

sh2a1 (SH2) 1D4TA 1D1ZA KSLTIYAQVQK TIYXX[VI]  (Poy et al., 1999) 

lsb3 sla1 (SH3) 1SSHA 1OOTA GPPPAMPARPT PXXPX[R/K]  (Hou, Li, Li, & 
Wang, 2012) 

erbB2 (PDZ) 1MFGA 2H3LA EYLGLDVPV VXV’  (Jaulin-Bastard et al., 
2001) 

wdr5 (WD40) 2H9MA 2H14A ARTKQT �δR�  (Schuetz et al., 2006) 
usp7 (MATH) 2FOJA 2F1WA GARAHSS [PA]XXS (Sheng et al., 2006) 

p97 N-glycanase 
(PUB) 2HPLA 2HPJA DDLYG ϕYX’  (D. M. Smith et al., 2007) 

traf2 (TRAF) 1CZYA 1CA4A ace-PQQATDD PxQ  (Devergne et al., 1996) 

i-ap1 (BIR) 1JD5A 1JD4B AIAYFIPD A[VTI][AP][FY] (Srinivasula et 
al., 2001) 

ap2 (appendage 
domains) 2VJ0A 1B9KA_2 FEDNFVP DXF (Brett, Traub, & Fremont, 

2002)  
ap2 2VJ0A 1B9KA_1 PKGWVTFE WXX[F/W] (Olesen et al., 2008) 

pim1 kinase 
(transferase domain) 2C3IA 2J2IB_2 KRRRHPSG RXRHXS (Bullock, Debreczeni, 

Amos, Knapp, & Turk, 2005) 
cdk2 cyclin 2CCHB 1H1RB HTLKGRRLVFDN RXL(Cheng et al., 2006) 

dystrophin (WW) 1EG4A 1EG3A_1 NMTPYRSPPPYVP PPXY (H. I. Chen & Sudol, 1995) 
pcna 1RXZA 1RWZA KSTQATLERWF QXXϕXXρρ (Warbrick, 1998) 

endothiapepsin 1ER8E 4APEA PFHLLVY ϕϕ (E.C.3.4.23.22 e) 

gga1 (VHS) 1JWGAC 1JWFA DEDLLHI DXXLL’ (H. J. Chen, Yuan, & 
Lobel, 1997) 

“Recent PDB” set 
G3BP1 (NF2-like 

domain) 4FCMA 4FCJB SGFSF FXFG (Clarkson, Kent, & 
Stewart, 1996) 

KEAP1 (Kelch) 3ZGCA 3ZGDA GDEETGE DXETGE (Kobayashi et al., 2002) 
Rev1 (C-terminal 

domain) 4GK5E 4GK0E SFFDKKRS FF (Ohashi et al., 2009) 

DNAK (C-terminal 
domain) 4R5IA 4R5JA NRLLLT 

LLL (Rudiger, Germeroth, 
Schneider-Mergener, & Bukau, 

1997) 

COPI (WD40) f 2YNNA 2YNOB CTFKTKTN KXKXX' (Jackson, Nilsson, & 
Peterson, 1990) 

a PDB id of receptor-peptide complex structure; b PDB id of free receptor structure, including chain, and number 
of domain in multi-domain proteins (according to CATH); c Region underlined is part of the motif; defined 
amino acids in the motif are in bold; d Motif definitions:  ‘ - c-terminal; δ- small (A,G); γ- no bulky side chains; ϕ 
– hydrophobic side chain; ρ- aromatic side chain; e Flanking cleavage site: Enzyme Nomenclature EC number 
(http://www.chem.qmul.ac.uk/iubmb/enzyme/); f Same peptide binding domain (WD40) as in PeptiDB v2  set, 
but different peptide motif. 

http://www.chem.qmul.ac.uk/iubmb/enzyme/);
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Figure 2.2: Distribution of distances to the native peptide for motif libraries for a subset of Peptide DB v2 
cases. A) Distributions calculated for motif-based fragment sets. B) Distributions for randomly sampled 
fragment sets. 

Figure 2.2 shows the resulting distributions for a subset of the calibration set. 

Figure 2.2A depicts the RMSD distribution of the motif-based fragment sets, while 

Figure 2.2B shows the corresponding randomly sampled sets. Two main observations 

were made from these distributions. The first is that there is a natural clustering of 

structures in the motif-derived sets. Secondly, in the majority of the tested calibration 

cases, there is a larger population of structures in a lower RMSD range (i.e. more similar 

to the native pose) in the motif-derived sets. Both observations lend support to the 

concept that structure is encoded in the sequence; the motif-based search produces more 

informative fragment sets.  
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2.4 PeptiDock Performance 

Using a CAPRI-inspired threshold for success, namely defining a near-native 

conformation if the peptide lies within 4.0 Å backbone RMSD of the native peptide 

bound to the receptor (i.e., the CAPRI criterion for an acceptable peptide-protein docking 

prediction), a near-native peptide conformation is found among the top 10 PeptiDock 

predictions for 11 of the 16 complexes, and all apart from two cases are identified among 

the top 20 clusters. Similar performance is obtained for the additional validation set: for 4 

out of 5 complexes, a conformation similar to bound is extracted using the motif-based 

search, and for 3 out of the 5 cases a near-native structure is ranked first. The overall 

detailed assessment of PeptiDock performance is provided in Table 2.2, and comparison 

of docked poses to crystal conformations are shown in Figure 2.3.  Predicted poses are 

shown in yellow. Blue ligands are the native poses. The predicted pose for 1EG3A_1 is 

shown in pink, as it did not meet the desired 4.0 Å cutoff. The green predicted pose 

(1B9KA_1) represents a case in in which we used an alternative weight set in our energy 

expression.   

For the 1B9A_1 case and for one case in the validation set (2YNOB, not shown), 

when the original weight set was used no predicted poses were within 6 Å of the bound 

peptide. Instead, when we used a set of weights recently shown to improve performance 

for polar-dominated interactions (the pairwise potential is omitted, and consequently the 

relative electrostatic contribution is increased), we obtained a near native pose in the 2rd 

and 3nd predictions, for 2YNOB and 1B9KA_1 respectively (Table 2.3). 
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Table 2.2: Overall assessment of the motif-domain docking performance. Global docking of motifs 
identifies for most cases near-native peptide conformations (within 4.0 Å peptide backbone RMSD) among 
the top-ranking predictions. 

Bound a Free b Motif scanned in PDB c Rank d  RMSD e (Å) 
PeptiDB v2 set 

1D4TA 1D1ZA TI[YF]XX[VI] 5 3.7 
1SSHA 1OOTA PXMPXR 8 3.4 
1MFGA 2H3LA LDVXV 3 3.9 
2H9MA 2H14A AR[TS]KQ 12 3.8 
2FOJA 2F1WA R[PA]HXS 18 1.7 
2HPLA 2HPJA DXL[YF]G 1 3.5 
1CZYA 1CA4A PXQXXDD 4 3.3 
1JD5A 1JD4B A[VTI][AP][YF][YF] 2 3.5 
2VJ0A 1B9KA_1 WXX[FY]E - >6.0 
2VJ0A 1B9KA_2 [FY]XDN[FY] 5 2.4 
2C3IB 2J2IB_2 RXRHXS 8 4.0 

2CCHB 1H1RB KXRRL 3 1.9 
1EG4A 1EG3A_1 RXPPX[YF] 10 4.1 
1RXZA 1RWZA QXX[LVI]XXW[FY] 3 3.5 
1ER8E 4APEA H [LVI][LVI][LVI][YF] 10 2.9 

1JWGAC 1JWFA DXDLL 22 4.0 
“Recent PDB” set 

4FCMB 4FCJB SX[FY]S[FY] 36 4.0 
3ZGCA 3ZGDA DXETGE 10 3.9 
4GK5E 4GK0E [FY][FY]DXK 2 1.7 
4R5IA 4R5JA NRLLL 2 3.8 

2YNNA 2YNOB KTKXN - >6.0 
a PDB id of receptor-peptide complex structure; b PDB ID of free receptor structure, including chain, and 
number of domain in multi-domain proteins (according to CATH); c Region underlined is part of the motif; 
defined amino acids in the motif are in bold; d Best rank of model within 4.0 Å RMSD; ranks 1-10 in bold; 
e Peptide backbone RMSD; successful predictions (<= 4.0 Å RMSD) are in bold. 

Table 2.3: Use of electrostatic-driven potential improves performance for specific cases. Since no near-
native structures were sampled for two cases (PeptiDB v2: 2VJ0 & Recent PDB: 2YNN) using the 
‘Normal’ energy function weight set, the cases were re-docked using an electrostatic driven potential. 

Bound a Free b Motif used for 
scanning PDB c 

Energy function 
weight Rank d RMSD e (Å) 

2VJ0A 1B9KA_1 WXX[FY]E 
Normal - >6.0 

Electrostatic 3 3.9 

2YNNA 2YNOB KTKXN 
Normal - >6.0 

Electrostatic 2 3.9 
a PDB id of receptor-peptide complex structure; b PDB ID of free receptor structure, including chain, and 
number of domain in multi-domain proteins (according to CATH); c Region underlined is part of the motif; 
defined amino acids in the motif are in bold; d Best rank of model within 4.0 Å RMSD; ranks 1-10 in bold; e 

Peptide backbone RMSD; successful predictions (<= 4.0 Å RMSD) are in bold. 
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Figure 2.3: Modeled protein-peptide complexes from selected PeptiDB v2 set. Blue is the crystal, native 
pose, yellow is the acceptable accuracy model. Pink shows the closest non-acceptable accuracy model 
produced by the approach. Green depicts the acceptable accuracy model for a case (PDB ID 1B9K) in 
which only the electrostatics coefficient set gave a strong result.  

Figure 2.4 shows an example of a successful case and a challenging case. For the latter, 

the native complex forms hydrogen bonds between the peptide backbone and protein side 

chains, but lacks strong hydrophobic interactions with the aromatic side chains. The 

hydrophobic valine points into the solvent (forming crystal contacts with a symmetry 

mate in the solved structure). Interestingly, in this and in the one additional case for 

which no near-native structure was sampled (2YNOB), considerable improvement was 
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obtained by using an electrostatic-driven potential (Table 2.3), indicating that scoring 

rather than sampling limits performance in these interactions that are dominated by 

electrostatic attraction (and crystal contacts). 

 

Figure 2.4: Examples for models generated by PeptiDock rigid body docking of peptides to a receptor. 
Receptor structures are shown in light grey. Yellow structures represent the native peptide pose. A) A 
peptide derived from CDC6 with the sequence motif KGRRL is successfully docked to cycle. The third 
ranked prediction (dark blue) produces an acceptable accuracy results (1.9 Å backbone RMSD; apo/holo 
PDB Is: 1H1R/2CCH). B) No near native structure is sampled using the standard energy function and 
weight set when a peptide derived from synaptojanin is docked to the ap2 adaptor (apo/holo PDB IDs: 
1B9K/2VJ0). Nevertherless, a 4.0 Å RMSD model (green) is produced when an electrostatics-favored 
coefficient set is used. This can be explained by the fact that this interaction is dominated by several 
hydrogen bonds of the peptide backbone (dotted line) in the native complex, but lacks strong hydrophobic 
interactions with the aromatic side chains, as well as by crystal contacts in the bound conformation. The 
hydrophobic V6 points into the “solvent”, but actually contacts the symmetry mate (interaction is marked 
with *). 
 

  
2.5 Using ClusPro PeptiDock  

Peptide docking has been implemented as an option of the ClusPro server at 

https://peptidock.cluspro.org/.   Users may also access PeptiDock by clicking the ‘Peptide 

https://peptidock.cluspro.org/.
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Docking’ tab from the ClusPro home page (https://cluspro.org). To submit a peptide 

docking job, users may either upload a PDB file as the receptor or indicate the PDB ID 

and chain to use. For the peptide input, users have two options. The first option, which is 

the standard usage, involves inputting both a peptide sequence and peptide motif. 

Alternatively, users may upload their own fragment set (up to 25 fragments), which will 

bypass the motif-based search. If a user specifies a peptide sequence and motif, they may 

also list PDB structures to exclude from the fragment search. After the user presses the 

‘Dock’ button at the end of the page, the job will be submitted. If the user has a ClusPro 

account, they will receive an email upon job completion or if the job has failed to run.  

