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FRACTAL SETS SATISFYING
THE STRONG OPEN SET CONDITION

IN COMPLETE METRIC SPACES

Abstract. Let K be a Hutchinson fractal in a complete metric space X, invariant under the
action S of the union of a finite number of Lipschitz contractions. The Open Set Condition
states that X has a non-empty subinvariant bounded open subset V , whose images under
the maps are disjoint. It is said to be strong if V meets K. We show by a category
argument that when K 6⊂ V and the restrictions of the contractions to V are open, the
strong condition implies that V̌ =

T∞
n=0 Sn(V ), termed the core of V , is non-empty. In this

case, it is an invariant, proper, dense, subset of K, made up of points whose addresses are
unique. Conversely, V̌ 6= ∅ implies the SOSC, without any openness assumption.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Suppose that X is a complete metric space and wi, i ∈ {1, 2, . . . N}, are contracting
self-maps of X, each having Lipschitz constant less than one. Call the wi scaling
maps, and define the scaling operator S on 2X as

S(E) =
N⋃

i=1

wi(E),

for E ⊂ X. Say E is subinvariant under scaling if S(E) ⊆ E, invariant if equality
holds.

These notions were introduced by Hutchinson, in his fundamental paper [3]. There,
he established the existence of a unique non-empty bounded closed subset K of X
that is invariant under scaling, and showed it to be compact. The set K is termed
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the fractal, or invariant set, determined by the scaling maps. Familiar examples are
the Sierpinski Gasket, the von Koch Curve, and Barnsley’s Fern.

Along with fractal sets, Hutchinson also introduced fractal measures. Each pro-
bability distribution P = (p1, p2, . . . , pN ) on the index set defines a Markov operator

MP µ =
N∑

i=1

pi · µ ◦ w−1
i ,

acting on finite measures µ on the Borel σ-algebra B(X) and transforming them into
measures of a similar nature. The operator is well-defined, since the scaling maps,
being continuous, are Borel-measurable.

A regular Borel probability measure µP for which MP µP = µP is called an in-
variant, or fractal measure. Hutchinson [3], 733 proved the existence and uniqueness
of such measures, assuming that P is non-degenerate, and established that K is their
topological support.

The images of under the scaling maps may overlap, be disjoint, or they may “just
touch”, as they do in the foregoing examples. The last notion means, intuitively, that,
although the images may touch, they do not significantly overlap.

To capture it, standard practice has been to invoke the Open Set Condition
(OSC), introduced by Moran [6]. It posits the existence of a non-empty subinvariant
bounded open set V , whose images under the scaling maps are disjoint. The first two
examples above clearly have this property, and the third one is reputed to possess it.

However, Lalley [4] recognized that if it were possible for K ⊂ ∂V , the separation
property required of the images of V will have lost its effect on K. Accordingly, he
added to the OSC the further requirement that K ∩ V 6= ∅, and called it the Strong
Open Set Condition(SOSC). In the case in which the scaling maps are similitudes, or,
at least, conformal, Peres et al. [7] proved it to be, ultimately, a consequence of the
OSC, generalizing an earlier result of Schief [8].

The aim of this paper is to study the SOSC in the general setting of complete
metric spaces. In contrast to Schief [9], we allow the scaling maps to be arbitrary
strict contractions.

The principal object of our study is what we call the core V̌ of the set V occurring
in the OSC. It is defined by the formula

V̌ =
∞⋂

n=0

Sn(V ),

where Sn denotes the n-th iterate of S.
The main result is that, under the SOSC, V̌ is non-empty, whenever the restriction

of the scaling maps to V are open: this includes the case of homeomorphisms. It is
then a dense, proper, invariant subset of K. Conversely, V̌ 6= ∅ implies the SOSC.

It is a pleasure to acknowledge the priority of Andy Lasota and his collaborators
[5] in considering, for the case of Polish spaces, the notion of the core in an even
more general setting than that of Hutchinson fractals (although we have some reser-
vations about what they claim). It, nevertheless, follows from their Zero-One Law,
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op. cit, 346, that the SOSC implies that µP ◦ V̌ = 1 holds (even in the non-separable
case), where µP denotes the completion of the invariant measure µP . We shall present
these measure-theoretic results in [2].

