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A CO-CULTURE MICROPLATE PLATFORM TO QUANTIFY 
 

MICROBIAL INTERACTIONS AND GROWTH DYNAMICS 
 

CHARLES JO 
 

ABSTRACT 

 This thesis reports the development of BioMe, a co-culture microplate platform that 

enables high-throughput, real-time quantitative growth dynamics measurements of 

interacting microbial batch cultures. The primary BioMe components can be 3D-printed, 

allowing ease of fabrication and DIY accessibility in the microbiome community. A 

pairwise 3D-printed iteration of the BioMe device was used in diffusion and co-culture 

experiments. Genetically engineered Escherichia Coli lysine and isoleucine auxotroph 

strains were used to characterize the diffusion of amino acids across the porous membranes. 

Results demonstrated a nonlinear relationship between growth rate and pore size and also 

distinct diffusion behavior for lysine and isoleucine. Pairwise syntrophic co-culture 

experiments demonstrated synergistic but repressed interaction between these two paired 

auxotrophs. Investigation of the effect of varying initial amino acid conditions on growth 

dynamics demonstrated that small changes in initial media condition can consistently affect 

patterns of yield and growth rate of constituent microbial species.  
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(1) INTRODUCTION 

Microbial Community Interactions 

 The metabolism of an individual microbe is remarkably complex and variable, 

encompassing a plethora of metabolic processes that enable the survival and proliferation 

of a single organism [6, 7].  However, in the natural world, these individual metabolisms 

do not proceed in isolation. They are constantly interacting with the metabolisms and 

cellular processes of surrounding microorganisms, whether they be bacteria, fungi, viruses, 

or host cells – like our own [20, 53]. Highly intricate and multi-dimensional interaction 

networks emerge, whereby countless distinct species concurrently interact in varying 

fashions and degrees [16, 68]. Together, these interactions actively shape community 

structure and function, which is instrumental in an ecosystem’s health and stability [5, 11, 

22, 27, 57]. Welcome to the burgeoning field of  microbiome research. 

 There are numerous possible mechanisms of microbial interactions, which can be 

broadly categorized into two classes: direct and indirect interactions [48]. Direct 

interactions require cell to cell contact and include mechanisms like bacterial conjugation, 

intercellular nanotubes, and cell-recognition systems [56, 68]. This thesis will focus on 

indirect interactions, which are diffusion-mediated and contact independent. These include 

mechanisms like competition, chemical signaling (including quorum sensing), horizontal 

gene transfer, and cross-feeding [62, 77]. Cross-feeding, also known as syntrophy, is a 

relationship wherein an organism depends on the products of another to survive and 

proliferate. A variety of cross-feeding motifs are possible, with many resulting in the 

cooperation and mutualism of its constituent members [52, 62]. Indeed, these symbiotic 
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relationships can be further characterized by its positive or negative effect on each 

community member: competition (-/-), mutualism (+/+), parasitism (+/-), and 

commensalism (+/0) [41].  

 Despite the explosion in metagenomic, metabolomic, and metaproteomic data in 

the microbiome space, the sheer complexity of naturally-occurring microbiota makes it 

challenging to uncover causal relationships in these systems [9, 18, 46]. So how do we 

begin to unravel the nature and effects of these interactions? How about their mechanisms 

of interaction? These types of questions are partially responsible for the naissance of 

synthetic ecology: the rational design, construction, and investigation of engineered 

microbial consortia [2, 4, 24, 82]. Researchers can leverage this bottom-up approach to 

selectively investigate inter-specific interactions of interest to infer the nature of these 

relationships in more complex natural environments. 

 In 2014, Mee et al. utilized these principles of synthetic ecology to study simplified 

instances of cross-feeding in genetically modified bacteria [45]. In a portion of their study, 

they generated strains of E. Coli which were genetically recombineered to host a single 

amino acid auxotrophy, by knocking out a single gene essential for the amino acid’s 

production. These mutants were unable to survive without external supply of their deficient 

amino acid, but by performing pairwise co-cultures of complementary auxotrophs, they 

identified positive syntrophic interactions in a subset of these combinations. One such 

successful combination was that of the lysine auxotroph (ΔK) and the isoleucine auxotroph 

(ΔI), which were acquired and used for the experiments within this thesis. 
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Co-Culture Methods & Systems 

 In order to study the interspecific relationships that arise between microorganisms, 

it is necessary to co-culture the microbial species in such a way to allow for all or specific 

interaction mechanisms. Unfortunately, current co-culture methods face the great difficulty 

of disentangling the individual growth of constituent species in a community with high-

resolution and minimal operational challenge [48]. A prevalent method is mixed co-culture, 

where distinct microbial species are cultured in the same vessel [26]. In order to quantify 

community composition, genomic assays (ex: qPCR/16S sequencing) or phenotypic plate 

assays (ex: serial dilution and morphological differentiation) are required. This is limited 

by the sheer logistical challenge of performing an assay at each discrete timepoint, all the 

while disrupting the sample. [26]. This method also fails to reduce the system complexity 

by allowing both direct and indirect mechanisms of interaction. 

 Conditioned media exchange is another co-culturing method, wherein a microbial 

species is cultured in a vessel and the filtered supernatant media is transferred to another 

distinct microbial culture. This is limited by its inherent unidirectional and consecutive 

(nonconcurrent) process [48]. Co-cultures can also be performed directly on agar plates 

[32]. However, this effectively requires a phenotypic means of differentiating the bacterial 

species and limits robust quantification of growth dynamics. [26]. 

 In light of these pervasive method limitations and the recent renaissance in 

microbiome research, engineers throughout the world have recognized the need for devices 

and instruments that can enable improved co-culture studies. Given the enormous variety 

of emerging co-culture systems, a brief overview of two categories is provided. 
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 One such category is microfluidic systems [26]. An example is the NMMI 

(Nanoporous Microscale Microbial Incubator) [23]. Single cells are randomly seeded into 

porous chambers of a hydrogel incubator, which physically isolate the cells but allow for 

diffusion of metabolites and other small molecules. Another example is the kChip [36]. In 

short, communities of varying sizes and a random assortment of bacterial species can be 

generated on a massive scale via the isolation and merging of droplet-encased microbes. 

The greatest limitation of these complex microfluidic systems is the high-level of 

experience and expertise required, restricting its accessibility and widespread application. 

 A second category of co-culture systems are membrane partitioned devices. A 

wonderful case study is the iChip [3, 51]. Designed to address the “great plate count 

anomaly”, a chip was developed to embed microorganisms in their natural environment, 

separating them via a porous membrane. A larger pool of organisms was cultivated due to 

the presence of required native nutrients. A second example is the device reported in 2017 

by Moutinho et al., which described the development and successful application of a co-

culture plate, conceived independent of our own development of the BioMe plate [48]. This 

device, pictured in Figure A1, enabled real-time optical measurements of pairwise co-

cultures separated by a vertical diffusible membrane. 

 The BioMe co-culture platform aims to extend and enhance the concept put forward 

by Moutinho et al.’s co-culture plate, by improving on its limitations of accessibility (cost 

and manufacturing), throughput (>8 co-cultures), and design flexibility for higher-

dimensional co-cultures (3+ species).   
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(2) BIOME DEVELOPMENT 

Design & Components 

Seven key design principles guided the development of the BioMe plate: 

(1) Enable widespread compatibility with available lab equipment – general architecture 

of a standard 96-well microtiter plate.  

(2) Facilitate DIY fabrication by biologists, ecologists, and non-engineers - cost-effective 

and easy to manufacture. 

(3) Leakage-proof. Reliable experimental results and prevention of equipment damage. 

(4) Biocompatible and inert. Limited environmental modulation of cultures. 

(5) Sterilizable and reusable. Cost-effective, contamination-free repetitive use. 

(6) Prevent cross-contamination within and between co-culture samples. Confidence in 

decoupled bacterial cultures, without additional assays. 

(7) Flexible physical framework that can accommodate higher-order co-culture 

architecture. Potential investigation of complex microbial communities.  

 
Figure 1: SolidWorks CAD image of the BioMe plate with pairwise co-culture architecture for 

the observation of paired microbial species interactions 
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Figure 2: Fully assembled BioMe pairwise plate 

The BioMe co-culture platform enables high-throughput, high-resolution 

quantitative growth dynamic measurements for distinct constituent species within 

microbial communities. The multi-component device relies on porous membranes 

assembled between consecutive plate segments, isolating species to specific wells. This 

affords the ability to measure the growth of individual microbial species and their dynamic 

interactions via diffusion-mediated mechanisms. This includes, but is not limited to: 

resource competition, symbiotic cross-feeding, horizontal gene transfer, and quorum 

sensing. The batch cultures can be measured directly in the device using standard plate 

readers, allowing complete and undisrupted visualization of bacterial growth curves. 
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The general BioMe design fragments the microtiter plate structure into fundamental 

modular components: six primary body segments, and an optically clear base. Edge body 

segments (x2) are composed of 6 wells and middle body segments (x4) are composed of 

12 wells, for a total of 60 wells and 30 pairwise co-culture assays in the same device. A 

column of O-rings and membranes are positioned between each body segment and then 

fastened together by rods and nuts to produce a lateral seal. A vertical seal between the 

assembled body segments and the transparent base is created by gasket and screws. The 

core BioMe device is then fit into a bottom tray, which acts as a fail-safe in the event of 

leakage. A standard 96-well microplate lid is used to cover the device to prevent external 

contamination of the system. Parafilm may be used to seal the assembly to prevent 

extensive evaporation throughout lengthy experiments. 

     

Figure 3: (Left) Assembled BioMe plate pictured with the bottom tray and top lid (Right) Overview 
of all primary components for the assembly of the BioMe plate 
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Materials for each BioMe component are listed below in Table 1 and procurement 

sources and catalogue numbers for each material is provided in Table A1. An exploration 

of the selection and troubleshooting process for component materials is provided in the 

“Development & Validation” section of this chapter.  

Table 1: List of components and respective material used in the BioMe plate 

Component Material 

Primary Body Segments 
Machined: Semi-Clear White Polypropylene, 3/8” Thick 

3D-Printed: Dental SG Resin 

Optically Clear Base 
Clear, Scratch-, UV-, and Impact Resistant 

Polycarbonate, 1/8” Thick 

Gasket 
Food-Grade High-Temperature Silicone Rubber Sheet, 

1/32” Thick, 40A Durometer (Medium Soft) 

O-Rings 
High-Temperature Silicone O-Ring, 1mm wide, 6mm 

Inner Diameter 

Rods 
18-8 Stainless Steel Threaded Rod, 6-32 Thread Size, 6” 

Long 

Nuts 18-8 Stainless Steel Flange Nut, 6-32 Thread Size 

Screws 
316 Stainless Steel Hex Drive Flat Head Screw, 82o 

Countersink, 4-40 Thread Size, 1/2" Long 
Semi-Permeable 

Membranes 
Hydrophilic Polycarbonate Membranes. PVP-Treated, 

Track-etched. Custom 7.94mm diameter. 

Bottom Tray 
Fisherbrand Lid for 96/384 Well Plate, Clear, 

Polystyrene 

Top Lid 
Costar 96 Well Cell Culture Plate Flat Bottom – Lid, 

Non Pyrogenic, Polystyrene 

Five different varieties of membranes were tested and validated for use in the device: 

null (no pores), 0.03, 0.1, 0.2, and 0.4	µm pore sizes. The null, 0.03, and 0.1 micron 

membrane filters have a nominal thickness of 6µm and the 0.2 and 0.4 micron filters have 

a nominal thickness of 6-12µm. The pores are absolutely-rated, precisely cylindrical, and 

narrowly distributed, allowing their surfaces to capture 100% of particles larger than pore 
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sizes. These membranes are coated with polyvinylpyrrolidone (PVP) to better process 

aqueous samples. These membranes are thus engineered to be hydrophilic and polar in 

nature and cannot be reused, as it may result in degeneration of coating and loss of 

hydrophilicity. 

The design of the body segments specifically dictates the number of species 

allowed to interact. The images so far provided have demonstrated the design for pairwise 

co-culture interaction studies, as used for the experiment described in this thesis. However, 

the device framework was specifically designed to be flexible and easily modified to allow 

higher dimensional co-cultures (ex: three-species co-culture architecture). Unfortunately, 

these alternative designs and topologies were not tested and validated in the scope of this 

thesis, although its seamless design and manufacture is plausible in the established device 

architecture and assembly scheme. 