As part of a pre-processing step, it is possible that the given motif will not result 

in a sufficient number of fragments to proceed. If this happens, the job will fail early, and 

the user will receive an error that suggests either further specifying or generalizing the 

motif for re-submission. An additional feature was added to ClusPro to assist users in 

expanding their motifs. If the user supplies the full peptide sequence and a starting motif, 

they may use the ‘Build Motif’ button, which will use the motif extension rules outlined 

in Section 2.2.1 to iteratively search the PDB until the motif generates between 100 and 

1000 hits.  

Upon job completion, the user can visit the results page based on their job id. Up 

to 100 models will be available for download for each of the two weight sets used during 

docking (‘Peptide Balanced’ and ‘Peptide VdW+Elec’). Under the ‘View Model Scores’ 

cluster populations and CHARMM energies are visible for each output model.  

       

https://cluspro.org).
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3 MODELING ANTIBODY MATURATION 

3.1 Introduction 

 Immunoglobulin (Ig) molecules are key components of both the recognition and 

effector arms of the adaptive immune system. B cells produce Ig in the form of surface-

expressed B-cell receptors (BCR) which bind a specific antigen, therefore signaling B 

cell activation. Once activated, B cells secrete soluble Ig molecules, antibodies, which 

bind the same antigens (Alberts, 2002). Antibody molecules are extremely diverse, 

assembled combinatorially from gene segments. In the presence of the eliciting antigen 

during the immune response, B cell development continues via affinity maturation, the 

direct result of somatic hypermutation. Ig genes are mutated and B cells bearing mutated 

BCRs that have acquired higher affinity are favored for survival, coming to dominate the 

humoral response and becoming the long-lived plasma cells and memory cells that confer 

protection in subsequent exposures (Haynes, Kelsoe, Harrison, & Kepler, 2012).  

 Complementarity determining regions (CDR) on the variable domains of 

antibodies are responsible for modulating antibody affinity and specificity (Regep, 

Georges, Shi, Popovic, & Deane, 2017). The CDR H3 loop has proven to be of particular 

importance as it has been shown to form the most contacts on average with the antigen, 

while also demonstrating highest structural variation (Clark, Ganesan, Papp, & van 

Vlijmen, 2006; MacCallum, Martin, & Thornton, 1996). Amino acids altered by somatic 

hypermutation may drive affinity maturation through different observed mechanisms. For 

example, mutations that increase shape complementarity of the interface, improve 

electrostatic interactions, hydrogen bonding, and even promote increased burial of 
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hydrophobic regions in the interface all improve binding by enthalpic means. Decreasing 

entropic penalties associated with complex formation is another method in which 

maturation may improve binding. While somewhat counterintuitive, the formation of a 

protein complex imposes more order on the system, and therefore binding itself is 

associated with a decrease in entropy. Typically an increase in enthalpy will counteract 

this loss, resulting in an overall increase in free energy upon binding. By restricting the 

flexibility of a structure prior to binding, entropic loss due to binding may be further 

reduced (Kepler & Wiehe, 2017). 

 Many challenges are currently faced in antibody design and therapeutic 

development, particularly the ability to predict antibodies with properties that confer high 

enough affinity and specificity for their desired target. While widespread screening 

techniques can be used to assess and optimize a number of different variables, such 

techniques are in some cases impractical. Instead, computational methods can be used to 

additionally reduce the search space (Tiller & Tessier, 2015). One study, from 2013, 

demonstrated that protein-protein docking could be used to generate antibody-antigen 

structures of high enough quality to be useful in identifying affinity-enhancing residues in 

a cross-reactive neutralizing antibody to dengue virus (Tharakaraman et al., 2013). 

Another key study, which focused on antibodies binding influenza hemagluttanin (HA), 

demonstrated that structural analysis, binding kinetics, and long time-scale MD could be 

used to study influenza virus antibody evolution in a subject immunized with the 2007 

trivalent vaccine. They showed that increased affinity in later antibodies can mostly be 

attributed to the rigidification of the initially flexible heavy chain CDR (Schmidt et al., 
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2013). Along with experimental measures, computational methods may be used to offer 

additional insight into antibody-antigen interactions that may prove necessary to future 

antibody design and antibody therapeutic development. 

 Here, we show that analysis of computational docking results may be used to 

further understand the driving components behind changes in binding free energy 

observed throughout antibody maturation.  The underlying idea is that, given a protein 

complex, if we dock the two parts by sampling the conformational space, a higher affinity 

complex will yield more docked structures close to the native state than one with lower 

affinity. A similar approach has been used for discriminating between biological and 

crystallographic dimers with success (Yueh et al., 2017). The complexity introduced by 

studying multiple structures across a lineage necessitates additional sampling, therefore 

FFT-based docking is coupled with multiple MD simulations to gain insight into the 

maturation mechanisms of two different antibody-antigen systems. We focus on previous 

experimental and computational results, with the goal of exploring the changes in free 

energy throughout the process of antibody maturation from the UCA (unmated common 

ancestor) to high affinity binders.  

 The two systems investigated in this study were selected on the basis of the 

availability for both bound and unbound antibody structures and the availability of 

affinity measurements. Structures for influenza HA antibodies were previously deposited 

in the PDB while structures for the anthrax system were provided by the Kepler group at 

the Boston University School of Medicine (BUSM). In both cases, the highest affinity 

structure was available both separately crystallized and as part of the antibody-antigen 
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complex. Starting from the bound complex, we separated the antigen and used this 

conformer to establish a theoretical upper limit to the number of near native hits (N) 

possible with the protein backbone held in place. We then used molecular dynamics 

(MD) to generate ensembles for the unbound antibody structure, clustered the 

conformations, calculated cluster probabilities, docked the cluster center, and calculated 

the average N values, weighted by the probabilities of the MD-generated clusters. We 

show that influenza antibody maturation is primarily guided by a reduced loss of entropy 

upon binding, an observation supported by the changes in the on-rate as well as by a 

previous computational study (Schmidt et al., 2013). Results from applying our protocol 

to anthrax antibodies appear dramatically different, leading to our conclusion that 

maturation is primarily enthalpy change driven, a theory supported by the experimental 

data.  
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3.2 Methods 

 
Figure 3.1: Protocol for docking-based antibody maturation assessment. Left panel: Approach for 
assessing maturation-based contributions by restricting the antibody backbone to that of the bound 
conformation. A) Starting from the bound structure, models of the lower affinity structures are prepared by 
mutating residues to match the desired sequence. B) The resulting structure is then docked with the antigen, 
using restricted sampling about the antigen center of mass. C) Output poses from docking are compared 
back to the crystal bound and “N”, the number of near-native predictions counted. Right panel: Approach 
for assessing entropic contributions by sampling unbound antibody structures. D) Beginning with the 
crystallized free antibody structure, an ensemble of structures is generated via MD. Trajectory snapshots 
are clustered and ranked. E) Representative conformers are each docked with the antigen in separate 
docking events. F) Predicted poses are compared back to the bound complex, and a weighted average, 
based on cluster population, of N is calculated. 

 

Our docking-based approach for investigating antibody maturation relies on 

comparing docking results from two different scenarios. 1) “perfect” binding in which the 

H3 loop is already fixed in its bound conformation and 2) a more realistic representation 
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of the flexible H3 loop, based on perturbing the unbound structures by MD simulations. 

The first approach (Figure 3.1A-3.1C) is based on starting from a high affinity bound 

antibody structure and establishes a theoretical limit for near native hits resulting from 

docking the antigen to the antibody structure. Beginning from the crystal complex of the 

antigen and the highest affinity antibody, we separate and introduce point mutations to the 

antibody structure to match the sequence of a lower affinity antibody in the lineage 

(Figure 3.1A). The antigen is then docked to this modeled antibody structure (Figure 

3.1B). Since the antibody-antigen interface is known, we restrict sampling about the 

antigen center of mass. The resulting 1000 lowest energy poses are retained and compared 

back to the antigen from the known complex (Figure 3.1C). The interface Root Mean 

Square Deviation (iRMSD) is calculated between the two structures, and considered to be 

‘near-native’ if <= 10 Å from the bound interface. Because the antibody backbone is kept 

relatively fixed in its bound position, the impact of the point mutations can be better 

assessed without additional contributions of larger conformational changes that may 

otherwise be present, as in the case for the influenza virus antibodies studied. The protocol 

for evaluating unbound antibody structures is outlined in Figure 3.1D-3.1F. Starting with a 

crystallized free antibody, an ensemble of structures is generated using multiple MD 

simulations. The resulting trajectory is clustered and the cluster centers are selected for 

ensemble docking (Figure 3.1D). The antigen from the bound complex is then docked to 

each antibody (Figure 3.1E) and docking results are compared back to the bound complex. 

Since multiple structures, represented by cluster centers, are considered for the free 

antibody, cluster populations are used to calculate a weighted average for N across 
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dockings: ܰ =  ∑ ௜௄݌
௜ୀଵ ௜ܰ , where pi is the probability of the ith cluster and Ni is the 

number of near-native docked structures obtained by docking the center of the ith cluster  

(Figure 3.1F). By comparing the docking results between the modeled bound and unbound 

structures, we can estimate the importance of changes in enthalpic and entropic 

contributions to binding free energy across structures from an antibody lineage. By 

restricting the conformation of the antibody to the bound form, we establish an upper limit 

for N resulting from docking, while the second approach accounts for larger 

conformational changes in the structure. The resulting comparison and analysis from these 

two approaches for two antibody-antigen systems is discussed in Section 3.3.  

3.2.1 Mutation of Selected Residues 

Starting from the bound antibody structures, residue mutations were introduced 

with SCWRL4.0, using a backbone-dependent rotamer library for side chain replacement. 

Only residues which differed between the high and low affinity antibodies were selected 

for replacement, with the constant residues serving as steric boundaries (Krivov, 

Shapovalov, & Dunbrack, 2009). 

3.2.2 Free Antibody Ensemble Generation  

Ten 100 ns simulations, each starting with a random initial velocity, were 

implemented for each single unbound antibody structure using the 2016-4 GPU version 

Desmond (Bowers, 2006). Simulations were performed using SPC water and the 

AMBER99SB-ILDN force field. The Desmond relaxation protocol, as defined in the 

Maestro GUI, was used at the beginning of each run. After merging the output 
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trajectories into a single 1 μs aggregate, antibody conformers extracted from trajectory 

snapshots were clustered based on alpha carbons from the H3 loop, as defined by the 

Kabat numbering scheme (Wu & Kabat, 1970). The clustering radii varied slightly 

between trajectories, typically between 0.5 and 1.5 Å, as they were selected with respect 

to each pairwise RMSD distribution based on previous findings (Kozakov et al., 2005). 

Clustering was accomplished using the same greedy clustering algorithm implemented in 

ClusPro (Kozakov et al., 2017), and cluster centers ranked by cluster population. 

 

Figure 3.2: Representation of focused docking of the antigen to an antibody structure. The outlined 
box depicts the restriction of antigen poses (various colors) that are sampled about the antibody 
structure (wheat). 
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3.2.3 Rigid Body “Focused” Docking  

PIPER (Kozakov et al., 2006) was used to sample potential poses of the antigen 

about the antibody structure. Since the binding site was known, FFT-based sampling was 

restricted about the antigen-binding site through the use of a sampling box. The size of the 

box, with sides equal to 75% of the antigen diameter, was centered on the antigen center 

of mass (Figure 3.2). PIPER energies were calculated as previously described (Kozakov et 

al., 2017), using established antibody DARS (Brenke et al., 2012).  

3.2.4 Connecting Near Native Hits to Free Energy 

The near native count obtained by analyzing lowest energy docking results can be 

connected to changes in free energy using the following derivation.  