2. THE BEHAVIOR OF S UNDER ITERATION

For any natural number n, and any string of indices i1, i2, . . . , in, with values in
{1, 2, . . . , N}, set

Ei1i2...in = wi1 ◦ wi2 ◦ . . . ◦ win(E),

where E ⊂ X. Then Sn(E) can be expressed as

Sn(E) =
⋃

i1,i2,...,in

Ei1i2...in
,

where the i1, i2, . . . , in vary independently over {1, 2, . . . , N}.

Proposition 2.1 ([3, p. 724]). If E is non-empty and subinvariant, then, for every
non-negative integer n there holds K ⊂ Sn(clE), where cl denotes the closure.

Theorem 2.2 ([3, p. 724]). If E is non-empty and bounded, then Sn(E) → K in
the Hausdorff semi-metric, as n →∞.

The following crucial result, already well-known in the case of precompact E,
shows that the inclusion in Proposition 2.1 becomes, in the limit, equality, when E is
bounded.

Theorem 2.3. If E is a non-empty, bounded, subinvariant set, then

K =
∞⋂

m=0

Sm(clE).

Proof. By Theorem 2.2, Sn(clE) → K in the Hausdorff semi-metric, as n →∞. For
each ε > 0, let Kε denote the union of open balls of radius ε whose centers lie in
K. Now, prescribe ε at will. Since the sets Sn(clE) form a decreasing sequence as
n increases, and K is their Hausdorff limit, Sn(clE) =

⋂n
m=0 Sm(clE) ⊂ Kε, from

some n on. Thus,
⋂∞

m=0 Sm(clE) ⊂ Kε. As ε was arbitrary and K is compact,
an indirect argument shows that

⋂∞
m=0 Sn(clE) ⊂ K. However, by Proposition 2.1,

K ⊂
⋂∞

m=0 Sm(clE). Hence, K =
⋂∞

m=0 Sm(clE), as asserted.

3. THE OPEN SET CONDITIONS AND THE CORE

The scaling maps satisfy the Open Set Condition (OSC), if there is a non-empty,
bounded, open set V that is subinvariant, and its images under the scaling maps are
disjoint. It is called the Strong OSC (SOSC) if, further, K meets V .

These conditions are only of interest when the images of K under the scaling maps
fail to be disjoint. To ensure that, the constraint K 6⊂ V must be imposed, and we
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do so henceforth, with one sole exception. It is suspended in Remark 4.5, in order to
describe what would occur in its absence

Proposition 3.1. Under the SOSC, K = cl[K ∩ Sn(V )], for every non-negative
integer n.

Proof. The inclusion K ⊃ cl[K ∩ Sn(V )] is immediate, since K is closed, and the
reverse inclusion is a consequence of Proposition 2.1, applied to K ∩ V , which is
subinvariant.

Proposition 3.2. There holds K\Sn(V ) ⊂ ∂Sn(V ), for every non-negative integer n.

Proof. Applying Proposition 2.1 to V yields K ⊂ Sn(clV ), for every n. The continuity
of Sn implies that Sn(clV ) ⊂ clSn(V ). Hence,

K \ Sn(V ) ⊂ clSn(V ) \ Sn(V ) ⊂ clSn(V ) \ intSn(V ) = ∂Sn(V ),

for every n, where intSn(V ) denotes the interior of Sn(V ).

Note that the case n = 0 gives K \ V ⊂ ∂V , so that K ⊂ ∂V , when K ∩ V = ∅.

Definition 3.3. The core V̌ of V is defined as

V̌ =
∞⋂

n=0

Sn(V ).

Main Theorem 3.4. If the SOSC holds and the images of V under the scaling maps
are open, the core V̌ is non-empty.