Certain caveats and limitations are inherent to the design of the BioMe plate, arising 

from the use of porous membranes and batch cultures. Implementation of the diffusive 

membrane imposes three constraints on experimental investigation. Firstly, the membranes 

limit microbial interactions to contact-independent mechanisms - this prohibits cell surface 

contact interactions. Alternatively, this may be viewed as an advantage of the co-culture 

platform, whereby the system complexity is reduced to a single class of interaction 

mechanisms. Secondly, the membrane impedes short-range cell-to-cell interactions, 

modulating the strength of cross-feeding, competition, and communication observed in 

well-mixed, unsegregated co-cultures. Thirdly, the intrinsic membrane material properties 

may bias the rate of diffusion of specific small molecules. These membrane-related 
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limitations are explored in detail in Chapter Three. 

Additional caveats are inherent to the use of in vitro batch cultures. Given the initial 

media composition is set and not replenished, characteristic features of microbial growth 

are resource-limited, including maximum biomass yield, exponential phase duration, and 

inevitable culture death. Thus, viable microbial cultures cannot be maintained indefinitely, 

with the observation of interactions limited to the initial concurrent growth of the multi-

species system — before sufficient nutrient depletion and waste accumulation. In lieu of 

these caveats, BioMe is best suited to probe the existence and relative strengths of 

interspecific interactions and their effects on initial community assembly and time-

dependent composition. 

 

Manufacturing 

All fabrication steps of the BioMe device were conducted at either Boston 

University’s  College of Engineering’s Engineering Product Innovation Center (EPIC) or 

the Singh Imagineering Lab (Tinker).  CAD drawings for manufactured components are 

provided in their respective sections, with dimensions provided in millimeters. 

 

Assembly Components (Ready-to-Use): 

Assembly components used in the final iteration of the BioMe were bought ready to use. 

These include the O-rings, the 6-32 flange nuts, the 4-40 screws, and the semi-permeable 

membranes. The 6-32 rods were cut to size, from 6” to 125mm using a grind wheel. 
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Food-Grade Gasket (Laser-Cut): 

Stock food-grade silicone rubber sheets were cut to gasket specifications using an Epilog 

Laser Mini 60W laser cutter (25% speed, 100% power, and maximum frequency). Direct 

exposure to the laser resulted in charring and ignition and subsequent warping of the 

silicone rubber. Trial and error demonstrated that wrapping the stock rubber sheet in 

dampened heavy duty wipers (shop towels) prior to laser cutting mitigated these issues. 

Well holes were slightly oversized (6.30mm = 105% of 6mm) in order to accommodate 

gasket squish upon assembly, as shown in Figure 4. 

 
Figure 4: SolidWorks CAD drawing of laser-cut food-grade silicone gasket 
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Optically Clear Base (CNC Milled): 

The optically clear base was machined via a single CNC mill operation. The CAD model 

for the base was first imported into GibsCamm software to specify the geometry and 

dimensions of the component. With geometry established, drilling operations for (1) 

through holes for the screws, (2) 82º countersink for the holes, and (3) contouring to cut to 

size were sequentially outlined. A 1/8” drill bit was used for steps 1 and 3, and a standard 

counterbore drill bit was used for the 82º countersink. The sequence of operations was 

crucial, as through holes were necessary prior to countersinking and cutting to size may 

pop the stock loose before conclusion of operations. Given the designed depth of the 

countersink, the drill bit would be required to drill past the bottom of the stock. Thus, 

sacrificial polycarbonate stock was securely taped to the bottom of the target stock to 

prevent destruction of the CNC mill tabletop. The CAD drawing is shown in Figure 5. 

 
Figure 5: SolidWorks CAD drawing of optically clear base 
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Body Segments (Machined): 

Fabrication of the primary body segments proved most difficult, with a total of six 

operational steps to yield the final device component. As with the base, GibsCamm 

software was used to detail the operations of the CNC mill. Given the CNC mill used was 

a standard three-axis milling machine, the milling of the vertical holes for the wells and the 

horizontal holes for the tunnels were performed in primary and secondary operations, 

respectively. The primary drilling operation consisted of: (1) through holes for vertical 

wells, (2) spot holes for the screw holes, (3) indicator hole at the bottom of top face segment 

to indicate orientation during assembly, and (4) contouring to cut to size. The secondary 

drilling operation on the side face of the segment consisted of: (1) spot holes for the rod 

holes, and (2) through holes for the horizontal tunnels. . A 1/8” drill bit was used for 

through hole and contouring operations, with a standard counterbore drill bit used for the 

spot and indicator holes. Each individual body segment was positioned side face up and 

clamped into place before secondary operation proceeded. For middle body segments, this 

was repeated for the other side face. Once CNC milling operations were concluded, a drill 

press was used to complete the spot holes, drilling the tap screw holes (4-40 tap screw = 

#43 drill bit) and the rod holes (6-32 rods free-fit = #32 drill bit). Each body segment was 

then manually tapped with a  4-40 tap bit and then deburred.  As demonstrated, manufacture 

of the primary body segment proved labor-intensive and a large obstacle for manufacture 

by those with limited engineering experience. The CAD drawing for the middle body 

segment of the final BioMe iteration (v8 – Ivy v2) is provided in Figure 6, with the 

drawings for both the left and right body segments given in Figures A2 & A3, respectively. 
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Figure 6: SolidlWorks CAD drawing of the middle body segment for both machined and 3D-
printed 

 

Body Segments (3D-Printed): 

In order to improve ease of fabrication and DIY accessibility, 3D printing was explored 

and successfully implemented in the final iteration of the BioMe device. Various types of 

3D printing exist, although many proved unfeasible due to inability to print watertight 

structures (ex: SLS), non-biocompatibility (ex: FDM), or necessity for unavailable 

equipment. FormLabs’ Form2 SLA printer was chosen due to its popularity and 

accessibility in the 3D printing market, quality of print relative to cost of resin and 

equipment, and availability of a biocompatible, autoclavable liquid resin: Dental Resin SG. 
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Fabrication of the body segments via 3D printing was reduced to three simple steps. First, 

a STL model was saved directly from the Solidworks CAD model and then uploaded to 

the FormLabs’ Pre-Form Software. The models were orientated vertically on the resin tank, 

without any supports to minimize post-processing and messy prints. The print was then 

allowed to proceed and conclude, with average print times for a whole device (6 body 

segments) taking ~10hrs. All that was left was to manually tap the undersized screw holes 

and then to sand down the body segments to required dimensions. The 3D printed pairwise 

variation of the BioMe plate was used for all subsequent experimental work. 

 

Machining vs. 3D-Printing: 

The decision to pursue 3D-printing was largely motivated by the desire to optimize and 

streamline manufacturing, in order to facilitate device fabrication by individuals with 

limited engineering and machining experience. However, as often faced in engineering, 

there are tradeoffs between the two manufacturing methods. Machining affords high 

resolution and fidelity to drawing specifications, with very low rates of failure. Most failure 

arises from improper manufacturing procedure. The downside of machining is the labor-

intensive, lengthy, and multi-step process necessary to yield a final product. On the other 

hand, 3D-printing is relatively quick & easy once a final design is successfully modeled. 

Unfortunately, there are significant downsides. Firstly, the prints are lower in resolution 

than machining, with great limitation in printing thin wall features. Secondly, print failures 

are quite frequent and sporadic, especially on older Form2 printers and used resin tanks. 

An example of failed body segments prints are depicted in Figure A4. 
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Development & Validation 

An iterative process of design, troubleshooting, and optimization was undertaken 

to produce a device that reliably operates under the seven key design principles. The 

following section will detail the issues and obstacles that were encountered and overcome 

throughout the eight stages of device iteration and its associated validation failures, 

troubleshooting process, and design improvements. Overall the greatest hurdles that will 

be addressed are: (1) Optimization of design for ease of manufacture and assembly, (2) 

Vertical seal and leakage, (3) Lateral seal and leakage/cross-contamination, (4) Material 

selection for biocompatibility and sterilization efficacy, (5) Sterilization method 

development and isolation of contamination root cause, (6) Dimensioning and tolerancing. 

Before proceeding with a discussion of the design process, it is important to detail 

the vocabulary used to describe the troubles faced with contamination. Contamination is 

the general term used to refer to any unintended bacterial growth in the device. Cross-

contamination refers to a bacterial culture either contaminating its paired co-culture well 

(intra-sample) or contaminating other co-cultures (inter-sample). Crossover refers to a 

bacterial microorganism squeezing its way through the pores of the membrane, thus 

contaminating the adjacent co-culture well (intra-sample). Contamination observed in 

experimental results was generally a result of cross-contamination due to technical errors 

and limitations, notably an imperfect lateral seal between body segments, O-rings, and 

membranes. 
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Validation Experiments : 

Two experiments were used to validate the use of the BioMe plate: (1) Leakage & 

pH test, and (2) Sterilization validation. The leakage and pH test was a simple visualization 

test, whereby all wells of the assembled BioMe device were seeded with 250"L of 100"M 

phenol red, a pH indicator. The core BioMe device was then placed atop a paper towel and 

then fit into the bottom tray and covered with the top lid. This allowed for a simple test of 

leakage and environmental modulation of the culture. If no leakage was observed, the 

experiment was repeated with no paper towel and taking start and end point OD 

measurements at the acid (432nm), isosbestic (478nm), and basic (558nm) OD points for 

phenol red. Stability at these values indicated inert properties of the material. 

Sterilization validation was used to assess the successful sterilization and reuse of 

the BioMe device. Bacterial cultures of E. Coli were grown up for 72hrs at 30°C in a static 

incubator, in order to allow complete growth and potential formation of biofilms. The 

device was then sterilized following the working sterilization method and then reseeded 

with fresh no-antibiotic media and incubated for 72hrs. If visualization determined no 

bacterial growth, each well was plated onto agar plates to confirm the lack of bacterial 

contamination. 

 

Development Process – Optimization & Troubleshooting: 

 The first original design of the BioMe device utilized individual polycarbonate 

bases and O-rings to produce the vertical seal, as well as individual O-rings to produce the 

lateral seal. The device design is pictured in Figure 7. 
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Figure 7: BioMe v1 – Original design for the co-culture platform 

Thus, in order to optimize the ease of manufacturing and assembly, a universal one base 

and gasket system for all body segments was explored. Moving forward, the base was used 

as the foundation of all design, as the overall dimensions were set to allow fit into the 

bottom tray and congruence with 96-well plate architecture. 

 Problems were immediately encountered using the one base and gasket system, 

notably during the leakage and pH test. The phenol red samples in the BioMe device 

demonstrated consistent and measurable increase in pH. In order to identify the root cause 

of this modulation, each device component was individually tested in a beaker of phenol 

red. It was determined that the laser-cut red high-temperature silicone gasket was leaching 

its dye into the solution, not only modulating its acidity based on its absorbance but also 

based on simple pH strip testing. Figure 8 pictures the discoloration and pH modulation 

specific to the base gasket in 100"M phenol red solution. The material of the gasket was 

then changed to transparent high-temperature silicone gaskets, which demonstrated no 

modulation of the pH. 
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Figure 8: pH & Leakage testing of device components. (Top) Failed pH & Leakage test, with 
modulation of pH by device. (Bottom) Laser-cut red silicone gasket  responsible for pH modulation 

Leakage was pervasive in many of the early iterations of the BioMe device. In order 

to facilitate discussion, improvements will be discussed in terms of the vertical and lateral 

seal. In terms of the vertical seal, originally the design called for three 4-40 3/16” screws 

per body segment. However, the short length of the screw proved quite adept at stripping 

the threads of the tapped holes in the body segments, especially when large forces were 

applied to secure the seal with the base and gasket. Thus, the design was amended to 

accommodate four 4-40 ½” screws per body segment, which improved the robustness of 

the seal and prevented thread stripping. 
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  The design sought to further optimize the ease of assembly by utilizing side gaskets 

for the lateral seal, rather than the individual placement of six O-rings per column. The first 

major obstacle was that the gasket changed the required dimensioning of the body segments, 

to account for the additional width of the squished gasket and enable assembly with the 

base and associated screw hole locations. Given that the squished dimension of the gasket 

was variable throughout the length of the body segment and the amount of force produced 

by the rod and nut fastening was unknown, trial and error was used to determine the proper 

dimension of the body segments. This device iteration successfully passed the leakage & 

pH test when the transparent silicone rubber was used. However, once the device began 

use for experimental work, it was discovered that the side gaskets were inadequate at 

preventing cross-contamination between co-culture samples (inter co-culture). It was 

decided that the advantage of ease of assembly was not worth the associated cross-

contamination risk, thus individual O-ring design for lateral seal was brought back. 