ܨ   =  −ܴ݈ܶ݊ܳ      (3.1) 

  ܳ = ∑ ݁ିாೕ/ோ்
௝     (3.2) 

  ܳ ≈ ܰ݁
షಶ
ೃ೅     (3.3) 

ܨ   ≈ −ܴܶ ݈݊ ܰ +  (3.4)    ܧ

ܩ∆   = ≈ ܨ∆ −ܴܶ ݈݊ ே
ேೝ೐೑

  + ܧ) −  ௥௘௙) (3.5)ܧ

≈ ܩ∆   ݈݊ ߙ ܰ   + ܧߚ +  (3.6)   ߛ

We start with the free energy of a complex, given by (3.1), where Q denotes the partition 

function of the system shown by (3.2). Since the antibody-antigen structure shows only 

local conformational variations around the native state, we assume that the far-from-native 
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energy minima represent transitional states or simply false positives due to the particular 

scoring function used in the docking calculation, and hence restrict consideration to 

structures that have less than 10 Å RMSD from the X-ray structure of the complex.  The 

dominant part of partition function Q is provided by low energy conformations in this 

region, and these structures will be used to approximate Q. Furthermore, since the low 

energy structures are from an energy range that is very narrow relative to the overall 

energy variation, and the energy values are calculated with considerable error that is 

comparable to this energy range, it is reasonable to neglect the small differences, thus to 

assume that Ej ≈ E for all j poses. This implies that Q is approximated as shown in (3.3), 

where E is the average energy in the low energy region and N is the number of structures 

in this region. Although neglecting the energy differences among the low energy 

structures seems to be arbitrary, we employ this approximation in our docking server 

ClusPro with success. Thus, the approximation seems to be adequate (Kozakov et al., 

2013). Substituting this approximation into the free energy expression (3.1) yields the 

expression (3.4). However, the calculated free energy values are relative to an unspecified 

reference state, and the difference in binding free energy between an antibody and an 

arbitrary reference state can be approximated by (3.5). Note that ΔG = ΔF, because the 

volume of the liquid phase system is unchanged.  Based on this relationship, we simply 

dock the antibody structure with its antigen, and use this approximation to estimate the 

expected changes in the binding free energy. We write (3.6) using two unspecified 

coefficients and a constant, where N is the number of docked structures in a neighborhood 

of the native state. Using the unspecified ߙ coefficient rather than –RT represents the 
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uncertainty associated with the volume of the docking box and the criterion used to define 

near-native structures. While these factors clearly affect the value of N, they are the same 

for all antibody structures and hence can be used when evaluating the changes in the lnN 

values. The second coefficient, ߚ, in (3.6) is introduced to account for the fact that the 

energy value E depends on the selected energy scale. Here we use the PIPER energy, 

which is very useful for generating docked conformations and thus for comparing 

different structures, but it is not scaled to any measured binding energy. The third 

coefficient Ɣ = RT ln Nref  - Eref acts as a constant, encompassing the terms from the 

reference state. A similar expression has recently been proposed by the Dill group using a 

different derivation (Morrone, Perez, MacCallum, & Dill, 2017). 

3.2.5 Computational Alanine Scanning 

CHARMM (Brooks et al., 2009) was used to calculate the interaction energy of 

the antibody-antigen complex, and to also estimate the impact of each antibody residue 

after systematically replacing each residue with an alanine residue. First the antibody-

antigen complex was minimized using 1000 steps of unconstrained Adapted Basic 

Newton-Raphson (ABNR) minimization, using a polar hydrogen PARAM19 like 

forcefield. A constant dielectric (setting EPS to 20.0) and a distance cutoff of 15 Å for 

non-bonding interactions was used for the interaction energy calculation. The 

contribution of each antibody residue was determined by looping through each residue, 

deleting all atoms except the backbone and beta carbon atoms, and then re-calculating the 

interaction energy of the complex. The difference between electrostatic and van der 

Waals terms before and after residue modification was used to calculate ΔE. 
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3.3 Results and Discussion 
    

3.3.1 CASE 1: The influenza HA antibody system  

The crystal structures used for our study of influenza HA antibodies include two 

bound complexes (CH67: PDB ID 4hkx, CH65: PDB ID 3sm5) and three unbound 

antibodies (UCA: PDB ID 4hk0, I-2: PDB ID 4hk3, CH67: PDB ID 4hkb). The inferred 

CH65-CH67 lineage tree is shown in Figure 3.3, along with an overlap of the H3 loops 

from each structure. Unlike the UCA and I-2 loops, the unbound CH67 loop already 

aligns with the bound loop conformers of both CH65 and CH67. We refer to both CH65 

and CH67 as high affinity binders, as there is a three order of magnitude difference 

between their KD values and those of the low affinity binders, UCA and intermediate I-2 

(Table 3.1). As previously reported (Schmidt et al., 2013), Surface Plasmon Resonance 

(SPR) measurements were performed using a Biacore 3000 with the HA head 

immobilized on the CM5 sensor chip. Purified Fab were injected over the chip at a flow 

rate of 30 ߤL/min and mature antibody binding kinetics were fit using a single site 

binding model. Although a double exponential model was explored for UCA and I-2, the 

bulk of binding can be attributed to the kinetics described in Table 3.1.  

Table 3.1: Binding kinetics for UCA, I-2, CH65, and CH67 Fabs, determined by SPR in previously 
published study (Schmidt et al., 2013). 

Fab kon (M-1s-1) koff (s-1) KD (μM) 

UCA 4.4 ± 0.3 x 103 0.51 ± 0.03 118 ± 14 

 I-2 4.0 ± 0.5 x 103 0.56 ± 0.01 142 ±15 

CH65 1.33 ± 0.05 x 105 0.064 ± 0.011 0.49 ± 0.10 

CH67 2.37 ± 0.14 x 105 0.086 ± 0.012 0.36 ± 0.04 
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Figure 3.3: Overlap of the CH65-CH67 Fab lineage shows the unbound CH67 (PDB 4hkb) 
overlapping with both bound structures for CH65, CH67 (PDB IDs 4hkx, 3sm5). The HA antigen is 
depicted in cyan, based on its placement in the CH67 crystal structure. The H3 loops for lower affinity 
free antibodies I-2, UCA (PDB IDs 4hk3, 4hk0) are far from the bound pose (Schmidt et al., 2013). 

 
To generate representative ensembles for each antibody, we ran MD simulations starting 

from the free structure when available. We note that as no unbound structure was 

available for the CH65 Fab, we begin this simulation using the antibody from the bound 

CH65-HA complex (PDB ID 3sm5). Since the unbound and bound backbone of CH67 

overlap, we assume the same behavior for CH65. Additional preparation was needed for 

the unbound CH67 Fab (PDB ID 4hkb), which is missing CDR L2; after requesting 

trajectories from the previous study (Schmidt et al., 2013), we grafted the equivalent loop 

from their CH67 starting structure. The H3 loop across the trajectories was assessed by 

calculating the RMSD from each trajectory snapshot back to the H3 loop of the bound 

CH67 Fab. It is clear from the resulting histograms (Figure 3.4) that there is a large 

difference in loop distribution when comparing UCA and I-2 ensembles to those 

generated for structures in which the H3 loop has already converged to the bound 

conformation (CH65 and CH67).  
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Figure 3.4: Histogram of H3 alpha carbon RMSD values from the 10X100 ns MD simulations for CH65-
CH67 lineage members. Each snapshot H3 loop is compared back to the bound H3 loop (PDB ID 4hkx). 

 

After clustering the trajectories and docking the top cluster centers, we used 

multiple linear regression to fit the weighted near native counts (Table B.2) and PIPER 

energies (Table B.4) with the ΔG values calculated from experimental KD values (Table 

3.1). We plot predicted ΔG values compared to the experimental ΔG values in Figure 3.5, 

confirming a strong linear relationship between docking results and ΔG. Predictions were 

consistent across a broad range of docking parameters. Estimation errors for ΔG values 

were comparable to experimental errors (Tables B.7–B.9). However, it is clear that the 

measured binding free energies essentially represent only two points, and thus the 

observed linearity is fully expected. 
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Figure 3.5: -ΔG predicted by near-native hits and PIPER energies, plotted against experimentally 
measured -ΔG for CH65-67 Fabs. Error bars display standard deviation across 10 docking parameter sets. 

 
It is instructive to study the relationship between –ΔG and only the lnN term, which 

shows that in the case of influenza hemagglutinin the latter on its own is a good predictor 

of the free energy change. On Figure 3.6 the upper (horizontal) line is based on the results 

of docking the different antibodies but fixing the structures in the antigen-bound 

conformation. By comparing the number of native hits resulting from both methods 

outlined in Section 3.2, it is immediately noticeable that by allowing for larger 

conformational changes, as represented by the free antibody ensembles, the result is a 

distinctly stronger relationship between lnN and –ΔG (Figure 3.6). The larger slope 

fitting the ensemble data points indicates that a large portion of the change in binding free 

energy upon antibody maturation is due to conformational changes in the structure. 

Comparatively, the direct impact from mutations alone, established through our 
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‘theoretical’ limit for near native hits, is likely smaller for this system.  This figure 

suggests that the number of docked structures, lnN, remains essentially unchanged if we 

introduce the mutations observed in the process of maturation but fix the conformations 

in that of the antigen-bound structure. In contrast, considering the structural ensembles 

around the X-ray structures, the lnN values substantially drop as we move from the 

conformations of the high affinity structures, CH65 and CH67, toward the much lower 

affinity structures UCA and I-2. In fact, the change in the lnN values correlates well with 

the observed ΔG.  

 

Figure 3.6: If the conformation is fixed, the near-native hits are invariant compared to ensemble docking of 
MD snapshots. Results from docking Fabs modeled after the bound conformation are shown in blue, with 
average results from unbound ensemble docking shown in orange. 

 
The two lines in Figure 3.6 suggest that most changes in ΔG are due to changes in the 

lnN term, and the impact of direct energy changes due to the mutations is much smaller. 

Since the change in the binding free energy primarily depends on the lnN term, we 
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conclude that the antibody maturation in this case is entropy driven, whereas the changes 

in the binding energy have a much smaller impact. This observation is in good agreement 

with the fact that during maturation the on-rate, kon, increases by two orders of 

magnitude, whereas the off-rate, koff, reduces only by one order of magnitude, together 

resulting in the three orders of magnitude change in the binding free energy (Table 3.1). 

The dominance of the on-rate also suggests that most changes in binding free energy are 

of entropic (or conformational) origin.  The preconfiguration of the H3 loop offers strong 

evidence that improved binding across the CH65-CH67 lineage is driven by the reduction 

of entropy loss upon binding by reducing the flexibility of the system.  

It also follows that the N values on the lower line in Figure 3.6 represent Nprod, the 

number of “productive” antibody conformations that result in near-native docked 

structures. Since the structures fixed in the “bound” conformation represent the maximum 

number of “productive” conformations (N), Nprod  / N = pprod is the probability of the free 

antibody being in a “productive” conformation (Figure 3.7B). Notice that Schmidt et al. 

(2013) determined such probabilities by long direct MD simulations of the unbound 

antibody structures (Figure 3.7A). Both UCA and I-2 populations have lower 

probabilities of the loop assuming a bound, or “productive” conformation, in contrast to 

CH65 and CH67, whose populations are predominantly found with already rigidified 

loops.  
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Figure 3.7: Fraction of conformers assuming a bound conformation across UCA, I-2, CH65, CH67 
populations. A) Probability that CDR H3 loop assumes bound (opposed to any other) conformation, 
according to lengthy free Fab simulations (Schmidt et al., 2013). B) Probability of forming a productive 
conformation, according to docking analysis. Error bars display standard deviation across 10 docking 
parameter sets. 

 

3.3.2 CASE 2: The anthrax PA antibody system  

Following our results from analyzing the influenza-HA antibody lineage, we were 

interested to see if the same type of analysis would translate to another system. 

Colleagues at BUSM provided us with four anthrax PA antibody structures, displaying 

low (UCA), medium (1558), and high (1184) binding affinities. An unbound structure 

was available for all three Fabs with a bound structure only provided for the highest 

affinity antibody (Fab 1184). Figure 3.8 shows the structures aligned to the PA-Fab1184 
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complex. The loops of the high affinity structure are mostly unchanged between bound 

and unbound structures. While there do appear to be differences in the H3 loops of the 

medium affinity and UCA structures, the loop movement is not as dramatic as that seen 

in the case of the influenza HA antibodies discussed in the previous section. 

 
Figure 3.8: The Kepler group at BUSM provided crystal structures and binding data of three antibodies 
against the anthrax toxin PA, at low (UCA), medium (1558) and high affinities (1184). 

When the 1184 bound antibody is used as a starting template and mutations introduced to 

match first the Fab 1558 sequence and then the UCA sequence (See Figure B.2 for 

mutations), the near native hits resulting from docking these three structures are 

unsurprisingly similar (Table B.10). The backbone has remained rigid, and many of the 

mutations introduced during structure preparation are not within the antibody-antigen 

interface. Figure 3.9 shows the histograms of H3 loop variation from the MD-generated 

ensembles of the unbound antibody structures. 
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Figure 3.9: Histogram of RMSD values between each snapshot and the bound antibody (1184) are shown 
for each of the MD-generated ensembles starting from the crystallized unbound antibodies. RMSD was 
calculated on alpha carbons from the H3 loop. 