Proof. It follows from the definition of V̌ that

∞⋃
n=0

[K \ Sn(V )] = K \
∞⋂

n=0

Sn(V ) = K \ V̌ ,

so the equation
∞⋃

n=0

[K \ Sn(V )] = K

holds if and only if V̌ is empty. We show by a category argument that the assumption
of equality leads to a contradiction.

In fact, if any one of the sets K \ Sn(V ), contained an interior point, that point
would possess an open neighborhood that does not meet Sn(V ). However, by Propo-
sition 3.2, the same point would also belong to ∂Sn(V ). Thus, each of its open
neighborhoods would meet Sn(V ), leading to a contradiction. Accordingly, none of
the sets K \ Sn(V ) can have an interior point.

As K is compact, it is complete in the induced metric. By Baire’s Category
Theorem, it thus is of second category. Since the scaling maps are assumed to be open,
the sets K ∩Sn(V ) are open relative to K. Consequently, their relative complements
K \Sn(V ) are closed. Since they do not have interior points, they are nowhere dense
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in K. (The same conclusion could have been drawn from Proposition 3.1, for the
complements of these sets with respect to K, K ∩Sn(V ), are open and dense.) Thus,
the hypothesis that V̌ is empty implies that K is the countable union of nowhere
dense closed sets. Hence, it is of first category, in contradiction to Baire’s Category
Theorem. Consequently, V̌ must be non-empty, as claimed.

Remark 3.5. Under the foregoing hypotheses, together with Theorem 4.4 below, V̌ is
a dense Gδ in a complete metric space, so it has the power of the continuum.

4. PROPERTIES OF THE CORE

Assume throughout this section that the OSC holds. That allows the core V̌ to be
defined. We now show that it possesses some remarkable features. Although we
present them here in full generality, that is merely apparent, for they are only of
interest when the set V̌ is non-empty. As we shall see, that will occur if the SOSC
prevails, and only then.

Theorem 4.1. The core is invariant under scaling, i.e., S(V̌ ) = V̌ .

Proof. By the OSC, V is subinvariant: S(V ) ⊂ V . Applying S repeatedly to both
sides gives Sn+1(V ) ⊂ Sn(V ), for each n ≥ 1. Hence, the sets Sn(V ) form a decreasing
sequence, with increasing n, and

wi ◦
m⋂

n=0

Sn(V ) = wi ◦ Sm(V ) =
m⋂

n=0

wi ◦ Sn(V ),

for every m. Sending m →∞ on the right,

wi ◦
m⋂

n=0

Sn(V ) ⊃
∞⋂

n=0

wi ◦ Sn(V ),

for each m, so that

wi ◦
∞⋂

n=0

Sn(V ) ⊃
∞⋂

n=0

wi ◦ Sn(V ).

Similarly, sending m →∞ on the left gives

wi ◦
∞⋂

n=0

Sn(V ) ⊂
∞⋂

n=0

wi ◦ Sn(V ),

and thus equality holds. Taking the union over i and recalling the definition of V̌ ,

S(V̌ ) =
N⋃

i=1

wi(V̌ ) =
N⋃

i=1

∞⋂
n=0

wi ◦ Sn(V ).
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By the OSC, the images of V under the scaling maps are disjoint. Since Sn(V ) ⊂ V
for each n, it follows that

wi ◦ Sn(V ) ∩ wj ◦ Sn′
(V ) = ∅,

for any pair of non-negative integers n, n′, whenever i 6= j. Therefore, it is licit to
permute the union with the intersection and get

S(V̌ ) =
∞⋂

n=0

N⋃
i=1

wi ◦ Sn(V ) =
∞⋂

n=0

Sn+1(V ).

As S(V ) ⊂ V , the last expression equals
⋂∞

n=0 Sn(V ) = V̌ , and the invariance of
V̌ is established.

Let n be any natural number. For any string of indices i1, i2, . . . , in in
{1, 2, . . . , N}n, set

Ei1i2...in = wi1 ◦ wi2 ◦ . . . ◦ win(E),

where E ⊂ X. Then Sn(E) can be expressed as

Sn(E) =
⋃

i1,...,in

Ei1i2...in ,

where i1, i2, . . . , in vary independently over {1, 2, . . . , N}.