 Original design also began with a total of 96-wells, hosting all edge wells both 

vertically and horizontally. However, there were a few issues that were discovered. First 

and foremost, the vertical edge wells had no co-culture counterpart, and its well volume 

was different than the other wells due to the lack of additional volume introduced by the 

side tunnel. Thus, these wells were inadequate for use as mono-culture controls; such 

controls were better suited for co-culture wells separated by null membranes. Moreover, 

the horizontal edge wells at both the top and bottom of each column proved to be 

susceptible to excessive evaporation and high risk of leakage throughout the course of 

lengthy experiments. As such, all edge wells were removed from the design. In order to 
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further improve the lateral seal with access to more side-face real-estate, the original 4-40 

rods for lateral seal were replaced with thicker and more robust 6-32 rods. Flange nuts that 

spanned the whole thickness of the body segment (~10.5mm) were also chosen as the 

fastener of choice, to distribute the lateral load more evenly across the z-axis of the device. 

 The greatest obstacle encountered during validation of the device was for the 

sterilization of the device components upon previous use for bacterial culture. Material 

choice again proved to be the key to sterilization, although method development was 

essential in robust contamination elimination. The autoclave hosts particularly harsh 

conditions for most materials, given its high heat and pressure exposure of the material, 

indeed the very mechanism of action for sterilization of microorganisms. There are not 

many 3D printing resins that can withstand the harsh conditions of autoclaving. Fortunately, 

FormLabs has a proprietary blend of 3D printing resin, known as Dental SG Resin, that 

proved able. Indeed it is not only autoclaveable, but is also classified as a Class 1 

biocompatible resin, with non-mutagenic, non-cytotoxic, non-systemic toxic properties. 

In-house sterilization validation consistently failed for the earlier iterations of the 

device. It was especially difficult to isolate the source of contamination as an error in 

sterilization method or improper material choice. Months of sterilization method 

development, including an incredibly thorough sterilization via bleaching, dishwashing, 

autoclaving, UV exposure, and ethanol bath demonstrated contamination even after such 

laborious attempts. Thus, a similar root cause analysis to the pH modulation test was 

adopted upon thorough sterilization to test each device component for contamination. It 

was then determined that the base and side transparent gaskets were once again the cause 
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of issues. Once the transparent silicone rubber material was switched out for food-grade 

high-temperature silicone rubber, all subsequent contamination was solved upon 

sterilization. Figure 9 demonstrates contamination isolated to the beakers with the gaskets 

and fresh media. 

 

                 

Figure 9: Component-wise sterilization validation. (Top) All components. (Bottom) Laser-cut 
transparent gaskets were isolated as the root-cause of contamination and failed sterilization. 

It is also important to note that direct exposure of the polycarbonate base to steam 

in the autoclave resulted in discoloration and clouding of the material. This is especially 

detrimental to the clarity required for reliable optical measurements. It was discovered that 
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wrapping the optically clear base in Kimwipes and then aluminum foil solved this 

discoloration and also enabled complete sterilization of the component. 

 The final sterilization method was optimized to reduce labor-intensity but included 

sterilization redundancy to ensure robust sterilization. The full sterilization procedure is 

included in Appendix A, but in summary, includes dishwash and autoclave prior to 

assembly, partial assembly with O-rings and ethanol-soaked membranes in a biosafety 

cabinet (BSC), ethanol bath and drying, and then full assembly with the gasket and base, 

also in the BSC. Short-term storage of the fully assembled device in a sterile bag 

demonstrated no contamination upon storage and use. Results of the sterilization validation 

experiment are provided below in Figure 10, demonstrating zero contamination in any of 

the wells via plate assay. 

 
Figure 10: Sterilization validation v13 demonstrates no contamination in any of the wells 
proceeding 72hr culture and sterilization.   
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(3) MEMBRANE DIFFUSION CHARACTERIZATION 

Overview 

 Experimental work with the BioMe plate began with the testing for diffusion of 

biological small molecules across the porous membrane. This was necessary to 

characterize the diffusive ability of the membranes, specifically for molecules involved in 

metabolic processes. Genetically engineered auxotrophs, which require an external supply 

of a specific amino acid, were used to test for the diffusion of amino acids across the 

membrane. These auxotrophs were E. Coli – NR1 strains genetically recombineered using 

0-Red recombination to knock out a gene with a CAM cassette, targeting genes essential 

for a specific amino acid’s production [45]. The ΔK lysine and ΔI isoleucine auxotrophs 

were acquired and used for our experiments; ΔK was created by knockout of the lysA gene 

and ΔI by knockout of the ilvA. The	ΔK and ΔI auxotroph can only survive and replicate 

in an environment where a supply of their deficient amino acid is available. 

A simple diffusion experiment in the BioMe device was devised to: (1) selectively 

test for diffusion of lysine or isoleucine across membranes, using positive auxotrophic 

growth as a biological measure of successful diffusion, (2) test variable pore sizes, to 

observe potential crossover of the bacteria and growth rate as a function of pore size, and 

(3) validate sterility and cross-contamination in the device. A graphical schematic is 

depicted in Figure 11. A total of 5 membrane variations were tested: Null/no pores, 0.03, 

0.1, 0.2, and 0.4 micron pore size. To the best of our knowledge, a systematic investigation 

of the effect of membrane pore size on small molecule diffusion has not been investigated 

in a co-culture platform. 
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Figure 11: Schematic of Amino Acid Diffusion Exp. (Blue rod = E. Coli ΔK or ΔI auxotroph 
culture; Red dots =  required amino acid: lysine or isoleucine; Dotted black line = membrane with 
variable pore size) 

 Figure 12 below provides an example overview of the resulting growth curves for 

the amino acid diffusion experiment. The negative control had no amino acid added to the 

co-culture, therefore no growth should be observed in either well. The positive control had 

amino acid added to the same well as the auxotroph, therefore a normal bacterial growth 

curve should be observed only in the auxotroph well. For the diffusion culture, the amino 

acid was placed in the well across the membrane from the auxotroph. Positive auxotroph 

growth indicates successful diffusion of the amino acid. Any growth observed in the 

leftmost well with only media is indicative of either cross-contamination, with the bacteria 

crossing into the adjacent well due to improper seal, or crossover, with the bacteria crossing 

into the adjacent well through the pores of the membrane. 

 
Figure 12: Overview of example Amino Acid Diffusion Exp. results. (Left) Diffusion culture with 
successful diffusion and positive auxotroph growth. (Middle) Negative control. (Right) Positive 
control. 
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Materials & Methods 

The auxotrophs were cultured in M9 minimal media (supplemented with vitamins 

and antibiotic) and incubated in the plate reader at 30oC, without shaking, throughout the 

course of the kinetic-read experiment. The initial inoculation cultures were sampled from 

distinct clonal broth cultures in exponential phase (6hrs post-inoculation, LB+Cam), 

washed and resuspended in M9, calibrated to a set OD 0.1, and then diluted 100x. 

Calibration of the OD to 0.1 was calculated using Equation 1.  

% Culture in Dilution = 123	4567789:	45677

;<=3<>2	4567789:	45677
=

7.A8	9:

;8	9:
 (1) 

Diffusion cultures were conducted in triplicates or quadruplicates for each membrane pore 

size, each derived from distinct clonal colonies, with a negative and positive control for 

each pore size. For both the lysine and isoleucine diffusion experiments, the media of the 

adjacent well had enough amino acid to yield a theoretical maximum of 109 cells.  This 

was calculated with Equation 2 below, where [aa] in (g/L) is the initial amino acid 

concentration, a.a per cell is the number of extracellular amino acid required per cell [2], 

theoretical yield is 109 cells, NA is Avogadro’s number = 6.022 × 10GH $$

I2==
	, MWaa is the 

molecular weight of the amino acid, and Vwell is the volume of the well sample = 250"K.  

[MM] 	=

$$	O2>	I2==∗3Q2R>23SI$=	TS2=U

VW
∗ XY$$

Z[2==
\ 		 (2) 

For the lysine diffusion experiment (aa per cell = 1.1 × 10] aa/cells, MWaa = 182.65 g/mol) 

lysine concentration was calculated to be 1.33	 × 108A g/L. For the isoleucine diffusion 

experiment (aa per cell = 7.5 × 7 aa/cells, MWaa = 131.7 g/mol), isoleucine concentration 

was calculated to be 6.53	 × 108G g/L. 
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 Both the lysine and isoleucine diffusion experiments were performed in duplicate. 

The first lysine experiment was run for 55hrs and 15 mins (55:15), with the expected 96hr 

kinetic-read cut short due to software error; the following three experiments were run for 

a complete 96hrs. A BioMe plate was sterilized and assembled with different membrane 

pore sizes for each of its 5 pairwise columns. The same device was sterilized and reused 

throughout all four experiments, in order to control for variation in between distinct BioMe 

plates. For Δ`- Run 1 and Δa- Run 1, the diffusion cultures were performed in triplicate 

and for Run 2 they were performed in quadruplicate. The device schematic and original 

OD600 data for all four experiments are given in Appendix B, Figures B1-B4. An example 

device schematic, for the Δ`- Run 1 experiment, is provided in Figure 13 below. Similar 

schematics were used for all four diffusion experiments. 

 

Figure 13: Example BioMe device schematic for the Δ`- Run 1 experiment.  

 The original OD600 data was then calibrated by subtracting the original OD value 

by the average OD of the non-contaminated wells with just media (with or without amino 

acid) at that specific time point. These calibrated OD600 growth curves were then used to 

determine the maximum calibrated OD600 attained throughout the entire kinetic growth 

experiment. 
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(Repl. 3) M9+Lys ΔK 3

M9 M9+Lys ΔK 3
M9 M9+Lys ΔK 3

M9 M9+Lys ΔK 3
M9 M9+Lys ΔK 3

M9

D
(-ve Control) M9 ΔK 4

M9 M9 ΔK 4
M9 M9 ΔK 4

M9 M9 ΔK 4
M9 M9 ΔK 4
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Logarithmic OD600 data was calculated by taking the natural log (ln) of the original 

OD600 data. The logarithmic OD600 growth curves for each biological replicate was then 

used to calculate maximum specific growth rate, "#$% . A sliding window algorithm was 

written using Matlab to calculate growth rate for 5hr intervals in a set time range (10-30hrs) 

during which end of lag phase, exponential phase, and start of stationary phase was 

observed. The data was constrained to the linear OD600 range of [0, 0.4] and to linear 

regression estimates with an R2 ≥0.995. The maximum growth rate for each replicate was 

then recorded, and averaged for all replicates within a given pore size. Data for all 

membrane pore sizes across all four diffusion experiments followed this pipeline of data 

organization, calibration, analysis, and visualization. 

 

Results & Discussion 

Contamination occurred in wells expected to exhibit no growth in three of the four 

diffusion experiments. There was 1 contamination event in Δ`- Run 1 and Δ`- Run 2, four 

events in  Δa- Run 1, and none in Δa- Run 2. These are color-coded red in Figures B1-B4, 

with data omitted from analysis color-coded blue. The contaminated wells were always the 

left well with the amino acid supplemented media, inferring that intra-sample 

contamination was likely, either due to cross-contamination or crossover. Original data for 

the experiment with most contamination events Δa- Run 1, are given below. As depicted, 

growth curves shown in red had positive growth in wells with only the media with amino 

acid and no initial bacterial inoculation. 
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Figure 14: Original data for Δa- Run 1. Contamination events (red), omitted data (blue).  

There seemed to be no correlation between pore size and these contamination events. 

Indeed, no 0.2 or 0.4 micron pore size samples were contaminated throughout all four 

diffusion experiments. Crossover of either the Δ` and Δa auxotrophs through the pores of 

the membrane within the 96hr time-course experiment was thus ruled out. This is supported 

by Figure A1, which provides an electron microscope image demonstrating the relative 

size difference between a 0.1 micron pore size and E. Coli bacteria. Thus, it seems that the 

contamination most likely arose due to technical error, with possible sources including 

improper placement of the O-ring and/or membrane, improper assembly, imperfect lateral 

seal, or contamination during pipetting. 

Calibrated growth curves for each biological replicate, negative control, and 

positive control of all tested membrane pore sizes for the first run of the lysine and 

isoleucine diffusion experiments are provided in Figure B5 (ΔK – Run 1 & Δa – Run 1). 

As previously mentioned, the kinetic read experiment for ΔK – Run 1 was cut short due to 
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software error. The Δa – Run 1 growth curves demonstrated a diauxic shift near the end of 

the exponential phase of the bacterial growth curves for all tested biological replicates and 

positive control. The cause of the diauxic shift was hypothesized to be a result of 

incomplete washing prior to initial inoculation, such that some of the media resources from 

the initial LB media contaminated the minimal M9 media of the experiment. This was 

confirmed by the lack of diauxic shift in Δa  – Run 2, where thorough washing was 

conducted. Due to these technical and procedural errors, Run 2 for both the lysine and 

isoleucine diffusion experiments will be used for the bulk of the discussion and analysis. 