 
The distributions show a gradual change in H3 loop RMSD compared to the native, with 

the medium affinity Fab 1558 having a majority of structures around 2 Å from the bound 

H3 loop and the UCA starting at roughly 4 Å from the bound. After docking 

representative structures from the unbound ensembles, we once again compared the 

weighted N values (Table B.11) to their counterparts from docking with an 

assumed bound-like conformation. In Figure 3.10, it can be seen that lnN remains 

essentially unchanged in spite of the substantial change in the binding free energy ΔG 

and in loop conformations upon antibody maturation, with a small shift between the two 

docking methods. This suggests that conformational changes in the structure do not play 

a dominating role in this particular binding mechanism. Since there appears to be little 

difference between the docking results, the fraction of productive conformations is almost 

invariant. 
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Figure 3.10: Comparison between unbound ensemble and assumed-bound conformation docking of 
anthrax PA Fabs. Near-native hits alone cannot account for free energy changes in this anti-anthrax system. 

 
Contrary to the influenza HA Fabs, here it appears that changes in binding free energy 

cannot be explained by loop rigidification. As there appears to be little to no impact on 

the number of near native hits when fluctuations in the unbound structure are permitted 

through MD simulations, it seems likely that the driving component for maturation is 

entirely different. Binding affinity measures, provided by BUSM and determined by SPR, 

support the notion that maturation is not accomplished by the same mechanism at play for 

the influenza Fabs. SPR experiments were performed with whole synthesized antibodies 

immobilized to a COOH2 chip, followed by the injection of recombinant anthrax PA over 

the chip at a flow rate of 40 ߤl/min. Such a setup ensures monovalent binding with 

subsequent analysis carried out using SPRDesign (developed by BUSM collaborators) 

and a 4-state binding model (Ataca, 2018). Across the three Fabs crystallized, binding 

affinity data shows a four order of magnitude increase, however, in this case kon shows 
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only minor changes, within the same order of magnitude across Fabs (Ataca, 2018). 

Instead, it is koff which displays a three order of magnitude increase between the UCA 

and Fab 1884 (Table 3.2). For this system, the number of docked antibody-antigen 

complex structures remains essentially independent of the structure of the loops, instead 

relying on fine-tuning of antibody residues throughout maturation so as to decrease 

dissociation after binding. Anthrax PA antibodies are therefore koff driven and can be 

viewed as more enthalpically driven.  

 

Table 3.2: Binding data for anthrax PA antibodies, determined by SPR in a previous study (Ataca, 2018). 

Fab kon (M-1s-1) koff (s-1) KD (μM) 

UCA 5.99 x 104 9.06 x 10-2 1.5 

1558 1.58 x 104 1.06 x 10-3 0.0674 

1184 9.75 x 104 1.59 x 10-5 0.000163 

 
 

3.3.3 Interface Assessment  

Computational alanine scanning was used to further investigate the role of 

particular residues throughout maturation. As described in Section 3.2.5, CHARMM was 

used to systematically remove all but the backbone of each residue in a bound antibody 

complex, followed by binding energy calculations. Observations made regarding 

interface residue interaction energy are used to further investigate the factors at play in 

these particular interactions.  
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Tables B.14 and B.15 show the calculated ΔE values after all but the backbone 

atoms are removed from each residue in Fab CH67 and Fab CH65 complexes. Residues 

showing the largest positive ΔE values upon removal include VAL 106, ASP 107, and 

TYR 109, all present in the H3 loop. These residues are consistent across the UCA, I-2, 

CH65 and CH67 structures analyzed. ASP 95, in CDR L3 is also present in all structures, 

and results in ΔE values of 2.71 and 3.89 kcal/mol in Fabs CH67 and CH65, respectively. 

ASP 93, a light chain residue specific to CH67, unsurprisingly shows a high ΔE of 6.38 

kcal/mol, half of which is attributed to electrostatic interactions. Mutations that are 

restricted to mature antibodies (CH65, 66, 67), including ARG 29 of the light chain 

CDR1 and ASP 31 of the heavy chain H1 loop also display relatively large changes in 

ΔE, mostly due to forming van der Waals contacts with the antigen. Removing mutations 

restricted to CH65 (and CH66), including light chain CDR1 ASP 26 and heavy chain 

CDR2 ASP 57, result in ΔE values of 2.89 and 1.68 respectively.  

CHARMM ΔE values calculated for the Fab1184-PA complex are shown in Table 

B.16. The highest ΔE values were associated with residues engaged in cation-ߨ 

formation, salt-bridges, hydrogen bonding and critical van der Waals interactions which 

are made through direct contact the PA antigen. Interface residues such as GLY 50 and 

MET 35 of the heavy chain, along with PRO 95 of the light chain make only minor 

contributions according to CHARMM calculations, however their importance to 

optimizing loop conformation makes them key residues (Ataca, 2018). Both GLY 99 and 

GLN 98 showed slightly negative ΔE values which suggests each residue on its own may 

have a minor unfavorable impact on the interface. However, by comparing the antibodies 
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in the lineage, we see that these two residues work together to allow the antibody loop to 

adopt a conformation which enables salt bridge formation between the heavy chain ASP 

106 and ARG 178 of the antigen (Ataca, 2018). 

3.4 Conclusions 

  
Using two antibody-antigen systems, we have shown that protein-protein docking 

may be used to study antibody maturation mechanisms, provided structures of unbound 

and bound antibodies are available. For each antibody of a lineage, we assess docking 

results across two modalities, the first which requires the antibody be modeled on a high-

affinity bound structure and the second, which uses an ensemble of free antibody 

conformations generated by MD simulations. To connect successful docking 

conformations, known as near native results (N) to changes in binding free energy, we 

applied a statistical mechanics-based approach, in which we derive a linear relationship 

between -ΔG, lnN, and PIPER energies. Fitting the data resulting from each docking 

approach allows us to analyze the impact that conformational changes may have on the 

system.  By first restricting the antibody backbone to its bound conformation, changes in 

N can only be attributed to the difference in residue side chains, imposed by mutations 

across a lineage. When the unbound antibody is used for docking, changes in N may be a 

reflection of larger conformational changes. Comparing the fits of this relationship to 

data from both unbound and bound docking reveal clear differences between the 

influenza and anthrax antibodies studied.  

Results from four antibodies of the influenza CH65-CH67 lineage demonstrated 
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the impact that large changes in loop conformations may have on docking;  the 

coefficient for lnN in the linear fit between ΔG and near-native counts dramatically 

increased when unbound antibody ensembles were docked as opposed to docking the 

structures restricted to a bound-like backbone. From these results, it is clear that 

maturation is largely driven by larger loop changes in the structure. A ratio of the two N 

values per antibody was used to estimate a fraction of productive conformations in the 

populations. Although an entirely different approach, using significantly longer 25 μs 

MD simulations, the results from a 2013 study strongly supported our own predictions. 

Authors had also commented that preconfiguration of the loop acted as a means of 

reducing binding loss due to entropy (Schmidt et al., 2013). When the same approach was 

applied to three antibodies from an anthrax PA antibody lineage, the resulting fits were 

largely unchanged between the two docking methodologies. Generating unbound free 

antibody ensembles yielded similar near native hits to their rigid counterparts, suggesting 

that this lineage undergoes maturation through a different mechanism than that of 

influenza antibodies. Inspection of the structures also suggests that loops, while 

undergoing some fluctuation, do not modulate the interaction in the same way. 

Retrospectively, the computational results ultimately came down to the inherent 

difference in the interface of the flu and anthrax antibodies. The epitope on HA is the 

sialic acid binding site, which is a relatively small and narrow pocket, and therefore it is 

selective of the conformation of the H3 loop upon binding. In contrast, the anthrax 

antigen and antibody interface is comparatively flat, and hence it is less sensitive to 

changes in the conformation of the hypervariable loop. 
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The structural evolution of influenza hemagglutinin antibodies suggests that 

reducing entropy loss upon binding is the main factor driving antibody maturation. This 

result agrees with the accepted hypothesis that maturation rigidifies the CDR loops, and 

is supported by the observation that the mutations increase the on-rate by two orders of 

magnitude, while the off-rate decreases only by an order of magnitude. Anthrax PA 

antibodies undergo maturation that relies less on reducing entropic loss upon binding, and 

is instead driven by enthalpic contributions. SPR data from a prior study confirms that 

this maturation is driven by the off-rate which displays a three order of magnitude 

increase, with only a twofold change in the on-rate (Ataca, 2018). This analysis 

successfully demonstrates that protein-protein docking, in conjunction with MD 

simulations, is capable of providing researchers with useful insights into the maturation 

driving factors for different antibody systems. While restricted by the availability of 

structures, results imply that docking derived near-native hits may be useful for the 

identification of the main factors contributing to changes in the binding free energy upon 

antibody maturation. As demonstrated, the two antibody-antigen systems studied here 

represent two very different mechanisms of maturation. 
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4 TEMPLATE-BASED MODELING 

4.1 Introduction 

Computing the structures of protein complexes has been one of the central but 

challenging problems in computational structural biology (Nussinov, Papin, & Vakser, 

2017). Even for relatively rigid proteins it is difficult to explore the 6D rotational-

conformational space of mutual orientations potentially sampled by a pair of proteins as 

they interact through complementary patches on their surfaces. Predicting the association 

of proteins is further complicated by flexibility. Proteins are not static objects; they 

constantly interconvert between conformers of varying energies (Nussinov et al., 2017).  

In spite of the complexity of the problem, a variety of docking methods, including 

some easy-to-use servers, are currently available for predicting the structures of protein-

protein complexes.  The choice of the method used depends on the nature of the docking 

problem. “Free” docking methods can be used if X-ray structures are available for all 

proteins to be docked or for their very close homologs. However, the number of 

structures of protein complexes has been increased in the PDB. Knowledge of complex 

structures makes prediction of related protein complexes amenable to template-based and 

homology modeling methods, even when the structures of component proteins are not 

available (Figure 4.1A). 

The prediction of protein complexes remains an active and challenging field. A 

relatively small number of heteromeric complexes are available in the PDB compared to 

their individually crystallized components. Due to low complex availability, docking 

servers and modeling tools are often employed to predict such interactions. While the 



 

 

51

number of structures deposited in the PDB continues to grow, reportedly at a yearly rate 

of ~10% (Rose et al., 2017), there is a continued need for docking and modeling tools 

that have the capability to handle larger structures and the ability to account for more 

complicated experimental data (Carroni & Saibil, 2016). 

 

Figure 4.1: General comparison of template-based and free docking methods for an example heterodimer 
target. A) A template-based method begins with the target sequences, using a template search to identify an 
existing heterodimer template from the PDB. Homology modeling is used to map the target sequence onto 
the template structure. The model is refined to its final form. B) In free docking methods, the two 
components must be individually crystallized. Billions of protein conformations are evaluated, often 
through the use of an FFT-based algorithm. Final models of the heterodimer are ranked and minimized.  

Strategies for predicting protein complexes typically fall into two categories: free 

docking and template-based modeling. Free docking techniques take structural inputs, 

sample potential orientations and rotations of the two structures, and often filter or rank 

resulting poses using a scoring function (Figure 4.1B). Template-based modeling uses the 

protein sequence to search available databases for related proteins to use as structural 

templates (Figure 4.1A). Template availability of complexes is often considered a 
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limiting factor in this approach. However, it has been shown that nearly all known 

protein-protein complexes can be modeled, provided there are strong homologs deposited 

in the PDB for each of their components (Kundrotas, Zhu, Janin, & Vakser, 2012). 

Community-wide assessments such as CASP (Critical Assessment of protein 

Structure Prediction) and CAPRI (Critical Assessment of Predicted Interactions) serve as 

important platforms to not only evaluate the performance of current structural prediction 

servers, but to also challenge participants with unique targets and encourage advances in 

server methodologies. ClusPro v2, a participant in CAPRI since Round 13, including all 

joint CASP-CAPRI rounds, has repeatedly ranked among the top servers (Lensink et al., 

2018; Lensink, Velankar, & Wodak, 2017; Lensink & Wodak, 2013). The ClusPro server 

performs three main steps: (1) Fast Fourier Transform (FFT)-based rigid-body sampling, 

(2) ranking via cluster population, and (3) energy minimization to remove steric clashes. 