Corollary 4.2. For each n and varying i1, i2, . . . , in, the V̌i1i2...in
form a partition

of V̌ .

Proof. Since V̌ is invariant,

V̌ = Sn(V̌ ) =
⋃

i1,...,i2

V̌i1i2...in
.

The OSC implies that the Vi1i2...in
are disjoint. Since V̌ ⊂ V , the same is true of

the V̌i1i2...in
.

Theorem 4.3. V̌ ⊂ K.

Proof. Clearly, Sn(V ) ⊂ Sn(clV ), for every non-negative integer n. Since the Sn(V )
form a decreasing sequence, Sm(V ) ⊂ Sn(clV ), for every m ≥ n. Taking the inter-
section over m yields V̌ ⊂ Sn(clV ), for every n. Intersecting over n, the right side
converges to K, by Theorem 2.3. Hence, V̌ ⊂ K, as asserted.

To show that the inclusion is proper, observe that V̌ ⊂ V = intV , so that no point
in ∂V can lie in V̌ . However, applying Proposition 2.1 to V gives K ⊂ clV, and, by
our convention, K 6⊂ V . Accordingly, K ∩ ∂V 6= ∅, hence there are points in K that
do not lie in V̌ .
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Recall that an address of a point x in K is a string of digits
i1(x), i2(x), . . . , in(x), . . . with values in {1, 2, . . . , N}∞, such that

x =
∞⋂

n=0

Ki1(x)i2(x)...in(x).

Hutchinson [3], 724, proved that each point in K has at least one address. It may,
in general, have many.

Theorem 4.4. If x belongs to V̌ , then its address is unique.

Proof. Otherwise, there is a natural number n and two distinct strings of indices,
i1(x), i2(x), . . . , in(x) and j1(x), j2(x), . . . , jn(x) in {1, 2, . . . , N}n, such that x lies in
Ki1(x)i2(x)...in(x) and in Kj1(x)j2(x)...jn(x). Since, by Theorem 4.2, V̌ ⊂ K,

Ki1(x)i2(x)...in(x)∩V̌ = V̌i1(x)i2(x)...in(x), and Kj1(x)j2(x)...jn(x)∩V̌ = V̌j1(x)j2(x)...jn(x),

x lies in V̌i1(x)i2(x)...in(x) and V̌j1(x)j2(x)...jn(x). However, by Corollary 4.2, these two
sets are disjoint. Contradiction.

Proposition 4.5. If K ∩ V = ∅, then V̌ = ∅.

Proof. If K ∩ V = ∅, then K ⊂ ∂V , but V̌ ⊂ intV , so K ∩ V̌ = ∅. Since K is
non-empty, that is only possible if V̌ = ∅.

Hence, the SOSC is a necessary condition for V̌ to be non-empty. Theorem 3.4
shows that when the restrictions of the scaling maps to V are open, it is also suffi-
cient. We show in [2], Theorem 3.6, that by using measure-theoretic methods, the
requirement of openness can be dropped.

Theorem 4.6. If V̌ is non-empty, then it is dense in K.

Proof. Since V̌ is bounded and subinvariant, Proposition 2.1 applies and, by Theo-
rem 4.2,

K ⊂ S(clV̌ ) ⊂ clS(V̌ ) ⊂ clV̌ ⊂ clK = K.

Hence, clV̌ = K.

Remark 4.7. The assumption that K 6⊂ V was used only to show that V̌ is a proper
subset of K. Were it not imposed, the images of K under the scaling maps would not
only be disjoint, but K and V̌ would actually coincide. To see this, write K ⊂ V, and
apply Sn to each side. Since K is invariant, that would give K ⊂ Sn(V ), for each
n. Taking the intersection over n would make K ⊂ V̌ . However, Theorem 4.2 states
that V̌ ⊂ K, and, therefore, V̌ = K.
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