The calibrated growth curves of the second run of the lysine (Δ` – Run 2) and 

isoleucine (Δa  – Run 2) diffusion experiments are provided in Figure 15 below. This 

demonstrates the large amount of data that can be produced in a single experimental run 

using the high-throughput BioMe co-culture plate. 

 

 
Figure 15: E. Coli Auxotroph Growth Curves (Run2): replicates (blue, cyan, magenta, yellow), 
negative control (red), positive control (green), average of replicates (black line), standard deviation 
of replicates (grey shading), maximum OD600 attained(red dot and line). Replicates that were not 
included in further analysis are shown in dotted lines. 
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Lysine and isoleucine could successfully diffuse through membranes with 0.03, 0.1, 

0.2, and 0.4"d pore sizes. This is demonstrated by the positive auxotroph growth observed 

in all membrane pore size other than the null membrane, which should and did demonstrate 

no auxotroph growth. Moreover, the close resemblance between the samples and positive 

controls (with amino acid starting in the same well as the auxotrophs) demonstrate that the 

amino acids could diffuse across the membranes with ease. Slight variation was observed 

in between biological replicates, but standard deviation remained low. 

Modulation of the membrane pore size had noticeable effects on the growth 

dynamics of the auxotroph growth. Notably, the growth curves for the 0.03"d pore size 

samples in Δ` – Run 2 demonstrated significant and atypical positive growth during the 

stationary phase. Curiously, even the growth dynamics of the positive controls seemed to 

be dictated by the membrane pore size, even though the amino acid began in the same well 

as the bacterial culture.  This is demonstrated by the close resemblance in growth curve 

behavior between the positive control (green) and replicate average (black) within the same 

membrane pore sizes and qualitative distinction in behavior of the positive controls across 

pore sizes. This suggests that the difference in growth dynamics does not arise from the 

initial diffusion of the amino acid across the differently sized pores of the membranes, but 

from some other mechanism. 

Natural logarithm OD600 data is plotted for all membrane pore sizes for the first run 

of the diffusion experiments in Figure B6, and for the second run in Figure 16 below. 

Different colors represent the average growth for each different pore size tested. 
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Figure 16: Semi-log plots for the average ln(OD600) growth curves for all membrane pore size (Run 
2)  Null (red), 0.03"d (magenta), 0.1	"d (blue), 0.2 "d (cyan), 0.4 "d (green). 

These semi-logarithmic plots clearly demonstrate the discernible impact of membrane pore 

size on auxotroph growth dynamics. Qualitative analysis of the plots demonstrates a direct 

relationship between yield and pore size, except for the 0.03"m pore size. This can be 

quantified by the maximum OD600 attained throughout the course of the kinetic read, which 

is plotted in Figure 17 below. This confirms the direct relationship between maximum yield 

and pore size for all conditions, except for the 0.03"m ΔK growth condition. All maximum 

OD600 values (average, standard deviation, and time @ max) is given in Table B1. 

 
Figure 17: Maximum calibrated OD600 attained as a function of pore size (Run 2) 

ΔK – Run 2 ΔI – Run 2 

ΔK – Run 2 ΔI – Run 2 
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 I hypothesize that the atypical growth dynamics of the 0.03"m ΔK condition can 

be attributed to lysine degradation. As previously described, these auxotrophic E. Coli 

strains were generated by single gene knockout for the production of the respective amino 

acid. No additional genetic modifications were made and the genomes were otherwise 

wildtype E. Coli – NR1. Although an isoleucine degradation pathway does not exist in E. 

Coli, a lysine degradation pathway does; this is depicted in Figure 18. The two terminal 

products of the L-lysine degradation pathway are 2-oxoglutarate and succinate, which are 

two intermediates of the TCA  cycle – the primary pathway responsible for energy 

generation in most organisms, including E. Coli. 

    

Figure 18: E. Coli metabolic pathways (Left) Lysine degradation pathway. (Right) TCA  cycle [7] 
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Table 2: Relative volumes with respect to the 0.03"m pore volume  

0.03em 0.1 em 0.2	em 0.4	em 

1 11 44 - 89 178 - 356 

The large relative difference in volume between 0.03"m and the 0.1"m and an 

additional source of energy via lysine degradation may serve to explain the atypical 

behavior of the 0.03"m ΔK condition. The relative volumes for the membrane pores as a 

function of their diameter is provided in Table 2, accounting for the nominal thickness of 

the sourced membranes. The smaller pore size may be better suited at sequestering the 

lysine degradation products in the culture well, enabling sustained positive growth 

throughout the stationary phase – not observed in any other pore size for either lysine or 

isoleucine. Additional testing is required to test the hypothesis.  

The log OD600 data was used to find the maximum specific growth rate, "#$% , as a 

function of the pore size. Average values with standard deviation are plotted in Figure 19. 

Values of  "#$% , R2, and sample size, n, are tabulated in Table B2. An increasing, 

monotonic relationship between pore size and max specific growth rate is observed. Once 

again, the only exception is the 0.03"m ΔK condition. This is confirmed by analysis of the 

Δ` – Run 1 data, whereby the growth rate for 0.03 "m pore size is higher than the 0.1 "m 

pore size. The otherwise direct relationship between pore size and "#$%  seems to suggest 

that the auxotroph growth rate is proportional to the diffusion rate of the amino acid across 

the membrane. 
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Figure 19: Maximum specific growth rate, " max, as a function of pore size (Run 2) 

 In lieu of the assumption that growth rate is indicative of diffusion rate of the amino 

acid, I hypothesize that the material properties of the membranes selectively bias the 

diffusion rates of different electrostatically charged small molecules. Lysine has a 

positively charged lysyl side chain and isoleucine has a non-polar, uncharged hydrocarbon 

side chain. It is possible that the difference in electrostatic properties due to the different 

side chains on lysine and isoleucine accounts for the difference in growth rates. For the 

small 0.03"d  pore size, the positive charge of the lysine side chain on top of the 

zwitterionic characteristics of these amino acids may accelerate its diffusion across the 

membrane, respective to its larger 0.1"m pore size. 

 This possible yet surprising interplay of electrostatic forces and random walk 

diffusion across these membranes may be most noticeable at the smallest membrane pore 

size. Electrostatic forces may grow relatively stronger as the pores become tighter, but 

random walk diffusion across becomes increasingly likely as the pores grow larger. This 

interplay of Brownian Motion and electrical charges may help to explain the atypical 

behavior for the growth curves of the 0.03"d ΔK condition.  

ΔK – Run 2 ΔI – Run 2 
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(4)  SYNTHETIC SYNTROPHY CO-CULTURE 

Overview 

 The diffusion experiments successfully demonstrated that amino acids can diffuse 

easily across the porous membranes. This motivated the subsequent syntrophic co-culture 

experiments between the complementary amino acid auxotrophs. The ΔK lysine auxotroph 

and the ΔI isoleucine auxotroph were previously shown to exhibit mutualistic syntrophic 

exchange, enabling positive growth in a well-mixed co-culture [45]. Thus, an experiment 

was devised to recapitulate those results in the BioMe plate. The graphical schematic for 

the co-culture experiment is provided below in Figure  

 

Figure 20: Graphical schematic of the Synthetic Syntrophy Co-culture  Exp.   (Red rod = E. Coli 
ΔK;  Blue rod = ΔI; Red dot = secreted lysine; Blue dot = secreted isoleucine; Dotted black line = 
membrane) 

In this system, the auxotrophs are incapable of producing respective amino acids 

necessary for their own survival and reproduction. They rely on the sharing of the required 

amino acid by an auxotrophic counterpart, though the exact mechanisms of the secretion 

and uptake are largely unknown [35, 45]. It is important to note a crucial difference 

between the diffusion experiments and the paired syntrophic co-culture experiments. The 

diffusion experiments were seeded with a surplus of amino acid, such that maximum yield 

was largely limited by glucose availability; a large amino acid concentration gradient was 
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established at the membrane interface, enabling high rates of diffusion across the pores. 

However, secretion rates of amino acids in E. Coli are notably lower and a continuous 

process rather than an initial fixed amount of amino acid [54]. 

Two variations of the experiment were devised. The first experiment tested 

different membrane pore sizes to determine whether pore size and nutrient availability 

modulated system growth. The second experiment tested different initial amino acid 

concentrations to determine whether initial conditions could alter community structure and 

growth dynamics. 

 

Materials & Methods 

Four co-culture experiments were run in total. The first experiment (Δ`&Δa – Var. 

Pore Size 1) observed the differences in growth dynamics as a function of pore size. Three 

clonal replicates were run for all co-culture samples, with both negative controls (one for 

each auxotroph) without auxotrophic counterpart, and a positive control with both 

auxotrophs seeded in the same well. In the case of the positive control, it is impossible to 

deconvolve the individual growth of either the Δ` or Δa auxotrophs – an advantage of the 

BioMe platform. The second experiment (Δ`&Δa – Var. AA 1) observed the differences 

in growth for variable initial amino acid amounts. 

A second run of experiments sought to replicate the previous experiments but for 

longer kinetic-read durations. The first run of experiments was planned to be 96hrs in 

length. Unfortunately, software cut the second experiment short to 54hrs and 30mins. 

Although measures were taken to prevent the software freezing by adjusting power settings, 
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operating software update schedules, and other system settings, the plate reader software 

would occasionally freeze within the 54hrs–55hrs interval. The second run of experiments 

both successfully ran for a week (168hrs). The device schematics are provided in Appendix 

B8–B11. 

For the variable initial amino acid experiments, the pore size was fixed to be 0.2"d. 

5 different initial amino acid conditions were investigated: (1) No amino acid seed, (2) both 

lysine and isoleucine provided @ 103 cell yield, (3) both @ 106 cell yield, (4) lysine @ 106 

cell yield, and (5) isoleucine @106 cell yield. Equation 2 was previously used to determine 

concentrations necessary for 109 cell yield (lysine: 1.33	 × 108A  g/L; isoleucine: 

6.53	 × 108G  g/L). The media for all conditions were subsequently prepared via serial 

dilution. Due to shortage of null membranes, only the four porous membranes were tested 

(0.03, 0.1, 0.2, and 0.4"d) in Δ`&Δa – Var Pore Size 1.  

Due to the inability to confidently assess contamination events in the first run, a 

phenotypic plating assay was developed. M9+Lys+Cam and M9+Ile+Cam agar plates were 

prepared for selective growth of either the Δ`  or Δa	auxotrophs, respectively. 5"K  of 

culture samples from all wells were plated for assessment of positive growth; any 

unexpected positive colony formation was indicative of contamination. This method was 

also used in Δ`&Δa – Var. AA 2.  
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Results & Discussion 

Variable Pore Size 

The first experiment observed the growth dynamics of the syntrophic pair for 

varying membrane pore sizes. The OD600 growth curves are provided in Figure 21. Given 

that the growth of the microbial species was isolated to a specific well, it was possible to 

measure growth curves for both the Δ` and Δa auxotrophs, unlike well-mixed co-cultures 

– the positive control. As expected, null membranes prevented any growth from occurring.  

 

Figure 21: Δ`&Δa – Var. Pore Size 1: Original OD600 growth curves. (Top Row) OD600 growth curves 
of the Δ` auxotroph (y-axis = [0 0.3]), (Middle Row) OD600 growth curves of the Δa auxotroph (y-
axis = [0 0.3]),  (Bottom Row) OD600 growth curves of the positive control co-culture, where Δ` and 
Δa auxotrophs are in the same well (y-axis = [0 1]). Data omitted for analysis is depicted by dotted 
lines. 

There was a striking decrease in observable growth for the membrane-partitioned co-

culture samples. Although same well positive controls demonstrated typical microbial 

growth curves, with stationary phase reached by 60hrs, qualitative analysis of the 
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membrane-partitioned co-cultures demonstrates a very slow exponential growth, 

observable near the end of the 96hr kinetic-read.  

Although only slight initial growth of the membrane-partitioned co-culture was 

observed, enough data was collected to infer the effects of membrane pore size on average 

microbial growth rate. In this experiment, 5 contamination events were observed. The 

paired wells of the contaminated co-culture sample were omitted for analysis. There were 

always at least a sample size of two (n=2) paired co-cultures for each membrane pore size. 

Figure 22 provides a semi-logarithmic plot of Δ` and Δa growth for all membrane pore 

sizes, and the maximum OD and maximum specific growth rate ("#$%) for both Δ` and 

Δa as a function of membrane pore size. 