This algorithm has proven itself to be an effective method for a variety of targets. 

Features added to ClusPro, including the ability to account for Small Angle X-ray 

Scattering (SAXS) profiles (Ignatov, Kazennov, & Kozakov, 2018; Xia et al., 2015) and 

pairwise distance restraints (Xia, Vajda, & Kozakov, 2016), have been motivated by 

specific CAPRI targets, where this information was made available to predictors. More 

recently, CASP-CAPRI targets inspired the addition of a tool for the discrimination 

between biological and crystallographic dimers (Vajda et al., 2017). 

While early CAPRI targets presented participants with crystal structures for one 

or even both complex subunits, later rounds, including those combined with CASP 

rounds, have required participants to use homology models as representative subunit 
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structures. ClusPro, as a free docking server, has not previously incorporated homology 

modeling into its automated protocol, instead either relying on structural predictions from 

CASP participants or on homology models generated by the HHPred web server 

(Zimmermann et al., 2018). These models were then submitted for ClusPro docking in 

hopes of producing a near-native interface. This method was employed in CASP12, and 

produced an acceptable or better solution within the top 10 submitted models in 7 of 10 

targets, 3 of which were of medium quality (Lensink et al., 2018). However, compared to 

other servers employing template-based modeling approaches, ClusPro generally 

produced fewer high accuracy results. 

 In a retrospective study (Porter, Desta, Kozakov, & Vajda, 2019) on 15 validated 

homodimers from CASP11-CAPRI and CASP12-CAPRI assessments, it was shown that 

template-based modeling greatly increased the reliability of predictions for the 12 

designated easy targets. When templates were available, higher quality predictions were 

produced via template-based modeling alone (Table 4.1). Interestingly, for one of the 

three difficult targets (T72/T0770, T86/T0815, and T116/T0893) that did not have 

suitable templates, global docking yielded an acceptable model, whereas the template-

based method produced none. These findings further support the need for ClusPro to 

incorporate both free docking and template-based searches into its predictive strategy. 
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Table 4.1: Number of models by template-based docking (A), global free docking (B), and focused free 
docking (C). 

CAPRI ID PDB ID A B  C 
T69 4Q34 1* 1* 1* 
T72 4Q69 0 1* 0 
T75 4Q9A 3*/2** 2* 3*/2** 
T79 5A49 2*/2** 2* 2*/2** 
T80 4PIW 10*/6** 10*/1** 10*/3** 
T85 4WJI 8*/5** 8*/3** 8*/4** 
T86 4U13 0 0 0 
T87 4WBT 9*/4** 9* 9*/2** 
T90 4XAU 10*/4** 10*/3** 8*/3** 
T91 4URJ 6*/2** 4* 5*/1** 
T92 4W66 2* 3* 10* 
T93 4XRR 8*/5** 9*/2** 8*/3** 
T94 4W9R 1* 0 1* 
T116 5IDJ 0 0 0 
T119 5YVS 9*/2** 9*/1** 8*/2** 

TOTAL 69*/32** 68*/10** 73*/22** 
*  Acceptable or better predictions 
** Medium or better predictions 
 

Here we present the template-based modeling feature of ClusPro; this protocol 

will be discussed in reference to T152/T1003, a homodimer, as an example of a 

straightforward case where many good templates are available, followed by the 

discussion of targets T142/H0974 and T141/T0976 that required more complicated 

modeling steps. We will discuss plans to further expand ClusPro TBM by incorporating 

new template selection techniques, modeling/docking decision making, and inputs for 

experimental data such as SAXS profiles and Electron Microscopy (EM) density maps to 

help guide the modeling process.  
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4.2 Methods 

For each target, we first attempted to perform template search/homology 

modeling using the novel ClusPro template-based modeling functionality. Whenever 

templates were available, the resulting models were submitted as target predictions. 

When no templates were identified, we used ClusPro free docking capabilities to generate 

the models. 

 
Figure 4.2: General outline of the ClusPro template-based modeling (TBM) protocol. A) ClusPro TBM 
takes component sequences and their corresponding copy numbers in the modeled assembly as inputs. B) 
HHpred is used to find potential templates for each query sequence and HHpred hits sharing a common 
structural template are identified. C) The HHpred hits are combined to obtain potential assembly-
generating arrangements for each template structure (arrangements in the figure are examples, and are not 
necessarily generated as a part of a single server job). D) The arrangements are evaluated on their ability to 
produce a model with user-specified stoichiometry based on biological assemblies specified in the template 
PDB file. E) Arrangements passing the stoichiometry filter are used to construct the assembly models using 
MODELLER. 
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4.2.1 Template-based Modeling 

As inputs, the ClusPro template-based modeling module requires a set of 

sequences in FASTA format and the stoichiometry of the assembly to be modeled (Figure 

4.2A). Potential structural templates for each query sequence are identified using a local 

installation of HHpred (Soding, Biegert, & Lupas, 2005), which runs HHblits and 

HHsearch using default settings and searches through the latest versions of uniprot20 and 

pdb70 databases, respectively. HHpred results are filtered by HHpred probability (>90%) 

and query sequence coverage (>50%), after which PDB structures that have at least one 

HHpred hit for each of the unique query sequences are identified (Figure 4.2B). We term 

such a “shared” PDB file and a set of HHpred results pointing to it a “common template”. 

It should be noted that a single PDB template can accommodate several hits of the same 

query sequence in different positions and chains, and these multiple hits are included in 

the “common template”. 

Since a single “common template” can have multiple HHpred hits from a single 

query sequence, various combinations of hits can be used to construct different “hit 

arrangements”, potentially leading to different assembly models. We combinatorially 

generate all such possible “hit arrangements”, with the requirement that at least one hit 

for each query sequence is present in the arrangement. The resultant arrangements can 

represent a variety of query-template relationships (Figure 4.2C). 

For each generated arrangement, we iterate through all biological assemblies 

specified in the shared template PDB structure and check whether this template assembly 

can be used to produce a model of user-specified stoichiometry given a particular “hit 
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arrangement” (Figure 4.2C,D). Figure 4.2C provides examples of some representative 

HHpred hit arrangements for homo and heterooligomeric multimers that were present as 

targets in CASP13. The leftmost in Figure 4.2C-1 depicts the most straightforward 

homooligomeric case, where a single query sequence is aligned to a separate chain in the 

template PDB. If the target in this case is an A2 complex, the required template 

stoichiometry for this arrangement is also A2.  Figure 4.2C-2 shows a more complicated 

case, in which a single query sequence aligns to multiple regions within the same chain of 

a template PDB. This relationship is likely to occur when the template protein is a result 

of gene duplication and fusion as seen in T141/T0976 (see Section 4.3.3). If the target is 

a dimer in this case, the template should be a simple monomer. Figure 4.2C-3, represents 

the simplest heterooligomeric case, where two query sequences align to two different 

template chains. Similar to the simplest homooligomeric case, the template stoichiometry 

here should match the stoichiometry of the modeled assembly. For example, a simple 

heterodimer target needs a heterodimer template to be modeled correctly. Finally, Figure 

4.2C-4 shows a case where different query sequences align to the same region within the 

same template chain. Such an outcome is likely to happen if query sequences are related 

to each other (like in T142/H0974). The template in such a case needs to be a 

homomultimer with the number of subunits equal to the combined number of S1 and S2 

subunits of the target assembly. For instance, the template needs to be a homodimer if the 

target is a heterodimer. 

If the assembly template matches the stoichiometry requirements, it is used to 

construct an assembly model. For each query sequence, the top-ranking HHpred hit from 
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the arrangement is used to construct the model of the monomer. The target sequence is 

modeled onto a single chain of the homo-multimeric template using MODELLER (Webb 

& Sali, 2016). Regions of the target which are not aligned to a template sequence are 

removed to avoid the addition of unstructured loops into the model, while aligned 

portions of the target are built with the same backbone. Once produced, the monomer 

model is copied and aligned to other locations of the multimer template based on HHpred 

hits for the given query sequence present in the “hit arrangement”, followed by interface 

minimization. These models are ranked based on the averaged ranks of HHpred hits used 

to build the models of the monomers. The server also provides an advanced option for 

manually curated homology modeling, allowing the users to upload their own templates 

and alignments. 

4.2.2 Free Docking 

When assembly templates were not available, we used ClusPro free docking 

capabilities to generate the predictions. Monomer models were constructed using the 

HHpred server (Zimmermann et al., 2018). When the HHpred server did not produce any 

models, we used monomer models as predicted by the CASP servers. The free docking 

pipeline was as described previously (Kozakov et al., 2017). Briefly, the FFT-based 

PIPER protein docking program (Kozakov et al., 2006) is used to generate 1000 low-

energy poses which are then clustered together using a 9 Å clustering radius. Clusters are 

ranked by their populations and cluster centers are treated as complex models. These 

models are subjected to local energy minimization by CHARMM (Brooks et al., 2009) 

and returned as final server predictions.  
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4.2.3 Co-minimization via CHARMM  

Both for template-based and free docking models, CHARMM was used to co-

minimize the modeled interface using the PARAM19 force field with polar hydrogens 

only. ClusPro TBM complexes were first minimized using 1000 steps of Adapted Basic 

Newton-Raphson (ABNR) minimization, with harmonic restraints set on the alpha 

carbons, to remove larger clashes that would otherwise occur in the interface. The 

harmonic restraints were then removed, followed by 1000 steps of unconstrained ABNR 

minimization. A constant dielectric was used during the energy calculations, and a 

distance cutoff of 15 Å when considering non-bonding interactions.  

 

4.3 Results and Discussion 

Similarly to previous CASP-CAPRI rounds, the majority of targets in CASP13-

CAPRI were homomeric complexes. As the majority of biological assemblies in the PDB 

are also homomeric, the targets of this type, compared to heteromeric targets, are much 

more likely to have structural templates readily available. Additionally, our experience 

with previous CASP-CAPRI rounds suggests that structural templates, when present, 

enable the construction of higher accuracy models than those generated using free 

docking approaches.  

Motivated by these observations, we utilized a template-first pipeline to predict 

the structures of target complexes, in which we performed template-based modeling 

whenever assembly templates were available, and used free docking otherwise. Here we 
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describe several representative cases from the last CASP-CAPRI round that highlight the 

new server functionality. 

4.3.1 CASE 1: T152/T1003, a simple homodimer 

 
Target T152/T1003, 5'-Aminolevulinate Synthase 2, serves as an ideal template-

based modeling case, having A2 stoichiometry and an abundance of available templates 

with high sequence similarity (~up to 48% sequence identity).  Within the first 11 

structures suggested by an HHpred template search, 10 were available as dimerized 

biological assemblies. All were listed with reported HHpred probabilities of 100, which 

exceeds the value (0.95) considered high enough to indicate certain homology between 

query and template sequences (Zimmermann et al., 2018). As our protocol describes, for 

each of these templates, MODELLER produced monomer models, which were then 

copied onto each unit in the corresponding template assembly. The first five models 

submitted by ClusPro TBM were based on templates 2W8T, 2X8Y, 5TXR, 3TQX, and 

2BWN, and were all evaluated as medium quality models. Figure 4.3 shows a 

representative model produced by ClusPro TBM. 
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Figure 4.3: Model of T152/T1003 (green and cyan) overlapped with its homodimeric template (wheat, 
PDB 2W8T). 

 

4.3.2 CASE 2: T142/H0974, heterodimer based on homodimer 

Target T142/H0974 with A1B1 stoichiometry is an example of successful 

modeling of a heterodimer using homodimeric complexes of remote homologs as 

templates. The target represented a heterocomplex of DNA binding proteins, and the 

sequences of the target subunits were homologous to each other. Predictably, the 

templates identified by HHpred were predominantly homodimeric complexes, and 

HHpred hits for target subunits were usually mapped to the same chain of the template 

structure. While handling of such templates is trivial when done manually, it is less 

straightforward in the automatic regime. The arrangement procedure implemented in 

ClusPro TBM was successful in automatically determining the homomeric templates as 



 

 

62

having suitable stoichiometry and correctly aligning the monomer models onto different 

chains of the template assembly, producing three medium quality and one acceptable 

models. Figure 4.4 shows an example homomeric template (PDB 4RYK) together with 

the predicted complex model based on it. 

 

 

Figure 4.4: A model of T142/H0974 (green and cyan) overlapped with its homodimeric template (wheat, 
PDB 4RYK). 

