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Abstract
This laboratory scale study aims to demonstrate the effectiveness of thermochemical
and biological saccharification of Miscanthus giganteus (MG) for generation of
fermentable saccharides and its subsequent fermentation into solvents i.e. acetone,
ethanol and butanol (ABE) using Clostridium acetobutylicum ATCC 824. Saccharide
hydrolysates were derived from MG by thermochemical (water, acid and alkali at 130
°C) and biological saccharification (Fibrobacter succinogenes S85) processes and
were subjected to batch fermentation for 120 hours using C. acetobutylicum ATCC
824. At the end of fermentation of thermochemically-derived hydrolysates, 742 g m™
of saccharides from water treatment, 9572 g m™ of saccharides from acid treatment
and 4054 g m™ of saccharides from alkali treatment were fermented and yielded
0.045, 0.0069 and 0.01 g g™ of total solvents, respectively. Similarly, at the end of
fermentation of biological hydrolysate (using F. succinogenes), 2504 g m™ of
saccharides was fermented and yielded 0.091 g g™ of total solvents. The highest yield
of total solvents was achieved by water (thermochemical) and biological
saccharification of MG using C. acetobutylicum. Whereas, acid and alkali-treated
hydrolysates showed lower yields of solvents presumably due to production of
inhibitory compounds during saccharification. Compared to thermochemical
saccharification, biological saccharification using F. succinogenes is a promising
approach since it yielded the highest amount of solvents whilst being eco-friendly. Our
future studies will focus on optimisation of biological saccharification (using F.
succinogenes) and sequential co-culture fermentation (using C. acetobutylicum). The
development of alternative consolidated bioprocessing approach using biological

saccharification will contribute towards making lignocellulosic biofuels a reality.
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1. Introduction

Biofuel production from lignocellulosic materials (wood, agricultural and forest
residues) is a sustainable alternative to existing fossil fuels. Lignocellulosic biomass
has a unique place in future biofuel production that can provide both, sustainable
and eco-friendly alternative fuels [1].

Lignocellulosic biofuel production involves two main steps: 1) deconstruction of cell
wall polymers in lignocellulosic biomass into saccharides via pre-treatment and
saccharification and 2) conversion of those saccharides into biofuels via
fermentation. However, the major bottleneck in lignocellulosic biomass to biofuel
conversion is the recalcitrant nature of lignocellulosic polymers that makes the
saccharification step rate limiting [2].

In order to bring lignocellulosic biomass into hydrolysates containing fermentable
saccharides and also to make it more amenable for microbial fermentation, various
physical, chemical and biological saccharification techniques has been employed [3-
5]. Conventional physical and chemical saccharification techniques, including liquid
hot water, steam explosion, CO, explosion, ozonolysis, solvents and acid/alkali
processes, have been in use for biomass deconstruction [6], but require significant
energy inputs or/and the addition of chemicals. For instance, liquid hot water

treatment requires high amount of water and elevated temperature (170-230°C) and
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pressure (up to 5 MPa), stream explosion requires high-pressure saturated steam
(0.69-4.83 MPa) and high temperature (160-260°C), CO, explosion requires
extremely high pressure, and ozonolysis, solvents and acid/alkali treatments requires
addition of chemicals [7, 8]. Most of these techniques generate by-products that
have inhibitory effect to subsequent fermentation processes. Conversely, biological
saccharification is an ideal option due to lower energy input, but it is slow and less
efficient [3]. Therefore, at present neither of these techniques are fully optimised, and
still requires rigorous research to obtain cost effective and efficient pre-treatment for
saccharification and robust subsequent fermentation method.

Clostridium acetobutylicum ATCC 824 (hereafter referred to as C. acetobutylicum) is
an industrially important model microbe that produces acetone, ethanol and butanol
(ABE), as well as hydrogen from various saccharides, which makes it suitable to
ferment different agricultural and industrial wastes. Since C. acefobutylicum is
unable to hydrolyse lignocellulosic polymers (cellulose and hemicellulose) directly, it
is necessary to bring fermentable saccharides into hydrolysates by either chemical

or biological pre-treatment and subsequent saccharification [9, 10].