 

Figure 22: Δ`&Δa – Var. Pore Size 1: Semi-logarithmic ln(OD600) growth curves for (Top-Left) Δ` 
auxotroph and (Bottom-Left) Δa auxotroph. (Top-Right) Maximum OD600 (average ± std) attained 
by the respective auxotrophs; Δ` in red and Δa in blue. (Bottom-Right) Maximum specific growth 
rate, f#$% , (average ± std) attained by the respective auxotrophs; Δ` in red and Δa in blue. 
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Generally, the Δ`  auxotrophs had a higher maximum yield and higher "#$%  for all 

membrane pore sizes. The only exception is for the 0.2"d pore size, where Δa reached a 

comparable maximum OD as Δ`. The relationship between max specific growth rate and 

membrane pore size was nonlinear and non-monotonic. The highest "#$%  was achieved by 

the co-culture samples with the 0.2"d membrane. However, more samples are required to 

make a confident assessment of the trend. 

 

Variable Initial Amino Acid 

The original intent of the variable initial amino acid experiment was to determine 

whether the positive syntrophy cycle could be “kickstarted” by an initial amount of amino 

acid. Similar to what was observed in the variable pore size experiment, the growth was 

incredibly minimal for the membrane-partitioned co-culture. The original OD600 data is 

visualized in Figure B12. No contamination was observed in any of the wells. Moreover, 

the positive controls do not reach stationary phase by the conclusion of the 54hr time-

course. The semi-log plots provided in Figure 23 are able to capture the slow growth 

dynamics much better. 

Interestingly, a trend that was observed earlier where Δ` had a higher max OD600 

and "#$%  than Δa was reversed when any amount of initial amino acid was provided. As 

expected from previous results, the Δ` auxotroph had a higher OD600 yield than the ΔI	in 

the condition with no initial amino acid seed provided. The distinction was greatest when 

solely isoleucine was provided, and the max OD600 and "#$%  were comparable when just 

lysine was provided. 
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Figure 23: Δ`&Δa  – Var. AA 1: Semi-logarithmic ln(OD600) growth curves for (Top-Left) Δ` 
auxotroph and (Bottom-Left) Δa auxotroph. (Top-Right) Maximum OD600 (average ± std) attained 
by the respective auxotrophs; Δ` in red and Δa in blue. (Bottom-Right) Maximum specific growth 
rate, f#$% , (average ± std) attained by the respective auxotrophs; Δ` in red and Δa in blue. 

 

Week-Long Experiments 

For the second week-long run of the variable pore size experiment, results 

demonstrated a high rate of cross-contamination. The device schematic and original data 

for both week-long runs are given in Figures B10-B11, with the organized data provided 

in Figure B13-B14. For the variable pore size experiment, only one set of membrane-

partitioned samples remained without cross-contamination. This was confirmed by both 

qualitative analysis of original OD600 readings and by phenotypic plate assay. The single 

set of sample data followed a similar data analysis pipeline. The semi-log auxotroph growth 

curves, plots of maximum OD and of "#$%  are given in Figure 24. The maximum OD600 

yield and "#$%  for Δ` were consistently higher than that of ΔI for all membrane pore sizes, 
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confirming the results from the first run.  

Both runs also support that larger membrane pore sizes favor ΔK biased community 

composition. Within the given data set, there existed a direct relationship between 

membrane pore size and maximum OD600 and "#$%  for Δ`, although the growth rate for 

Δa seemed to plateau for the 0.1, 0.2, and 0.4"d membrane pore sizes.  

 

Figure 24: Δ`&Δa – Var. Pore Size 2: Semi-logarithmic ln(OD600) growth curves for (Top-Left) Δ` 
auxotroph and (Bottom-Left) Δa auxotroph. (Top-Right) Maximum OD600 (average ± std) attained 
by the respective auxotrophs; Δ` in red and Δa in blue. (Bottom-Right) Maximum specific growth 
rate, f#$% , (average ± std) attained by the respective auxotrophs; Δ` in red and Δa in blue. 

The second week-long run of the variable initial amino acid experiment also 

demonstrated high rates of cross-contamination. The majority of membrane-partitioned 

samples were cross-contaminated towards the later hours of the kinetic-experiment. 

Enough samples were gathered to have 1+ samples for each initial amino acid condition. 

The original OD600 plots are shown in Figure 3.17 and the semi-log plots, and max OD600 

and "#$gas a function of initial amino acid condition are shown in Figure 25. 
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The second run also demonstrated the outperformance of the Δa strain relative to 

the ΔK strain, reversing the trend observed in no amino acid conditions. The presence of 

any initial amount of lysine or isoleucine caused the system to favor the Δa strain, with 

both the highest max OD600 and "#$%	attained when just the isoleucine was provided. Both 

max OD600 and "#$%  were most similar when no initial amino acid was provided. Both 

runs seem to indicate an inhibitory effect of lysine to the ΔK species and a stimulatory  

effect of isoleucine to the ΔI species. This potentially describes a simple means of adjusting 

initial environmental conditions to directly affect respective yields and growth rates 

between a pairwise syntrophic co-culture. 

 

Figure 25: Δ`&Δa  – Var. AA 2: Semi-logarithmic ln(OD600) growth curves for (Top-Left) Δ` 
auxotroph and (Bottom-Left) Δa auxotroph. (Top-Right) Maximum OD600 (average ± std) attained 
by the respective auxotrophs; Δ` in red and Δa in blue. (Bottom-Right) Maximum specific growth 
rate, f#$% , (average ± std) attained by the respective auxotrophs; Δ` in red and Δa in blue. 

 

 



45 

 

 The recurring events of contamination require an in-depth analysis. It can be 

confidently stated that the contamination is arising from cross-contamination, either inter 

or intra-sample, due to the latency in contamination and positive control-like growth in the 

contaminated well. Indeed, none of the contamination events seemed to occur early into 

the time-course experiment. Potential sources of contamination include improper seal 

allowing for one-event contamination of paired wells or the crossover of the organism 

through the pores of the membrane. 

 Unknowingly, the BioMe plate was utilized in relatively testing conditions. There 

are less than 10 reported week-long co-cultures at this volume range [26]. Furthermore, the 

media in each well are nutrient-rich due to the slow growth of the auxotrophs, creating the 

perfect condition for cross-contamination if a microbe were to permeate across or around 

the membrane. 

 Moreover, I hypothesize that a certain subset of these “contamination” events are 

not contamination at all, but rather examples of gained genomic fitness. Examples of 

mechanism include horizontal gene transfer, with the vectors passing through the pores of 

the membranes, or a mutation to regain wildtype ability to produce the knocked out amino 

acid. Although further validation is required to demonstrate lack of cross-contamination 

due to the technical issues of improper sealing or crossover, it is possible that the harsh 

selective forces placed upon the genetic mutants are encouraging them to either uptake 

surrounding genetic material or metabolically adapt to reinstate amino acid production. 

Previous research has demonstrated that forced media pressure can induce faster rates of 

horizontal gene transfer within  E. Coli [10].  
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(5) ONGOING & FUTURE WORK 

Computational Modeling 

This drastic impediment to growth in the membrane-partitioned syntrophic co-

culture was unexpected. In order to explore this phenomenon further, a theoretical model 

was developed to investigate elements of the positive syntrophic feedback system in further 

detail. In particular, whether the experimental results could be recreated in silico under the 

conditions of low secretion rates and low across-membrane diffusion rates. A graphical 

schema of the theoretical framework of the model is provided in Figure 26. 

 

Figure 26: Theoretical framework of the syntrophic co-culture model (Δ` = red oval, Δa = blue 
oval, lysine = red circle, isoleucine = blue circle, glucose = yellow hexagon). Uptake, growth, 
secretion, and diffusion parameters are appropriately labelled. 

This model relies on six separate elements: (1) Two auxotroph populations confined 

to respective wells, (2) Glucose and (3) respective deficient amino acid uptake based on 

Michaelis-Menten kinetics, (4) Minimum/FBA inspired growth, (5) Biomass-dependent 

secretion, and (6) Concentration gradient driven diffusion across-membrane. The 

theoretical equations governing the developed model is provided in Figure C1. 
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Certain parameter values were found from literature, including the Michaelis-Menten 

Kinetics (vmax, km) and biomass stoichiometry parameters for both glucose & amino acid. 

For unknown parameters, the Monte Carlo method was used to randomly sample a space 

of values. For the amino acid secretion stoichiometry, a range of [10-2 – 10] was used, and 

for the membrane diffusion constant, [10-7 – 1] was used. Values are  given in Table C1.  

 

Figure 27: Monte Carlo results for the random sampling of secretion and diffusion parameter space 

 Monte Carlo method for the simulation of the proposed membrane-partitioned 

syntrophic model demonstrated a clear space of parameters where there is high growth in 

the same well (well-mixed co-culture) and low growth in opposite wells (across 

membranes in the BioMe plate). 
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Drosophila Gut Microbiome Co-Culture 

Overview 

The gut microbiome of Drosophila melanogaster (fruit flies) are usually composed of two 

bacterial genera: Acetobacter and Lactobacillus [55, 63, 64]. Bacterial strains acquired 

from in vivo fly gut samples showed two predominant (if not sole) members of the fly gut 

microbiome: Acetobacter pasteurianus and Lactobacillus plantarum [63]. Mutualistic 

cross-feeding was observed between two other paired species, Acetobacter fabarum and 

Lactobacillus brevis, also isolated from the gut of Drosophila. A. fabarum was shown to 

“utilize [and metabolize] multiple fermentation products of L. brevis” via gluconeogenesis 

[64]. A pairwise co-culture experiment was devised to test for mutualistic cross-feeding 

between Acetobacter pasteurianus and Lactobacillus plantarum or Lactobacillus brevis. 

 

I hypothesize that A. pasteurianus will interact mutualistically for both Lactobacillus 

strains, but stronger for L. plantarum, due to their native isolation and co-evolution. 

 

Materials & Methods 

Identities of the bacterial strains isolated from fly gut samples were confirmed by species-

specific primer PCR; the gels are pictured in Figure C3. Cultures were grown in YPD broth 

for liquid (10g/L peptone, 10g/L yeast extract, 8g/L dextrose) and solid (+15g/L agar) 

media. A BioMe was sterilized and assembled with membranes of 0.03 micron pore size, 

and seeded according to the schematic provided in Figure C2. A 96hr kinetic-read 

experiment was measured at 30oC,  with no shaking.  
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Results & Discussion 

 

Figure 28: Drosophila melanogaster gut microbiota co-culture. 

Initial results confirm that A. pasteurianus growth is greatly ameliorated by the presence 

of a Lactobacillus pair. Moreover, it supports the hypothesis that A. pasteurianus interacts 

more favorably with the L. plantarum strain in comparison to L. brevis. It is plausible that 

these pairs have mutually co-evolved to occupy mutually beneficial niches in the 

ecosystem. Interestingly, L. plantarum seems to demonstrate limited change in yield when 

co-cultured with no-one, itself, or A. pasteurianus. L. brevis yield was slightly improved 

when co-cultured with its Acetobacter pair. Results are preliminary and require further 

investigation. 
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APPENDIX A: BIOME DEVELOPMENT 

 
Figure A1: Moutinho et al.’s novel co-culture plate design [45]. 

 
 
 

Table A1: List of components, source, and catalogue number for the final BioMe plate 

Component Source Catalogue # 

Primary Body 
Segments 

Machined: McMaster-Carr 
3D-Printed: FormLabs 

Dental SG Resin 

Machined: 8742K136 
 

3D Printed: RS-F2-DGOR-
01 

Optically Clear Base McMaster-Carr 8707K111 
O-Rings  McMaster-Carr 5233T14 

Rods McMaster-Carr 95412A373 
Nuts  McMaster-Carr 94758A102 

Gasket McMaster-Carr 86045K76 
Screws  McMaster-Carr 90585A204 

Porous Membranes Sterlitech Custom Order 
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Figure A2: Left body segment SolidWorks CAD drawing used in final BioMe iteration (v8) 

 

Figure A3:: Right body segment SolidWorks CAD drawing used in final BioMe iteration (v8) 
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Figure A4: Example of failed body segment prints using the Form2 printer and Formlab’s Dental 
SG Resin 
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BioMe Plate: Sterilization Validation v13 [Visual w/ Plating, w/ membranes] 
GOALS: 
v Confirm that the sterilization protocol eliminates microbial contamination from the BioMe device after 

use for E. Coli (MG1655, NR1, Lys-, Ile-, and Lys-&Ile-) culture. 
 
PROCEDURE: 
Pre-Sterilization Growth 
Liquid Culture: 

[1] Inoculate 5mL of LB w/o antibiotics broth in 12-well plate directly from glycerol stock of: (1) E. Coli 
K-12 MG1655, (2) E. Coli NR1 WT, (3) E. Coli Lys-, (4), E. Coli Ile-, (5) E. Coli Lys- & Ile-  

[2] Incubate in 30oC static incubator while assembling BioMe. 
 