 

4.3.3 CASE 3: T141/T0976, homodimer based on monomer 

Another notable docking target was a homodimer formed by the Rhodanese-like 

family protein SCHU S4. The only productive template identified by HHpred was, in 

fact, a monomeric fusion protein that had appeared in three different HHpred hits. Since 

the hit arrangement procedure of ClusPro TBM allows for model construction from 

multiple HHpred hits, two of these HHpred hits using non-overlapping regions of the 
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template chain were used by the server as monomer alignment sites to construct an 

acceptable quality model (Figure 4.5). 

 
Figure 4.5: Modeled subunits (green and cyan) of T141/T0976 aligned to different locations on the same 
chain of the template protein (wheat, PDB 1YT8). 

 

4.3.4 Future Directions 

Our template-based modeling demonstrated promising results in CASP13, 

however, it can be further improved by implementing more sophisticated template 

searches, adding follow-up free docking steps, and incorporating experimental data. In 

the following sections, we discuss existing limitations in the methodology and propose 

potential enhancements to the server. 
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As demonstrated by target T137/T0965, routine template-based modeling may 

sometimes lead to low-quality models. Following an HHpred search of the provided 

sequence, numerous high-probability (>0.95) homodimer templates are given. The target 

appears an easy one, with a noticeable agreement between the top ten template interfaces. 

However, none of the models produced by ClusPro were evaluated as acceptable or better 

compared to the crystal complex (PDB 6D2V). The template complex for this target has 

correct contact location, however, one of the subunits is 130 degrees rotated with respect 

to the target structure (see Figure 4.6). 

 
Figure 4.6: A model (green, cyan) of T137/T0965 superimposed with the native structure (wheat, PDB 
6D2V). The green subunit is visibly rotated, compared to the native interface. 
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This case demonstrates the need for a merger between template-based and free 

docking methodologies. While our template-based method alone failed, it was later 

shown that the complex could be solved by applying free docking with restricted 

sampling (i.e. “focused” docking) about the modeled interface. Thus a criterion should be 

developed which can effectively distinguish deceptive templates and switch the protocol 

from template-based mode to free docking. 

Ranking of the different templates is another issue of the template-based method 

which could be resolved by free docking. We tested an approach based on re-docking the 

separated subunits of the models to be evaluated. The expectation was that the more 

correct models would be more frequently reconstructed. This approach was inspired by 

the problem of discriminating between biological and crystal contacts in X-ray structures 

(Yueh et al., 2017). For targets with several different template models, this strategy might 

be applied to rank and prioritize them by the number of low energy docking solutions 

discovered in the neighborhood, which can be a good indicator of a low free energy state. 

The successful example of this approach was target T75/T0776 (PDB 4Q9A) from the 

previous CASP11-CAPRI challenge, for which 2 significantly different templates were 

available (see Figure 4.7). The number of docking poses near the correct template model 

was about twice the number of poses near the incorrect one. 
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Figure 4.7: Two different T75/T0776 models (green-cyan and yellow-pink) aligned to one of the subunits 
of the target structure (gray, PDB 4Q9A). When the subunits are re-docked to each other, the number of 
near-native hits produced by the yellow-pink model was nearly twice that of the green-cyan model. 

 

Over the years the ClusPro free docking procedure has been enhanced with a 

variety of tools for incorporating experimental data, including options for using SAXS 

and arbitrary restraints. At this point, however, these tools are not available as a part of 

the template-based modeling pipeline, which is a definite flaw of the current version of 

the server. In addition to the need for making the existing tools available through the 

TBM interface, the latest CASP-CAPRI round has demonstrated that ClusPro needs to be 

enhanced with tools for handling EM data, which is currently rapidly growing in 

availability. One particular example where EM was used in a human submission was 

target T159/H1021, representing a portion of a contractile insertion system and 
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possessing A6B6C6 stoichiometry. For this target, a low-resolution EM map (EMDB-

2419) was available at the time the target was made open. Also, while there was no 

template for the assembly as a whole, partial templates were available (for instance, 1J9Q 

for the A6B6 portion and 1J2M for the B6C6 portion). Thus, for our submission as a 

human group, we individually fitted these partial templates into the EM map using a new 

version of the fast manifold Fourier transform (FMFT) software (Padhorny et al., 2016).  

 
Figure 4.8: Template based modeling of target T159/H1021 assisted by low-resolution Electron 
Microscopy data. A) EM density map (EMDB-2419). B) Partial template for subunits A and B aligned to 
the EM map C) Partial template for subunits B and C aligned to the EM map. D) Mutual arrangement of 
the templates induced by the EM map. 
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During the fitting procedure, the EM density grid was correlated with the steric density 

grid of the template being fitted, and 350 best-scoring conformations were clustered to 

produce the final fitting poses. These poses were combined to build the global assembly 

template (see Figure 4.8), which we then used for homology modeling with 

MODELLER. The resulting models recapitulated the global geometry of the assembly, 

and had several interfaces evaluated as acceptable or medium quality. However, working 

with EM data is not yet implemented in ClusPro.  

 

4.4 Conclusions 

With the latest template modeling addition to ClusPro, the server is now able to 

submit models produced by template-based modeling or free docking. The protocol has 

been successful for a variety of cases; for example, we have shown that ClusPro TBM is 

well suited for modeling straightforward homooligomer targets (such as T152/T1003), as 

well as cases requiring less-conventional models based on a combination of HHpred hits. 

For T142/H0974, successful ClusPro models were produced by modeling the target, 

which had A1B1 stoichiometry, on homodimer templates. We also describe a case, 

T141/T0976, where another modeling mode was explored, in which the predicted 

structures of the A2 target are modeled on different regions of monomer templates.  

This test of the ClusPro TBM module has been very promising as predictions 

were successful across the majority of the assessment targets. However, an important 

caveat is that most CAPRI targets were homomers, and hence the new module needs 

substantial further testing on heterodimers. Nevertheless, the targets of the current 
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CAPRI rounds already inspired several new avenues to server improvement. 

Experimental data, like the EM maps used in H1021 prior to docking, may prove useful 

for future complex prediction challenges, either as a modeling guidance tool or perhaps 

even as a scoring method for template-based models. Template discrimination is another 

important aspect of our modeling approach which will require future work, but whose 

success would improve the efficiency of the ClusPro TBM protocol. An even more 

challenging problem arose in target T137. Despite a strong agreement between template 

structures, the target complex can only be reproduced when focused docking is applied. 

Integration of free docking and template-based modeling into one pipeline may help to 

expand the number of difficult targets that can be tackled by ClusPro. 

Not all targets in the latest assessment were well suited for ClusPro TBM. If no 

good templates were available, free docking of subunit models was used to generate 

predictions. Unfortunately for the few targets where this was the case, there were no 

acceptable or better predictions, which may be attributed to the low quality of the 

templates used. In fact, the side chain positions and loop conformations are usually less 

accurate in the homology models than in the X-ray structures of the separately 

crystallized constituent proteins of a complex. It appears that the methods and parameters 

developed for docking X-ray structures are less than optimal for docking such homology 

models, and there is a well-defined need for adjusting the methodology.  A beta version 

of ClusPro TBM is available at https://tbm.cluspro.org/. 

https://tbm.cluspro.org/.
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Appendix A: Supplemental Tables for PEPTIDE-PROTEIN DOCKING 

Table A.1: Definition of sequence motifs for the extraction of fragments from the PDB for the PeptiDB v2 
set. For each peptide sequence, docking motif selection is shown in a step by step fashion, following the 
motif building rules detailed in Section 2.2.1. 
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Table A.2: Definition of sequence motifs for the extraction of fragments from the PDB for the “Recent 
PDB” set. For each peptide sequence, docking motif selection is shown in a step by step fashion, following 
the motif building rules detailed in Section 2.2.1. 

 
 
 

Table A.3: Fragments extracted from the PDB using the KXRRL motif for binding of CDC6 derived 
peptide to cyclin. Fragments were clustered according to a 0.5Å RMSD cutoff, and ranked according to 
cluster size (1051 fragments were clustered into 40 clusters; the top 25 were used for docking). The source 
PDB of the cluster center, as well as its RMSD to the native peptide conformation in the complex are 
indicated in the 3rd and 4th column, respectively. 

Cluster Cluster Size Source PDB RMSD – C� (Å) 
1 417 2B8P 2.91 
2 256 3P50 2.04 
3 87 1G3I 0.44 
4 63 3UKX 0.85 
5 26 2CQS 1.98 
6 19 1AGI 2.69 
7 18 1JVB 1.89 
8 16 1BL9 1.65 
9 14 3VZB 2.17 

10 9 1A25 1.38 
11 8 2HPI 1.63 
12 7 2Z11 1.85 
13 6 1PML 2.72 
14 6 1YEW 2.35 
15 6 1WN1 0.44 
16 6 3TFH 2.64 
17 5 3A5Z 1.05 
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18 5 4M59 1.32 
19 4 1JKG 2.03 
20 4 2YN9 2.11 
21 4 3HM0 0.85 
22 4 4GQY 2.01 
23 3 4LQS 2.05 
24 2 3KH5 1.8 
25 2 1YRP 1.68 
26 2 2E61 0.6 
27 2 2FEF 1.44 
28 2 2H1E 2.53 
29 2 3A32 0.72 
30 2 3C1A 1.39 
31 2 3IL0 1.76 
32 2 3KTW 0.98 
33 2 3N05 1.77 
34 2 3QWU 1.53 
35 2 3Q6S 1.06 
36 2 3SL7 1.89 
37 2 4B0R 0.91 
38 2 4GQV 1.72 
39 2 4M4W 2.89 
40 1 1G4A 0.65 
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Table A.4: Docking results for representative fragments, based on KXRRL motif, of CDC6 derived 
peptide binding to cyclin. Models were clustered using a 3.5Å RMSD threshold into 100 clusters, and 
ranked according to cluster size. RMSD values to the native conformation are given both for the structure 
before and after local minimization in the 3rd and 4th column, respectively. The 3rd ranking cluster is 1.9Å 
RMSD away from native structure. 

Cluster Center Cluster Size RMSD (Å) RMSD after Minimization (Å) 
1 714 8.8 9.0 
2 559 4.6 4.7 
3 424 2.7 1.9 
4 274 5.0 4.8 
5 181 8.0 8.8 
6 171 10.0 9.5 
7 169 10.0 10.5 
8 169 35.7 36.1 
9 145 4.4 3.3 

10 145 4.9 6.3 
11 122 7.7 8.4 
12 117 4.3 5.6 
13 112 5.4 5.0 
14 110 4.5 5.3 
15 105 35.0 34.5 
16 104 5.0 4.4 
17 101 8.0 9.3 
18 101 7.8 7.8 
19 94 5.3 4.8 
20 86 4.6 5.0 
21 83 9.7 9.8 
22 83 34.1 34.5 
23 75 9.8 9.8 
24 72 10.8 10.0 
25 68 7.0 4.5 
26 68 5.1 6.1 
27 61 4.2 4.2 
28 60 7.4 8.4 
29 59 5.2 5.4 
30 58 5.1 4.6 
31 54 9.3 9.5 
32 49 33.9 35.3 
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33 48 36.3 36.3 
34 47 10.2 9.8 
35 46 7.7 6.7 
36 43 37.6 37.8 
37 43 8.4 8.3 
38 42 10.2 9.3 
39 37 9.2 9.4 
40 35 3.6 2.8 
41 35 32.1 32.7 
42 35 31.2 31.8 
43 32 5.8 5.9 
44 32 9.8 10.7 
45 30 9.1 8.7 
46 29 35.9 36.3 
47 29 12.5 12.3 
48 28 9.2 9.2 
49 28 34.4 35.8 
50 27 34.7 35.4 
51 26 35.4 36.0 
52 25 7.5 7.8 
53 25 5.5 6.4 
54 25 31.8 33.9 
55 24 6.3 6.6 
56 23 5.4 4.1 
57 23 8.2 8.4 
58 22 8.5 8.8 
59 22 11.7 11.3 
60 21 7.3 7.3 
61 21 25.4 26.2 
62 21 38.8 37.1 
63 20 7.9 9.0 
64 20 36.0 35.4 
65 20 38.8 37.2 
66 19 5.5 5.7 
67 19 8.0 8.6 
68 18 33.5 35.4 
69 18 9.1 8.7 
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70 17 7.8 8.0 
71 17 35.7 36.6 
72 16 7.4 6.2 
73 15 8.9 8.7 
74 14 6.9 6.3 
75 14 8.0 7.9 
76 13 9.1 10.5 
77 13 35.7 36.6 
78 13 5.7 8.0 
79 12 4.7 4.3 
80 10 7.9 8.1 
81 10 36.3 35.3 
82 9 5.2 3.8 
83 9 7.8 7.4 
84 9 33.2 35.2 
85 9 8.5 8.2 
86 9 8.0 8.0 
87 8 8.9 8.4 
88 7 35.9 36.3 
89 7 13.0 12.8 
90 6 5.9 5.6 
91 5 35.1 35.7 
92 4 10.0 9.5 
93 4 33.3 34.5 
94 4 5.1 5.8 
95 4 33.0 34.1 
96 4 9.9 10.6 
97 4 6.2 6.3 
98 3 9.4 11.0 
99 3 8.9 9.6 
100 1 5.2 5.9 

 



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Appendix B: Supplemental Figures/Tables for ANTIBODY MATURATION 

 
Figure B.1: Sequences for inferred CH65-CH67 lineage (Schmidt et al. 2013). Beginning with the highest 
affinity mature antibody (CH67), the necessary mutations to model the lower affinity antibodies are shown 
in each line. No structure was crystallized for CH66. 