1.1. Chemical strategy: thermochemical saccharification and fermentation

Ideally, acid/alkali pre-treatments of biomass at high temperature generate
hydrolysates containing high amounts of fermentable saccharides [11] that can be
further converted into fuels by fermentation. Clostridial species are well equipped to
produce solvents using their multi-substrate utilising capacity more efficiently than
any other genus of the three domains (Bacteria, Archaea, Eukaryota) [12]. In
particular, C. acetobutylicum and Clostridium beijerinckii are good producers of

solvents in acetone-butanol-ethanol fermentation (ABE), with the potential to ferment
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a wide-range of saccharides in hydrolysates derived from agriculture residues [12].
ABE fermentation of different typical feedstocks hydrolysates using different strains

of Clostridia are cited elsewhere [13].

1.2. Microbial strategy: biological saccharification and fermentation

Microbial strategies for saccharification, on the other hand, are diverse and represent
a promising approach for the development of biological processes for industrial scale
production of biofuels [14]. Consolidated bioprocessing (CBP) is an alternative
microbial bioprocessing approach in which the key steps for lignocellulosic biofuel
generation, i.e. saccharification and fermentation, occur simultaneously and employs
combinations of natural and recombinant microorganisms [15]. Anaerobes with
efficient lignocellulose degradation and biofuel generation capabilities are of
particular interest [16]. The combination of microbes with desirable abilities such as
saccharification and fermentation can provide a major breakthrough as an alternative
CBP approach.

Thus considering the overall objective of CBP, sequential co-culture fermentation of
lignocellulosic biomass is a viable solution over energy intensive thermochemical
saccharification and fermentation methods. The CBP approach has been
investigated by numerous research groups using Clostridia, however
underperformance of lignocellulosic co-culture fermentation has been observed, and
is attributed to a rather slow rate of hydrolysis [17]. A similar multi-organism
approach was tested for bioenergy production from lignocellulosic biomass, using C.
acetobutylicum and Clostridium cellulolyticum showing that the rate of lignocellulose

utilization in the co-culture is improved compared to a C. cellulolyticum mono-culture
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[18, 19]. C. cellulolyticum and Rhodopseudomonas palustris were also syntrophically
grown as co-cultures. The increase in cellulose degradation observed by C.
cellulolyticum was due to the removal of an inhibitory by-product (pyruvate) by R.
palustris [20]. In a different study, C. acetobutylicum and Ethanoigenens harbinense
were tested for biohydrogen production using microcrystalline cellulose as a
substrate. Improved cellulose saccharification and hydrogen production were

observed, compared to that of monoculture conditions [21].

1.3 Our approach

In this study, we attempted, for the first time, a sequential biological saccharification
and fermentation approach with F. succinogenes S85 (hereafter referred to as F.
succinogenes) and C. acetobutylicum, respectively. Among the selected anaerobic
strains; F. succinogenes is the most efficient saccharolytic bacterium found in the
herbivore rumen [22, 23], while C. acetobutylicum has significant capability to
ferment a diverse range of saccharide components into ABE production [10, 12]. Our
hypothesis was that combining F. succinogenes and C. acetobutylicum in a CBP
approach will produce ABE solvents and hydrogen at a level comparable to those
achieved using C. acetobutylicum fermentation of saccharides produced using
conventional thermochemical saccharification strategies. To test our hypothesis, we
compared production of ABE solvents and hydrogen between C. acetobutylicum-
mediated fermentation of saccharides produced from lignocellulosic MG biomass
using three thermochemical treatments (water/acid/alkali) and a CBP approach using
a co-culture of F. succinogenes and C. acetobutylicum with three different
substrates, acid-swollen cellulose (ASC), microcrystalline cellulose (MC) and

lignocellulosic MG biomass.
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2. Materials and methods

All chemicals used in this study were purchased from Sigma Aldrich (UK), unless

otherwise indicated.

2.1. Microorganisms used and medium preparation

2.1.1. Clostridium acetobutylicum

C. acetobutylicum ATCC 824 was procured from the German Collection of
Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). C.
acetobutylicum was grown anaerobically in a 125 cm?® capacity serum bottle fitted
with butyl rubber and crimp sealed containing 100 cm® media. The media
composition was used as described by Lopez Contreras et al. [24] having the
following composition per dm® (hereafter denoted as CA media): 0.75 g KH.PO4,
0.75 g Ko;HPO4, 0.348 g MgSO4 0.01 g MnSO4.H20, 0.01 g FeS04.7H,0, 1 g NaCl,
5 g yeast extract, 2 g (NH4).SO4, 1 g cysteine HCI (as reducing agent) and with 5 g
glucose as a carbon source. The medium was heated to boiling and cooled down by
flushing with nitrogen gas for 10 min. The bottles were crimped sealed with butyl
rubber and autoclaved for 15 min at 121 °C. The medium was inoculated with a
freshly-prepared inoculum and incubated at 37 °C for 18 to 20 hours (up to the

exponential phase).