Non-Sterile BioMe Assembly, Inoculation, & Culture: 

[3] Ethanol wipe-down benchtop. Fully assemble BioMe w/o membranes under non-sterile conditions. 
[4] Once assembled, take 12-well plate out of incubator. Pipette up and down to mix liquid cultures. Seed 

the BioMe Plate w/ 250uL of appropriate culture according to the schematic below: 

 
[5] Incubate BioMe in 30oC static incubator for 72hrs. 

 
Sterilization Protocol 
Ethanol Bath & Scrub: 

[6] Once culturing time has elapsed, place BioMe device into sterile bag. Fill w/ ~200mL of 70% ethanol 
and shake vigorously. Let sit for 10mins, fully submerged. 

[7] Drain the sterile bag directly down sink. Rinse BioMe w/ distilled water (DW). 
[8] Disassemble BioMe device. Soap, scrub down, and rinse all device elements. 

 
Dishwash & Autoclave: 

[9] Dishwash all components except for screws: P2 [Plastic Wash] {1.5hr} 
[10] Autoclave: P9 [Gravity, 121oC, 30mins exposure/15 mins dry] {1hr} 

Side: Screws (50mL beaker)  Top: Gasket, Base (wrapped), Rods w/ O-rings, Allen Key, Tweezers 
Middle: Bodies  Bottom: Assembly body, Wrench 

 
BSC & Membrane Prep {During Autoclave}: 

[11] Wipe down BSC with 70% ethanol. Sterile introduce: Sterile bag (x2), reservoir 
[12] Wipe down bench top with ethanol and light Bunsen burner. 
[13] Grab 5 weighing boats – one for each pairwise column [PCTE: 0.2um]. 

1 <--> 2 3 <--> 4 5 <--> 6 7 <--> 8 9 <--> 10

A

B

C

D

E

F

o ooooo

E. Coli
Lys- & Ile-

E. Coli
MG1655

E. Coli
MG1655

E. Coli
Lys- & Ile-

E. Coli
NR1

E. Coli
NR1

E. Coli
Lys- & Ile-

E. Coli
Ile-

E. Coli
Ile-

E. Coli
Lys-

E. Coli
Lys-
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[14] Ethanol spray down a weighing boat and fill with ~5mL of ethanol. 
[15] Flame tweezers and use to pull out x6 membranes into respective boats. 
[16] Wipe boats down with ethanol and introduce into BSC. Repeat for all pairwise columns. 

 
BioMe Partial Assembly {After Autoclave}: 

[17] Carefully introduce autoclaved rack w/ BioMe and beaker w/ screws into BSC. 
[18] Place screws and allen key into first sterile bag. 
[19] Place O-rings into reservoir and submerge in ~10mL of 70% ethanol. 
[20] Partially assemble BioMe w/ O-rings and membranes in BSC. 
[21] Place partially assembled BioMe, gasket, and base (wrapped) into second sterile bag. 

 
Post- Sterilization Growth 
BioMe Ethanol Bath, Full Assembly, & Experiment Prep: 

[22] Turn on UV light for 20mins and then ethanol wipe down BSC. 
[23] Ethanol wipe down and introduce into BSC: sterile bags w/ BioMe components, 200mL of 70% ethanol, 

autoclave rack, reservoir. 
[24] Take out wrapped base and pour in ethanol into gasket//BioMe sterile bag and let sit for 10 minutes. 
[25] Take out BioMe and let dry for ~1hr, upside-down on top rack, in far left corner of BSC. 
[26] Fully assemble dried BioMe w/ screws, gasket, and base. Keep upside-down. 
[27] Remove all items from BSC except BioMe.. Ethanol wipe down and introduce: electronic multichannel 

pipette (1200uL), p1000, 1000uL tip box, tip waste, bottom tray, top lid, reagent reservoir, parafilm 
[28] Arrange USA Scientific 1000uL tip box w/o edge pipettes (rows and columns) in sterile BSC 
[29] Turn on UV light for >20 mins, with fully assembled BioMe inside BSC (top rack). 

 
Post- Sterilization Media Seeding: 

[30] Ethanol wipe down and introduce: LB w/o antibiotics Pyrex bottle 
[31] Pour out ~20mL of LB into reagent reservoir. Seed all wells of BioMe device w/ 250uL of LB. 
[32] Cover w/ lid and seal with ethanol wiped parafilm. 
[33] Place into 30oC static incubator for 72hours. 

 
Sterilization Validation 
Visualization: 

[34] Use visualization for initial sterilization verification. Take picture & report. 
Plating: 

[35] Plate 10uL of solution from all wells on (x5) LB w/o antibiotic agar plates, with each plate pinwheel 
divided into 12 sections. 

[36] Incubate plates for 72hrs. 
[37] Visualize and take pictures of plates to confirm no bacterial growth on any of the plates. Report. 

o Successful sterilization validation will demonstrate no growth on any of the plates. 
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APPENDIX B: BIOME EXPERIMENTS 
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(Repl. 3) M9+Lys ΔK 3
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F
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0.2 μm

0.1 μm

0.03 μm

Null

o ooooo
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Figure B1: ΔK & Lysine Diffusion – Run 1. Each pairwise column separated by null, 0.03, 0.1, 0.2, or 0.4"m membrane. Top three rows 
are biological replicates, 4th row is negative control, 5th row is positive control, and sixth row is sterility control. (Top) Device schematic. 
(Bottom) Original OD600 data. Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B2: ΔK & Lysine Diffusion – Run 2. Each pairwise column separated by null, 0.03, 0.1, 0.2, or 0.4"m membrane. Top four rows are 
biological replicates, 5th row is negative control, and 6th row is positive control. (Top) Device schematic. (Bottom) Original OD600 data. 
Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B3: ΔI & Isoleucine Diffusion – Run 1. Each pairwise column separated by null, 0.03, 0.1, 0.2, or 0.4"m membrane. Top three rows 
are biological replicates, 4th row is negative control, 5th row is positive control, and sixth row is sterility control. (Top) Device schematic. 
(Bottom) Original OD600 data. Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B4: ΔI & Isoleucine Diffusion – Run 2. Each pairwise column separated by null, 0.03, 0.1, 0.2, or 0.4"m membrane. Top four rows 
are biological replicates, 5th row is negative control, and 6th row is positive control. (Top) Device schematic. (Bottom) Original OD600 data. 
Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B5: E. Coli Auxotroph Growth Curves for first run of diffusion experiments: replicates (blue, cyan, magenta, yellow), negative control (red), positive control (green), 
average of replicates (black line), standard deviation of replicates (grey shading). Replicates that were not included in further analysis are shown in dotted lines. 
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Figure B6: Semi-log plots for the average ln(OD600) growth curves for all membrane pore size (Run 1); Null (red), 0.03"& (magenta), 0.1	"& 
(blue), 0.2 "& (cyan), 0.4 "& (green). 

  

ΔK – Run 1 ΔI – Run 1 
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 ΔK & Lys Diffusion – Run 1 ΔK & Lys Diffusion – Run 2 

Pore Size (μm) Null 0.03 0.1 0.2 0.4 Null 0.03 0.1 0.2 0.4 
Max OD600,C Avg 0.0112 0.6330 0.6783 0.7224 0.7793 0.0102 1.1535 0.8544 0.8937 0.9278 

Max OD600,C STD 0.0046 0.0028 0.0523 0.0712 0.0632 0.0127 0.0318 0.0028 0.0435 0.0251 
Time @ Max 

(hr:min) 31:45 55:15 
(End) 38:45 39:00 34:30 51:15 95:45 82:00 74:15 95:15 

  
ΔI & Ile Diffusion – Run 1 

 
ΔI & Ile Diffusion – Run 1 

Pore Size (μm) Null 0.03 0.1 0.2 0.4 Null 0.03 0.1 0.2 0.4 
Max OD600,C Avg 0.0269 0.8339 0.8369 0.7829 0.7853 0.0169 0.7073 0.7375 0.7590 0.7676 

Max OD600,C STD 0.0527 0.0469 0 0.0563 0.0210 0.0524 0.0321 0.0076 0.0212 0.0388 
Time @ Max 

(hr:min) 0:00 70:45 33:30 32:30 32:45 0:00 40:00 30:00 29:25 30:25 

 
Table B1: Max average calibrated OD600, STD, and time @max for all diffusion experiments and diffusion culture sets as a function of 
membrane pore size.  
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ΔK & Lys Diffusion – Run 1 

Pore Size (μm) 0.03 0.1 0.2 0.4 
Sample Size, n 2 3 3 3 

μmax (Avg±Std) 0.1243 
±0.0029 

0.1226 
±0.0022 

0.1238 
±0.0017 

0.1291 
±0.0009 

R2 (Avg±Std) 0.9997 
±0.0000 

0.9989 
±0.0011 

0.9994 
±0.0004 

0.9996 
±0.0001 

 
ΔK & Lys Diffusion – Run 2 

Pore Size (μm) 0.03 0.1 0.2 0.4 
Sample Size, n 2 2 3 3 

μmax (Avg±Std) 0.1368 
±0.0031 

0.1326 
±0.0017 

0.1359 
±0.0022 

0.1380 
±0.0008 

R2 (Avg±Std) 0.9999 
±0.0001 

0.9992 
±0.0002 

0.9990 
±0.0010 

0.9995 
±0.0003 

 
ΔI & Ile Diffusion – Run 1 

Pore Size (μm) 0.03 0.1 0.2 0.4 
Sample Size, n 3 1 3 3 

μmax (Avg±Std) 0.1176 
±0.0178 0.1230 0.1335 

±0.0071 
0.1170 
±0.0284 

R2 (Avg±Std) 0.9961 
±0.0007 0.9979 0.9976 

±0.0017 
0.9959 
±0.0011 

 
ΔI & Ile Diffusion – Run 2 

Pore Size (μm) 0.03 0.1 0.2 0.4 
Sample Size, n 4 4 4 4 

μmax (Avg±Std) 0.1257 
±0.0021 

0.1279 
±0.0035 

0.1299 
±0.0023 

0.1297 
±0.0038 

R2 (Avg±Std) 0.9981 
±0.0022 

0.9983 
±0.0006 

0.9988 
±0.0003 

0.9985 
±0.0008 

Table B2: Max specific growth rate during exponential phase, ")*+ , and its associated standard deviation, sample size, and R2 for all 
diffusion experiments and diffusion culture sets as a function of membrane pore size.  
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Figure B7: Metabolic pathways with red crosses indicating the location of gene knockout for amino acid auxotrophy generation 
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Figure B8: ΔK & ΔI Co-Culture Variable Pore Size – Run 1. Each pairwise column separated by null, 0.03, 0.1, 0.2, or 0.4"m membrane. 
Top three rows are biological replicates, 4th&5th rows are negative control, and 6th row is positive control. (Top) Device schematic. (Bottom) 
Original OD600 data. Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B9: ΔK & ΔI Co-Culture: Variable Amino Acid – Run 1. Each pairwise column separated by 0.2"m membranes. Top three rows are 
biological replicates, 4th&5th rows are negative control, and 6th row is positive control. (Top) Device schematic. (Bottom) Original OD600 data. 
Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B10: ΔK & ΔI Co-Culture: Variable Pore Size – Run 1. Each pairwise column separated by null, 0.03, 0.1, 0.2, or 0.4"m membrane. 
Top three rows are biological replicates, 4th&5th rows are negative control, and 6th row is positive control. (Top) Device schematic. (Bottom) 
Original OD600 data. Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B11: ΔK & ΔI Co-Culture: Variable Amino Acid – Run 2. Each pairwise column separated by 0.03"m membranes. Top three rows 
are biological replicates, 4th&5th rows are negative control, and 6th row is positive control. (Top) Device schematic. (Bottom) Original OD600 
data. Contaminated curves given in red, with data omitted curves given in blue. 
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Figure B12: Δ$&Δ% – Var.AA 1: Original OD600 growth curves. (Top Row) OD600 growth curves of the Δ$ auxotroph (y-axis = [0 0.3]), 
(Middle Row) OD600 growth curves of the Δ% auxotroph (y-axis = [0 0.3]),  (Bottom Row) OD600 growth curves of the positive control co-
culture, where Δ$ and Δ% auxotrophs are in the same well (y-axis = [0 1]). Data omitted for analysis is depicted by dotted lines. 
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Figure B13: Δ$&Δ% – Var. Pore Size – Run 2: Original OD600 growth curves. (Top Row) OD600 growth curves of the Δ$ auxotroph (y-axis 
= [0 0.5]), (Middle Row) OD600 growth curves of the Δ% auxotroph (y-axis = [0 0.5]),  (Bottom Row) OD600 growth curves of the positive 
control co-culture, where Δ$ and Δ% auxotrophs are in the same well (y-axis = [0 1]). Data omitted for analysis is depicted by dotted lines. 
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Figure B14:  Δ$&Δ% – Var.AA – Run 2: Original OD600 growth curves. (Top Row) OD600 growth curves of the Δ$ auxotroph (y-axis = [0 
0.5]), (Middle Row) OD600 growth curves of the Δ% auxotroph (y-axis = [0 0.5]),  (Bottom Row) OD600 growth curves of the positive control 
co-culture, where Δ$ and Δ% auxotrophs are in the same well (y-axis = [0 1]). Data omitted for analysis is depicted by dotted lines. 
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APPENDIX C: ONGOING & FUTURE WORK 
 