 



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Figure B.2: Sequences for anthrax PA antibodies (Ataca 2018). Beginning with the highest affinity mature 
antibody (1184), the necessary mutations to model the lower affinity antibodies are shown in each line. 

 

Table B.1: Near native counts (within 10 Å to native interface) for CH65-CH67 lineage antibodies after 
docking with HA antigen assuming antibody bound conformation. 

Parameter Set1 CH67 CH65 I-2 UCA 
20deg_coeff71 433 411 393 393 
20deg_coeff107 433 408 388 390 
30deg_coeff5 719 701 677 661 
30deg_coeff50 746 749 683 670 
30deg_coeff53 748 754 683 663 
30deg_coeff86 741 736 689 668 
30deg_coeff98 776 769 693 681 
40deg_coeff51 793 825 661 522 
40deg_coeff96 752 750 649 534 
40deg_coeff98 888 955 863 793 

 
  



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Table B.2: Weighted near native average counts (within 10 Å to native interface) for CH65-CH67 lineage 
antibodies after docking unbound antibody ensembles. 

Parameter Set1 CH67 CH65 I-2 UCA 
20deg_coeff71 393.21 310.27 2.25 5.23 
20deg_coeff107 392.42 306.72 2.25 6.01 
30deg_coeff5 708.40 542.59 0.06 5.76 
30deg_coeff50 712.15 595.67 0.31 5.18 
30deg_coeff53 722.34 588.01 0.27 5.52 
30deg_coeff86 707.94 587.76 0.48 5.23 
30deg_coeff98 724.59 620.72 0.73 5.80 
40deg_coeff51 752.67 583.51 11.98 19.67 
40deg_coeff96 735.31 612.62 33.54 23.70 
40deg_coeff98 820.63 722.95 2.79 6.01 

Table B.3: Lowest PIPER energies associated with near native counts (within 10 Å to native interface) for 
CH65-CH67 lineage antibodies after docking with HA antigen assuming antibody bound conformation. 

Parameter Set1 CH67 CH65 I-2 UCA 
20deg_coeff71 -767.92 -721.25 -821.89 -810.26 
20deg_coeff107 -735.41 -686.41 -787.19 -778.76 
30deg_coeff5 -488.05 -458.85 -581.17 -591.03 
30deg_coeff50 -592.77 -573.80 -678.37 -680.22 
30deg_coeff53 -606.19 -586.75 -691.67 -694.73 
30deg_coeff86 -566.64 -552.60 -649.95 -647.48 
30deg_coeff98 -713.87 -701.70 -799.77 -790.96 
40deg_coeff51 -467.22 -484.58 -466.35 -453.07 
40deg_coeff96 -579.92 -605.39 -580.55 -563.83 
40deg_coeff98 -713.87 -701.70 -820.18 -803.38 

Table B.4: Lowest PIPER energies associated with weighted near native average counts (within 10 Å to 
native interface) for CH65-CH67 lineage antibodies after docking unbound antibody ensembles 

Parameter Set1 CH67 CH65 I-2 UCA 
20deg_coeff71 -725.27 -626.01 -34.66 -152.41 
20deg_coeff107 -686.19 -592.81 -32.94 -159.08 
30deg_coeff5 -536.68 -428.95 -4.98 -13.87 
30deg_coeff50 -627.91 -525.00 -28.01 -28.31 
30deg_coeff53 -639.90 -534.90 -28.01 -61.32 
30deg_coeff86 -592.36 -503.85 -26.46 -26.99 
30deg_coeff98 -735.51 -635.09 -34.90 -73.45 
40deg_coeff51 -448.45 -429.68 -143.55 -203.22 
40deg_coeff96 -549.42 -538.38 -312.21 -269.46 
40deg_coeff98 -772.86 -671.81 -85.19 -38.34 



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Table B.5: Predicted - ΔG values calculated from linear fits between experimental - ΔG values estimated 
from SPR data to N and PIPER energies from docking CH65-CH67 lineage antibodies with the HA 
antigen, assuming antibody bound conformation. 

Predicted - ΔG (kcal/mol) 
Parameter Set1 CH67 CH65  I-2 UCA 
20deg_coeff71 8.79 8.59 5.17 5.44 
20deg_coeff107 8.79 8.60 5.15 5.46 
30deg_coeff5 8.58 8.73 5.65 5.03 
30deg_coeff50 8.48 8.85 5.52 5.14 
30deg_coeff53 8.37 8.94 5.49 5.20 
30deg_coeff86 8.50 8.85 5.43 5.22 
30deg_coeff98 8.65 8.73 5.36 5.25 
40deg_coeff51 8.51 8.15 6.62 4.72 
40deg_coeff96 8.37 8.16 6.74 4.72 
40deg_coeff98 8.45 8.88 5.10 5.57 

 

Table B.6: Predicted - ΔG values calculated from linear fits between experimental - ΔG values estimated 
from SPR data to weighted N and PIPER energies from docking CH65-CH67 lineage unbound antibody 
ensembles. 

Predicted - ΔG (kcal/mol) 
Parameter Set1 CH67 CH65  I-2 UCA 
20deg_coeff71 8.72 8.62 5.02 5.62 
20deg_coeff107 8.71 8.61 4.98 5.69 
30deg_coeff5 9.01 8.32 5.20 5.46 
30deg_coeff50 8.95 8.40 5.20 5.44 
30deg_coeff53 8.98 8.36 5.19 5.46 
30deg_coeff86 8.93 8.43 5.20 5.42 
30deg_coeff98 8.94 8.42 5.19 5.44 
40deg_coeff51 8.80 8.59 5.25 5.36 
40deg_coeff96 8.84 8.54 5.26 5.34 
40deg_coeff98 8.83 8.55 5.22 5.39 

 
  



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Table B.7: Residual errors calculated between experimental - ΔG values and those predicted from linear 
fits of docking results from CH65-CH67 lineage antibodies (restricted backbone). 

Residual Errors from Estimated - ΔG (kcal/mol) 
Parameter Set1 CH67 CH65  I-2 UCA Average 
20deg_coeff71 5.87E-03 1.27E-02 7.59E-02 8.28E-02 4.43E-02 
20deg_coeff107 1.17E-03 8.12E-03 9.50E-02 1.04E-01 5.21E-02 
30deg_coeff5 2.04E-01 1.29E-01 4.00E-01 3.25E-01 2.65E-01 
30deg_coeff50 3.03E-01 2.44E-01 2.78E-01 2.19E-01 2.61E-01 
30deg_coeff53 4.15E-01 3.33E-01 2.41E-01 1.60E-01 2.87E-01 
30deg_coeff86 2.83E-01 2.46E-01 1.78E-01 1.41E-01 2.12E-01 
30deg_coeff98 1.33E-01 1.26E-01 1.15E-01 1.09E-01 1.21E-01 
40deg_coeff51 2.79E-01 4.54E-01 1.37E+00 6.41E-01 6.87E-01 
40deg_coeff96 4.15E-01 4.42E-01 1.50E+00 6.41E-01 7.49E-01 
40deg_coeff98 3.38E-01 2.73E-01 1.48E-01 2.13E-01 2.43E-01 

 

Table B.8: Residual errors calculated between experimental - ΔG values and those predicted from linear 
fits of docking results from CH65-CH67 lineage unbound antibody ensembles. 

Predicted - ΔG (kcal/mol) 
Parameter Set1 CH67 CH65  I-2 UCA Average 
20deg_coeff71 6.22E-02 1.97E-02 2.23E-01 2.66E-01 1.43E-01 
20deg_coeff107 7.26E-02 1.03E-02 2.68E-01 3.30E-01 1.70E-01 
30deg_coeff5 2.28E-01 2.88E-01 4.70E-02 1.07E-01 1.68E-01 
30deg_coeff50 1.65E-01 1.99E-01 4.73E-02 8.15E-02 1.23E-01 
30deg_coeff53 1.95E-01 2.43E-01 5.98E-02 1.07E-01 1.51E-01 
30deg_coeff86 1.43E-01 1.70E-01 4.16E-02 6.83E-02 1.06E-01 
30deg_coeff98 1.50E-01 1.80E-01 5.79E-02 8.86E-02 1.19E-01 
40deg_coeff51 1.73E-02 1.85E-02 1.15E-03 1.33E-05 9.25E-03 
40deg_coeff96 5.70E-02 6.20E-02 1.64E-02 1.15E-02 3.67E-02 
40deg_coeff98 4.50E-02 5.03E-02 2.56E-02 3.08E-02 3.79E-02 

 
  



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Table B.9: Experimental KD values for the CH65-67 lineage antibodies, estimated from SPR 
measurements (Schmidt et al. 2013). A) Ranges are shown for KD values using reported experimental 
errors associated with each measurement. B) Errors are propagated to - ΔG values. C) “Residual” error is 
calculated between the minimum and maximum - ΔG value and the value of - ΔG estimated from the 
reported KD value. 

 CH67 CH65  I-2 UCA 
A. Experimental KD (M) 
reported 3.60E-07 4.90E-07 1.42E-04 1.18E-04 
−  3.20E-07 3.90E-07 1.27E-04 1.04E-04 
+ 4.00E-07 5.90E-07 1.57E-04 1.32E-04 
B. Derived - ΔG (kcal/mol)  
estimated 8.79 8.60 5.25 5.36 
− 8.86 8.74 5.31 5.43 
+ 8.72 8.49 5.19 5.29 
C. Error propagated through calculation (kcal/mol) 
− 6.98E-02 1.35E-01 6.61E-02 7.48E-02 
+ 6.24E-02 1.10E-01 5.95E-02 6.64E-02 

 

Table B.10: Near native counts (within 10 Å to native interface) for anthrax PA antibodies after docking 
with PA antigen assuming antibody bound conformation. 

Parameter Set1 Fab1184 Fab1558 UCA 
20deg_coeff71 494 472 496 
20deg_coeff107 500 484 500 
30deg_coeff5 932 937 962 
30deg_coeff50 884 853 881 
30deg_coeff53 908 888 895 
30deg_coeff86 893 879 895 
30deg_coeff98 843 793 811 
40deg_coeff51 763 853 842 
40deg_coeff96 625 693 683 
40deg_coeff98 808 774 785 

 
  



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
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Table B.11: Weighted near native average counts (within 10 Å to native interface) for anthrax PA 
antibodies after docking unbound antibody ensembles. 

Parameter Set1 Fab1184 Fab1558 UCA 
20deg_coeff71 408.81 373.46 423.06 
20deg_coeff107 415.17 364.38 433.52 
30deg_coeff5 754.99 608.86 756.85 
30deg_coeff50 725.00 581.41 669.75 
30deg_coeff53 745.15 600.76 688.96 
30deg_coeff86 733.31 576.16 681.05 
30deg_coeff98 693.58 558.46 620.86 
40deg_coeff51 602.32 431.64 506.58 
40deg_coeff96 534.77 359.55 471.05 
40deg_coeff98 614.10 492.93 553.89 

Table B.12: Lowest PIPER energies associated with near native counts (within 10 Å to native interface) for 
anthrax PA antibodies after docking with PA antigen assuming antibody bound conformation. 