 

Figure C1: Theoretical equations of the syntrophic co-culture model. 
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 Carbon Lysine Isoleucine 

!"#$ 10 10 10 

%"#$ 10()  10() 10() 

* −Stoich. Constant 0.0901 2.7374 4.0148 

, − -./0.1234	671. − [10(9 − 1] [10(9 − 1] 
Table C1: Parameter values for theoretical model 

 

 
Figure C2: Device schematic for the Drosophila gut microbiome co-culture experiment 

 

 
Figure C3: Gel images for the PCR with species-specific primers to confirm bacterial species 
identity  

1 2 3 4 5 6 7 8 9 10

A AP 1 LP 1 AP 1 LB 1 LP 1 LB 1 AP 1 AP 1 LB 1 LB 1

B AP 2 LP 2 AP 2 LB 2 LP 2 LB 2 AP 2 AP 2 LB 2 LB 2

C AP 3 LP 3 AP 3 LB 3 LP 3 LB 3 AP 3 AP 3 LB 3 LB 3

D AP 4 LP 4 AP 4 LB 4 LP 4 LB 4 LP 1 LP 1 AP 1

E LP 1 LP 3 LB 2 LB 2 LP 2 LP 2 AP 2

F LP 2 LB 1 LB 1 LB 3 LB 3 LP 3 LP 3 AP 3

0.03μm

0.03μm

0.03μm

0.03μm

0.03μm



81 

 

BIBLIOGRAPHY 

1. Aylagas, Eva, et al. “A Bacterial Community-Based Index to Assess the Ecological 
Status of Estuarine and Coastal Environments.” Marine Pollution Bulletin, vol. 114, 
no. 2, Jan. 2017, pp. 679–688. Crossref, doi:10.1016/j.marpolbul.2016.10.050. 

2. Ben Said, Sami, and Dani Or. “Synthetic Microbial Ecology: Engineering Habitats 
for Modular Consortia.” Frontiers in Microbiology, vol. 8, June 2017. Crossref, 
doi:10.3389/fmicb.2017.01125. 

3. Berdy, Brittany, et al. “In Situ Cultivation of Previously Uncultivable 
Microorganisms Using the Ichip.” Nature Protocols, vol. 12, no. 10, Oct. 2017, pp. 
2232–2242. Crossref, doi:10.1038/nprot.2017.074. 

4. Bittihn, Philip, et al. “Rational Engineering of Synthetic Microbial Systems: From 
Single Cells to Consortia.” Current Opinion in Microbiology, vol. 45, Oct. 2018, pp. 
92–99. Crossref, doi:10.1016/j.mib.2018.02.009. 

5. Blaser, Martin J., et al. “Toward a Predictive Understanding of Earth’s Microbiomes 
to Address 21st Century Challenges.” mBio, vol. 7, no. 3, July 2016. Crossref, 
doi:10.1128/mBio.00714-16. 

6. Boon, Eva, et al. “Interactions in the Microbiome: Communities of Organisms and 
Communities of Genes.” FEMS Microbiology Reviews, vol. 38, no. 1, Jan. 2014, pp. 
90–118. Crossref, doi:10.1111/1574-6976.12035. 

7. Caspi, Ron, et al. “The MetaCyc Database of Metabolic Pathways and Enzymes.” 
Nucleic Acids Research, vol. 46, no. D1, Jan. 2018, pp. D633–639. Crossref, 
doi:10.1093/nar/gkx935. 

8. Chacón, Jeremy M., et al. “The Spatial and Metabolic Basis of Colony Size 
Variation.” The ISME Journal, vol. 12, no. 3, Mar. 2018, pp. 669–680. Crossref, 
doi:10.1038/s41396-017-0038-0. 

9. Chodkowski, John L., and Ashley Shade. “A Synthetic Community System for 
Probing Microbial Interactions Driven by Exometabolites.” mSystems, edited by 
Pieter C. Dorrestein, vol. 2, no. 6, Nov. 2017. Crossref, 
doi:10.1128/mSystems.00129-17. 

10. Chu, Hoi Yee, et al. “Assessing the Benefits of Horizontal Gene Transfer by 
Laboratory Evolution and Genome Sequencing.” BMC Evolutionary Biology, vol. 
18, no. 1, Dec. 2018. Crossref, doi:10.1186/s12862-018-1164-7. 



82 

 

11. Cordero, Otto X., and Manoshi S. Datta. “Microbial Interactions and Community 
Assembly at Microscales.” Current Opinion in Microbiology, vol. 31, June 2016, pp. 
227–234. Crossref, doi:10.1016/j.mib.2016.03.015. 

12. Datta, Manoshi S., et al. “Microbial Interactions Lead to Rapid Micro-Scale 
Successions on Model Marine Particles.” Nature Communications, vol. 7, no. 1, 
Sept. 2016. Crossref, doi:10.1038/ncomms11965. 

13. Davison, Brian H., and Gregory Stephanopoulos. “Coexistence ofS. Cerevisiae 
andE. Coli in Chemostat under Substrate Competition and Product Inhibition.” 
Biotechnology and Bioengineering, vol. 28, no. 11, Nov. 1986, pp. 1742–1752. 
Crossref, doi:10.1002/bit.260281119. 

14. Dietert, Rodney Reynolds, and Ellen Kovner Silbergeld. “Biomarkers for the 21st 
Century: Listening to the Microbiome.” Toxicological Sciences, vol. 144, no. 2, Apr. 
2015, pp. 208–216. Crossref, doi:10.1093/toxsci/kfv013. 

15. Dittami, Simon M., et al. “A Metabolic Approach to Study Algal-Bacterial 
Interactions in Changing Environments.” Molecular Ecology, vol. 23, no. 7, Apr. 
2014, pp. 1656–1660. Crossref, doi:10.1111/mec.12670. 

16. Dohlman, Anders B., and Xiling Shen. “Mapping the Microbial Interactome: 
Statistical and Experimental Approaches for Microbiome Network Inference.” 
Experimental Biology and Medicine, edited by Horst von Recum, vol. 244, no. 6, 
Apr. 2019, pp. 445–458. Crossref, doi:10.1177/1535370219836771. 

17. Elmqvist, Thomas, et al. “Response Diversity, Ecosystem Change, and Resilience.” 
Frontiers in Ecology and the Environment, vol. 1, no. 9, Nov. 2003, pp. 488–494. 
Crossref, doi:10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2. 

18. Embree, Mallory, et al. “Networks of Energetic and Metabolic Interactions Define 
Dynamics in Microbial Communities.” Proceedings of the National Academy of 
Sciences of the United States of America, vol. 112, no. 50, Dec. 2015, pp. 15450–
15455. Crossref, doi:10.1073/pnas.1506034112. 

19. Estrela, Sylvie, and Sam P. Brown. “Metabolic and Demographic Feedbacks Shape 
the Emergent Spatial Structure and Function of Microbial Communities.” PLoS 
Computational Biology, edited by Stefano Allesina, vol. 9, no. 12, Dec. 2013, p. 
e1003398. Crossref, doi:10.1371/journal.pcbi.1003398. 

20. Faust, Karoline, and Jeroen Raes. “Microbial Interactions: From Networks to 
Models.” Nature Reviews. Microbiology, vol. 10, no. 8, Aug. 2012, pp. 538–550. 
Crossref, doi:10.1038/nrmicro2832. 



83 

 

21. Freilich, Shiri, et al. “Competitive and Cooperative Metabolic Interactions in 
Bacterial Communities.” Nature Communications, vol. 2, no. 1, Sept. 2011. 
Crossref, doi:10.1038/ncomms1597. 

22. Friedman, Jonathan, et al. “Community Structure Follows Simple Assembly Rules in 
Microbial Microcosms.” Nature Ecology & Evolution, vol. 1, no. 5, May 2017. 
Crossref, doi:10.1038/s41559-017-0109. 

23. Ge, Zhifei, et al. “Nanoporous Microscale Microbial Incubators.” Lab on a Chip, 
vol. 16, no. 3, 2016, pp. 480–488. Crossref, doi:10.1039/C5LC00978B. 

24. Ghoul, Melanie, and Sara Mitri. “The Ecology and Evolution of Microbial 
Competition.” Trends in Microbiology, vol. 24, no. 10, Oct. 2016, pp. 833–845. 
Crossref, doi:10.1016/j.tim.2016.06.011. 

25. Gibbons, Sean M., and Jack A. Gilbert. “Microbial Diversity—exploration of 
Natural Ecosystems and Microbiomes.” Current Opinion in Genetics & 
Development, vol. 35, Dec. 2015, pp. 66–72. Crossref, 
doi:10.1016/j.gde.2015.10.003. 

26. Goers, Lisa, et al. “Co-Culture Systems and Technologies: Taking Synthetic Biology 
to the next Level.” Journal of the Royal Society, Interface, vol. 11, no. 96, July 2014. 
PubMed, doi:10.1098/rsif.2014.0065. 

27. Goldford, Joshua E., et al. “Emergent Simplicity in Microbial Community 
Assembly.” Science, vol. 361, no. 6401, Aug. 2018, pp. 469–474. Crossref, 
doi:10.1126/science.aat1168. 

28. Griffith, Gary P., et al. “Climate Change Alters Stability and Species Potential 
Interactions in a Large Marine Ecosystem.” Global Change Biology, vol. 24, no. 1, 
Jan. 2018, pp. e90–100. Crossref, doi:10.1111/gcb.13891. 

29. Grilli, Jacopo, et al. “Higher-Order Interactions Stabilize Dynamics in Competitive 
Network Models.” Nature, vol. 548, no. 7666, Aug. 2017, pp. 210–213. Crossref, 
doi:10.1038/nature23273. 

30. Hall, B. G., et al. “Growth Rates Made Easy.” Molecular Biology and Evolution, 
vol. 31, no. 1, Jan. 2014, pp. 232–238. Crossref, doi:10.1093/molbev/mst187. 

31. Harcombe, William. “Novel Cooperation Experimentally Evolved between Species.” 
Evolution, Feb. 2010. Crossref, doi:10.1111/j.1558-5646.2010.00959.x. 

32. Harcombe, William R., et al. “Metabolic Resource Allocation in Individual 
Microbes Determines Ecosystem Interactions and Spatial Dynamics.” Cell Reports, 
vol. 7, no. 4, May 2014, pp. 1104–1115. Crossref, doi:10.1016/j.celrep.2014.03.070. 



84 

 

33. Hunting, Ellard R., et al. “Resource Niche Overlap Promotes Stability of Bacterial 
Community Metabolism in Experimental Microcosms.” Frontiers in Microbiology, 
vol. 6, Feb. 2015. Crossref, doi:10.3389/fmicb.2015.00105. 

34. Johns, Nathan I., et al. “Principles for Designing Synthetic Microbial Communities.” 
Current Opinion in Microbiology, vol. 31, June 2016, pp. 146–153. Crossref, 
doi:10.1016/j.mib.2016.03.010. 

35. Kallus, Yoav, et al. “Paradoxes in Leaky Microbial Trade.” Nature Communications, 
vol. 8, no. 1, Dec. 2017. Crossref, doi:10.1038/s41467-017-01628-8. 

36. Kehe, Jared, et al. “Massively Parallel Screening of Synthetic Microbial 
Communities.” Proceedings of the National Academy of Sciences, vol. 116, no. 26, 
June 2019, pp. 12804–12809. Crossref, doi:10.1073/pnas.1900102116. 

37. Kinnunen, Marta, et al. “Stochastic Processes Govern Invasion Success in Microbial 
Communities When the Invader Is Phylogenetically close to Resident Bacteria.” The 
ISME Journal, vol. 12, no. 11, Nov. 2018, pp. 2748–2756. Crossref, 
doi:10.1038/s41396-018-0202-1. 

38. Klitgord, Niels, and Daniel Segrè. “Environments That Induce Synthetic Microbial 
Ecosystems.” PLoS Computational Biology, edited by Jason A. Papin, vol. 6, no. 11, 
Nov. 2010, p. e1001002. Crossref, doi:10.1371/journal.pcbi.1001002. 