Parameter Set1 Fab1184 Fab1558 UCA 
20deg_coeff71 -922.37 -991.82 -1084.18 
20deg_coeff107 -890.23 -944.83 -1035.08 
30deg_coeff5 -548.34 -587.85 -673.31 
30deg_coeff50 -692.44 -714.06 -796.83 
30deg_coeff53 -705.17 -736.95 -825.51 
30deg_coeff86 -669.84 -689.16 -757.33 
30deg_coeff98 -852.04 -863.16 -949.03 
40deg_coeff51 -571.10 -596.90 -620.54 
40deg_coeff96 -713.06 -720.40 -744.56 
40deg_coeff98 -852.04 -863.16 -949.03 

Table B.13: Lowest PIPER energies associated with weighted near native average counts (within 10 Å to 
native interface) for anthrax PA antibodies after docking unbound antibody ensembles. 

Parameter Set1 Fab1184 Fab1558 UCA 
20deg_coeff71 -804.22 -889.77 -966.78 
20deg_coeff107 -771.49 -828.58 -904.33 
30deg_coeff5 -503.74 -552.42 -634.06 
30deg_coeff50 -601.40 -646.73 -721.05 
30deg_coeff53 -618.16 -669.19 -744.42 
30deg_coeff86 -573.49 -610.17 -674.59 
30deg_coeff98 -726.21 -768.03 -837.96 
40deg_coeff51 -489.56 -491.37 -519.14 
40deg_coeff96 -605.42 -609.60 -625.26 
40deg_coeff98 -726.83 -768.56 -839.60 



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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Table B.14: CHARMM Energy calculations for non-bonded interactions of antibody interface (within 10 
Å of HA) residues of FabCH67-HA complex. 

CH:RES_NUM2 delta-ENER 
(kcal/mol) 

delta-VDW 
(kcal/mol) 

delta-ELEC 
(kcal/mol) 

H:TYR_109 7.705 6.899 0.80616 
H:VAL_106 6.481 5.864 0.616 
L:ASP_93 6.385 2.882 3.504 
L:ARG_29 5.662 4.174 1.489 
H:ASP_107 5.364 4.991 0.373 
L:TRP_90 3.111 2.901 0.210 
L:ASP_95 2.710 2.204 0.506 
H:HIS_52 2.660 2.463 0.197 
L:SER_92 2.490 2.298 0.192 
H:ASN_54 2.466 2.359 0.107 
H:ASP_31 2.439 1.237 1.202 
H:TYR_33 1.795 1.670 0.126 
L:ASN_26 1.742 1.526 0.217 
L:ASP_91 1.740 0.099 1.640 
H:ARG_104 1.433 0.481 0.952 
H:GLU_102 1.370 0.282 1.088 
H:TYR_111 1.105 0.997 0.108 
H:GLU_65 0.970 0.012 0.957 
H:TYR_108 0.670 0.086 0.584 
H:TRP_50 0.563 0.753 -0.190 
H:ARG_72 0.548 0.038 0.509 
H:SER_105 0.539 1.024 -0.486 
H:PHE_110 0.504 0.097 0.407 
L:LYS_30 0.415 0.105 0.310 
H:SER_55 0.400 0.370 0.030 
L:ARG_31 0.376 0.002 0.374 
H:PRO_103 0.284 0.210 0.073 
H:ASN_32 0.268 0.190 0.077 
L:SER_94 0.166 0.034 0.133 
H:GLY_56 0.155 0.006 0.149 
H:ALA_57 0.142 0.005 0.137 
L:GLY_67 0.113 0.000 0.113 
H:GLN_62 0.105 0.002 0.102 
L:THR_68 0.088 0.003 0.085 
H:THR_58 0.069 0.004 0.065 
L:GLY_28 0.062 0.001 0.061 
H:HIS_35 0.058 0.006 0.052 



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
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H:GLY_100 0.046 0.000 0.046 
H:THR_30 0.043 0.140 -0.097 
H:TRP_47 0.041 0.021 0.020 
H:LEU_101 0.026 0.000 0.026 
H:PHE_29 0.023 0.004 0.019 
H:ILE_34 0.022 0.002 0.020 
H:TYR_27 0.022 0.050 -0.029 
H:ALA_99 0.021 0.000 0.021 
L:ILE_27 0.009 0.002 0.008 
L:SER_66 0.007 0.000 0.007 
H:THR_74 0.001 0.003 -0.001 
L:VAL_32 -0.000 0.000 -0.000 
H:ILE_51 -0.003 0.003 -0.005 
H:GLY_49 -0.008 0.000 -0.008 
H:GLY_112 -0.026 0.000 -0.027 
H:THR_28 -0.028 0.042 -0.070 
H:ALA_61 -0.123 0.000 -0.123 
L:VAL_97 -0.174 0.006 -0.180 
H:TYR_60 -0.239 0.004 -0.243 
L:ASN_25 -0.300 0.052 -0.353 
H:LYS_59 -0.431 1.373 -1.804 
L:HIS_96 -0.453 0.007 -0.460 

 

Table B.15: CHARMM Energy calculations for non-bonded interactions in the interface (within 10 Å of 
HA) of the FabCH65-HA complex. 

CH:RES_NUM2  delta-ENER 
(kcal/mol) 

delta-VDW 
(kcal/mol) 

delta-ELEC 
(kcal/mol) 

H:TYR_109 8.345 7.776 0.568 
H:ASP_107 7.761 4.681 3.079 
L:ARG_29 7.304 7.870 -0.567 
H:VAL_106 4.995 4.952 0.042 
L:ASP_95 3.897 2.101 1.796 
L:TRP_90 3.214 3.061 0.153 
L:ASP_26 2.896 0.979 1.917 
H:HIS_52 2.546 2.326 0.220 
H:ASP_31 2.411 1.342 1.069 
H:ASN_54 2.407 2.171 0.236 
H:GLU_102 1.937 0.304 1.632 
H:TYR_111 1.711 1.706 0.005 
L:SER_92 1.707 1.441 0.266 
H:ASP_57 1.678 1.734 -0.057 
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H:TRP_50 1.010 1.114 -0.103 
L:ASP_91 0.983 0.160 0.823 
H:HIS_33 0.914 0.739 0.176 
H:SER_105 0.886 1.172 -0.286 
H:ARG_104 0.808 0.123 0.686 
H:SER_55 0.720 0.685 0.035 
H:TYR_32 0.696 0.557 0.139 
L:SER_93 0.631 0.292 0.339 
H:ASN_59 0.440 0.364 0.076 
H:TYR_110 0.429 0.108 0.322 
H:ARG_72 0.403 0.041 0.362 
H:PRO_103 0.340 0.330 0.010 
H:ARG_98 0.198 0.007 0.192 
H:GLY_56 0.198 0.010 0.188 
L:SER_94 0.186 0.024 0.162 
H:TYR_108 0.158 0.064 0.094 
H:THR_28 0.155 0.035 0.121 
H:PRO_53 0.109 0.069 0.040 
H:THR_58 0.095 0.010 0.085 
H:PHE_29 0.066 0.003 0.064 
H:GLY_100 0.043 0.000 0.043 
H:TYR_27 0.023 0.024 -0.002 
H:TRP_47 0.018 0.011 0.007 
H:THR_30 0.013 0.091 -0.078 
H:GLY_99 0.002 0.000 0.002 
H:ILE_51 -0.005 0.007 -0.012 
H:GLN_65 -0.008 0.017 -0.025 
L:GLY_67 -0.040 0.000 -0.041 
H:ALA_61 -0.045 0.000 -0.045 
L:ILE_27 -0.090 0.004 -0.094 
L:LYS_30 -0.120 0.164 -0.284 
L:SER_31 -0.141 0.001 -0.142 
L:GLY_28 -0.144 0.002 -0.145 
L:ASN_68 -0.170 0.007 -0.177 
L:ASP_52 -0.212 0.002 -0.214 
H:TYR_60 -0.250 0.003 -0.255 
L:ASN_25 -0.254 0.002 -0.256 
L:HIS_96 -0.490 0.034 -0.524 
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Table B.16: CHARMM Energy calculations for non-bonded interactions in the interface (within 10 Å of 
PA) of the Fab1184-PA complex. 

CH:RES_NUM2 
delta-ENER 

(kcal/mol) 
delta-VDW 

(kcal/mol) 
delta-ELEC 

(kcal/mol) 
L:LYS_50 21.427 7.328 14.099 
L:PHE_94 5.732 5.319 0.413 
H:TYR_32 5.593 5.326 0.267 
L:TRP_32 4.841 4.388 0.453 
L:TYR_49 4.085 4.189 -0.104 
H:MET_100 3.960 3.657 0.304 
H:TYR_59 3.600 3.520 0.081 
H:ILE_102 2.802 1.719 1.083 
H:ASP_106 2.686 1.305 1.381 
L:TYR_91 2.604 1.478 1.126 
H:ASN_57 2.251 2.010 0.241 
H:SER_31 2.043 1.597 0.445 
H:THR_104 1.546 1.513 0.033 
L:GLU_55 1.484 1.014 0.471 
H:ARG_72 1.391 0.023 1.368 
H:SER_54 1.254 1.113 0.141 
H:THR_103 1.185 2.143 -0.957 
H:THR_28 1.114 1.039 0.075 
L:ASN_92 0.819 0.310 0.509 
L:LEU_96 0.773 0.589 0.185 
L:SER_56 0.707 0.429 0.278 
H:GLY_101 0.674 0.034 0.640 
H:PHE_27 0.506 0.042 0.464 
L:LEU_33 0.478 0.003 0.475 
H:PHE_29 0.426 0.002 0.424 
H:SER_30 0.418 0.027 0.391 
H:THR_58 0.401 0.024 0.377 
L:ALA_51 0.399 0.002 0.396 
H:LEU_34 0.389 0.001 0.388 
H:ALA_33 0.376 0.010 0.365 
H:GLY_53 0.371 0.028 0.343 
H:ILE_51 0.351 0.020 0.331 
L:GLN_89 0.324 0.077 0.247 
H:SER_52 0.319 0.172 0.148 
H:GLY_56 0.271 0.020 0.251 
H:LYS_65 0.256 0.007 0.250 
L:LEU_46 0.221 0.641 -0.420 



 

1 Parameter sets are distinguished by rotation ( ‘deg’) and weight (‘coeff’) set for the PIPER energy 
function 
2 Residues in red text identified as being mutated through affinity maturation  
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L:ALA_34 0.197 0.000 0.197 
H:GLY_26 0.170 0.000 0.170 
L:ILE_2 0.148 0.037 0.110 
L:SER_93 0.143 0.146 -0.003 
H:GLY_50 0.141 0.000 0.140 
H:GLY_55 0.140 0.015 0.126 
H:TRP_47 0.132 0.131 0.001 
L:PRO_95 0.090 0.034 0.056 
H:MET_35 0.083 0.065 0.017 
L:ILE_29 0.081 0.016 0.065 
H:VAL_2 0.058 0.006 0.052 
H:TYR_60 0.057 0.008 0.050 
L:SER_60 0.055 0.033 0.022 
L:ARG_61 0.055 0.000 0.055 
L:PRO_59 0.050 0.001 0.049 
L:PHE_62 0.034 0.000 0.034 
L:THR_97 0.016 0.005 0.011 
L:TYR_36 0.015 0.012 0.003 
L:SER_63 0.014 0.000 0.014 
L:SER_31 0.003 0.005 -0.002 
L:GLY_57 -0.001 0.005 -0.006 
H:PHE_105 -0.002 0.041 -0.043 
L:TRP_35 -0.024 0.001 -0.025 
L:LEU_54 -0.041 0.166 -0.207 
L:VAL_58 -0.072 0.009 -0.081 
H:GLU_1 -0.095 0.003 -0.098 
L:ASP_1 -0.098 0.002 -0.100 
H:ASN_74 -0.102 0.008 -0.109 
H:GLY_99 -0.110 0.001 -0.112 
L:GLN_90 -0.141 0.122 -0.263 
L:ILE_48 -0.164 0.017 -0.181 
H:TRP_108 -0.203 0.002 -0.205 
H:TYR_107 -0.262 0.098 -0.360 
L:SER_30 -0.280 0.008 -0.288 
L:LEU_47 -0.288 0.001 -0.289 
L:LYS_45 -0.304 0.001 -0.304 
H:GLN_98 -0.339 0.071 -0.410 
L:SER_52 -0.367 0.042 -0.410 
L:SER_53 -0.615 0.064 -0.679 
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