39. Levine, Jonathan M., et al. “Beyond Pairwise Mechanisms of Species Coexistence in 
Complex Communities.” Nature, vol. 546, no. 7656, June 2017, pp. 56–64. Crossref, 
doi:10.1038/nature22898. 

40. Levy, R., and E. Borenstein. “Metabolic Modeling of Species Interaction in the 
Human Microbiome Elucidates Community-Level Assembly Rules.” Proceedings of 
the National Academy of Sciences of the United States of America, vol. 110, no. 31, 
July 2013, pp. 12804–12809. Crossref, doi:10.1073/pnas.1300926110. 

41. Lidicker, William Z. “A Clarification of Interactions in Ecological Systems.” 
BioScience, vol. 29, no. 8, Aug. 1979, pp. 475–477. Crossref, doi:10.2307/1307540. 

42. Lindemann, Stephen R., et al. “Engineering Microbial Consortia for Controllable 
Outputs.” The ISME Journal, vol. 10, no. 9, Sept. 2016, pp. 2077–2084. Crossref, 
doi:10.1038/ismej.2016.26. 

43. Mazumdar, Varun, et al. “Metabolic Proximity in the Order of Colonization of a 
Microbial Community.” PLoS ONE, edited by Jens Kreth, vol. 8, no. 10, Oct. 2013, 
p. e77617. Crossref, doi:10.1371/journal.pone.0077617. 



85 

 

44. McNally, Luke, and Sam P. Brown. “Building the Microbiome in Health and 
Disease: Niche Construction and Social Conflict in Bacteria.” Philosophical 
Transactions of the Royal Society B: Biological Sciences, vol. 370, no. 1675, Aug. 
2015, p. 20140298. Crossref, doi:10.1098/rstb.2014.0298. 

45. Mee, Michael T., et al. “Syntrophic Exchange in Synthetic Microbial Communities.” 
Proceedings of the National Academy of Sciences of the United States of America, 
vol. 111, no. 20, May 2014, pp. E2149–2156. doi:10.1073/pnas.1405641111. 

46. Mee, Michael T., and Harris H. Wang. “Engineering Ecosystems and Synthetic 
Ecologies.” Molecular BioSystems, vol. 8, no. 10, 2012, p. 2470. Crossref, 
doi:10.1039/c2mb25133g. 

47. Mendes-Soares, Helena, et al. “MMinte: An Application for Predicting Metabolic 
Interactions among the Microbial Species in a Community.” BMC Bioinformatics, 
vol. 17, no. 1, Dec. 2016. Crossref, doi:10.1186/s12859-016-1230-3. 

48. Moutinho, Thomas J., et al. “Novel Co-Culture Plate Enables Growth Dynamic-
Based Assessment of Contact-Independent Microbial Interactions.” PLoS ONE, 
edited by Jacob Guy Bundy, vol. 12, no. 8, Aug. 2017, p. e0182163. Crossref, 
doi:10.1371/journal.pone.0182163. 

49. Mueller, U. G., and J. L. Sachs. “Engineering Microbiomes to Improve Plant and 
Animal Health.” Trends in Microbiology, vol. 23, no. 10, Oct. 2015, pp. 606–617. 
Crossref, doi:10.1016/j.tim.2015.07.009. 

50. Muller, Emilie E. L., et al. “Using Metabolic Networks to Resolve Ecological 
Properties of Microbiomes.” Current Opinion in Systems Biology, vol. 8, Apr. 2018, 
pp. 73–80. Crossref, doi:10.1016/j.coisb.2017.12.004. 

51. Nichols, D., et al. “Use of Ichip for High-Throughput In Situ Cultivation of 
‘Uncultivable’ Microbial Species.” Applied and Environmental Microbiology, vol. 
76, no. 8, Apr. 2010, pp. 2445–2450. Crossref, doi:10.1128/AEM.01754-09. 

52. Pacheco, Alan R., et al. “Costless Metabolic Secretions as Drivers of Interspecies 
Interactions in Microbial Ecosystems.” Nature Communications, vol. 10, no. 1, Jan. 
2019, pp. 1–12. doi:10.1038/s41467-018-07946-9. 

53. Pacheco, Alan R., and Daniel Segrè. “A Multidimensional Perspective on Microbial 
Interactions.” FEMS Microbiology Letters, vol. 366, no. 11, June 2019. Crossref, 
doi:10.1093/femsle/fnz125. 

54. Paczia, Nicole, et al. “Extensive Exometabolome Analysis Reveals Extended 
Overflow Metabolism in Various Microorganisms.” Microbial Cell Factories, vol. 
11, no. 1, 2012, p. 122. Crossref, doi:10.1186/1475-2859-11-122. 



86 

 

55. Pais, Inês S., et al. “Drosophila Melanogaster Establishes a Species-Specific 
Mutualistic Interaction with Stable Gut-Colonizing Bacteria.” PLoS Biology, edited 
by Nancy Moran, vol. 16, no. 7, July 2018, p. e2005710. Crossref, 
doi:10.1371/journal.pbio.2005710. 

56. Ponomarova, Olga, and Kiran Raosaheb Patil. “Metabolic Interactions in Microbial 
Communities: Untangling the Gordian Knot.” Current Opinion in Microbiology, vol. 
27, Oct. 2015, pp. 37–44. Crossref, doi:10.1016/j.mib.2015.06.014. 

57. Relman, David A. “The Human Microbiome: Ecosystem Resilience and Health.” 
Nutrition Reviews, vol. 70, Aug. 2012, pp. S2–9. Crossref, doi:10.1111/j.1753-
4887.2012.00489.x. 

58. Rosenthal, Adam Z., et al. “Metabolic Interactions between Dynamic Bacterial 
Subpopulations.” eLife, 2018. DataCite, doi:10.7554/elife.33099.001. 

59. Russel, Jakob, et al. “Antagonism Correlates with Metabolic Similarity in Diverse 
Bacteria.” Proceedings of the National Academy of Sciences of the United States of 
America, vol. 114, no. 40, Oct. 2017, pp. 10684–10688. Crossref, 
doi:10.1073/pnas.1706016114. 

60. Sachs, Joel L., et al. “The Evolution of Cooperation.” The Quarterly Review of 
Biology, vol. 79, no. 2, June 2004, pp. 135–160. Crossref, doi:10.1086/383541. 

61. Sanchez-Gorostiaga, Alicia, et al. “High-Order Interactions Dominate the Functional 
Landscape of Microbial Consortia.” bioRxiv, May 2018. DataCite, 
doi:10.1101/333534. 

62. Seth, Erica C., and Michiko E. Taga. “Nutrient Cross-Feeding in the Microbial 
World.” Frontiers in Microbiology, vol. 5, July 2014. Crossref, 
doi:10.3389/fmicb.2014.00350. 

63. Simhadri, Rama K., et al. “The Gut Commensal Microbiome of Drosophila 
Melanogaster Is Modified by the Endosymbiont Wolbachia.” mSphere, edited by 
Karen L. Visick, vol. 2, no. 5, Oct. 2017. Crossref, doi:10.1128/mSphere.00287-17. 

64. Sommer, Andrew J., and Peter D. Newell. “Metabolic Basis for Mutualism between 
Gut Bacteria and Its Impact on the Drosophila Melanogaster Host.” Applied and 
Environmental Microbiology, edited by Shuang-Jiang Liu, vol. 85, no. 2, Nov. 2018. 
Crossref, doi:10.1128/AEM.01882-18. 

65. Stachowicz, John J., et al. “Understanding the Effects of Marine Biodiversity on 
Communities and Ecosystems.” Annual Review of Ecology, Evolution, and 
Systematics, vol. 38, no. 1, Dec. 2007, pp. 739–766. Crossref, 
doi:10.1146/annurev.ecolsys.38.091206.095659. 



87 

 

66. Steinway, Steven N., et al. “Inference of Network Dynamics and Metabolic 
Interactions in the Gut Microbiome.” PLoS Computational Biology, edited by Costas 
D. Maranas, vol. 11, no. 6, June 2015, p. e1004338. Crossref, 
doi:10.1371/journal.pcbi.1004338. 

67. Stevenson, Keiran, et al. “General Calibration of Microbial Growth in Microplate 
Readers.” Scientific Reports, vol. 6, no. 1, Dec. 2016. Crossref, 
doi:10.1038/srep38828. 

68. Sung, Jaeyun, et al. “Global Metabolic Interaction Network of the Human Gut 
Microbiota for Context-Specific Community-Scale Analysis.” Nature 
Communications, vol. 8, no. 1, Aug. 2017. Crossref, doi:10.1038/ncomms15393. 

69. Vance, W., et al. “Determination of Causal Connectivities of Species in Reaction 
Networks.” Proceedings of the National Academy of Sciences of the United States of 
America, vol. 99, no. 9, Apr. 2002, pp. 5816–5821. doi:10.1073/pnas.022049699. 

70. Vemuri, G. N., et al. “Overflow Metabolism in Escherichia Coli during Steady-State 
Growth: Transcriptional Regulation and Effect of the Redox Ratio.” Applied and 
Environmental Microbiology, vol. 72, no. 5, May 2006, pp. 3653–3661. Crossref, 
doi:10.1128/AEM.72.5.3653-3661.2006. 

71. Venturelli, Ophelia S., et al. “Deciphering Microbial Interactions in Synthetic 
Human Gut Microbiome Communities.” Molecular Systems Biology, vol. 14, no. 6, 
June 2018. Crossref, doi:10.15252/msb.20178157. 

72. Vet, Stefan, et al. “Bistability in a System of Two Species Interacting through 
Mutualism as Well as Competition: Chemostat vs. Lotka-Volterra Equations.” PLoS 
ONE, edited by Ramon Grima, vol. 13, no. 6, June 2018, p. e0197462. Crossref, 
doi:10.1371/journal.pone.0197462. 

73. Vetsigian, Kalin, et al. “Structure and Evolution of Streptomyces Interaction 
Networks in Soil and In Silico.” PLoS Biology, edited by Jonathan A. Eisen, vol. 9, 
no. 10, Oct. 2011, p. e1001184. Crossref, doi:10.1371/journal.pbio.1001184. 

74. Watkins, Eleanor R., et al. “Metabolic Competition as a Driver of Bacterial 
Population Structure.” Future Microbiology, vol. 11, no. 10, Oct. 2016, pp. 1339–
1357. Crossref, doi:10.2217/fmb-2016-0079. 

75. White, Richard Allen, et al. “The Past, Present and Future of Microbiome Analyses.” 
Nature Protocols, vol. 11, no. 11, Nov. 2016, pp. 2049–2053. Crossref, 
doi:10.1038/nprot.2016.148. 



88 

 

76. Wintermute, Edwin H., and Pamela A. Silver. “Emergent Cooperation in Microbial 
Metabolism.” Molecular Systems Biology, vol. 6, no. 1, Jan. 2010, p. 407. Crossref, 
doi:10.1038/msb.2010.66. 

77. Xiao, Yandong, et al. “Mapping the Ecological Networks of Microbial 
Communities.” Nature Communications, vol. 8, no. 1, Dec. 2017. Crossref, 
doi:10.1038/s41467-017-02090-2. 

78. Xu, B., et al. “Modeling of Overflow Metabolism in Batch and Fed-Batch Cultures 
of Escherichia Coli.” Biotechnology Progress, vol. 15, no. 1, Feb. 1999, pp. 81–90. 
Crossref, doi:10.1021/bp9801087. 

79. Zaneveld, Jesse R., et al. “Stress and Stability: Applying the Anna Karenina 
Principle to Animal Microbiomes.” Nature Microbiology, vol. 2, no. 9, Sept. 2017. 
Crossref, doi:10.1038/nmicrobiol.2017.121. 

80. Zelezniak, Aleksej, et al. “Metabolic Dependencies Drive Species Co-Occurrence in 
Diverse Microbial Communities.” Proceedings of the National Academy of Sciences 
of the United States of America, vol. 112, no. 20, May 2015, pp. 6449–6454. 
Crossref, doi:10.1073/pnas.1421834112. 

81. Ziegler, Maren, et al. “Bacterial Community Dynamics Are Linked to Patterns of 
Coral Heat Tolerance.” Nature Communications, vol. 8, no. 1, Apr. 2017. Crossref, 
doi:10.1038/ncomms14213. 

82. Zomorrodi, Ali R., and Daniel Segrè. “Synthetic Ecology of Microbes: Mathematical 
Models and Applications.” Journal of Molecular Biology, vol. 428, no. 5, Feb. 2016, 
pp. 837–861. Crossref, doi:10.1016/j.jmb.2015.10.019. 

  



89 

 

CURRICULUM VITAE 



90 

 