2.1.2. Fibrobacter succinogenes
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F. succinogenes S85 (ATCC 19169) was kindly provided by Prof. Paul Weimer (US
Dairy Forage Research Centre, Madison, Wisconsin, USA). F. succinogenes was
cultivated under anaerobic conditions at 37 °C in a modified Dehority medium (MDM)

as described by Weimer et al. [25, 26].

To prepare the basal media (FS media), the following stock solutions were each
prepared first in a dm>: a) mineral solution |; 22.5 g KH,PO,, b) mineral solution II;
11.26 g NaCl, 11.26 g (NH4)2S0O4, 1.06 g MgCl,.6H,0, 0.82 g CaCl,.2H,0, 0.344 g
MnCl;.4H,0, 0.250 g FeSO4-7H20, 0.118 g ZnCl,, and 0.026 g CoCl,.6H,0, 80 g
Na,COs, c) volatile fatty acid (VFA) solution; mixture of 1% (v/v) isobutyric acid, 1%
(v/v) isovaleric acid, 1% (v/v) n-valeric acid and 1% (v/v) 2-methylbutyric acid), d) 8%
Na,CO3 solution and e) reducing agent solution; 25 g cysteine HCI. Except mineral
solution I, all stocks solutions (100 cm®) were prepared by boiling and cooling whilst
sparging continuously with nitrogen for 10 min in 125 cm® serum bottles, crimped
sealed and autoclaved for 15 min at 121 °C. Schaefer’s vitamin solution was also

prepared as described by Callaway and Martin [25].

2.2. Basal medium (FS media)

Basal medium was prepared by adding 8 cm® of stock solution Il into 79.5 cm® of
distilled water, boiled and cooled whilst sparging with carbon dioxide for 10 min in a
125 cm® bottle, and autoclaved at 121 °C for 15 min. In an anaerobic chamber, to
mixture, 4 cm® of mineral solution I, 3 cm® of VFA solution, 4 cm® of 8% Na,COs3
solution, 4 cm® of reducing agent and 0.1 cm® of Schaefer’s vitamin solution were
added. The final composition of the basal medium was (per dm®): 0.9 g KH,POy4, 0.9

g NaCl, 0.9 g (NHs) 2SO, 0.084 g MgCl,-6H,0, 0.065 g CaCl,-2H,0, 0.027 g
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MnClz-4H,0, 0.02 g FeS0O4-7H,0, 0.009 g ZnCl,, and 0.0048 g CoCl,-6H,0, 3.2 g
Na,COs3, 0.06% (v/v) each of isobutyric acid, isovaleric acid, n-valeric acid and 2-

methylbutyric acid, 1 g cysteine-HCl and 0.1% (v/v) Schaefer’s vitamin solution.

2.3. Development of syntrophic co-culture media

Since both bacteria require different culture media for optimal growth, it was
necessary to optimise the media in such a way that both bacteria can grow in the
same medium. To obtain the modified co-culture media, 6 media bottles of each FS
and CA media were prepared with 5 g dm™ glucose as a carbon source. Both the
media were then combined to obtain the ratio (FS:CA) of 100:0, 20:40, 40:60, 60:40,
80:20 and 0:100. Two sets of these combinations were prepared anaerobically in
pre-sterilized 125 cm?® serum bottles caped with butyl rubber and crimp sealed.
These modified media were then inoculated with F. succinogenes (ODg7s =0.72) and
C. acetobutylicum (ODey = 1.2). The growth of F. succinogenes and C.
acetobutylicum were monitored by measuring optical density (OD) at wavelengths of
675nm and 600nm respectively. The growth profiles of F. succinogenes and C.
acetobutylicum at different combination of FS and CA media are shown in Appendix
A. Supplementary data Fig. S1. The mixed culture growth of both bacteria in the
modified co-culture medium was imaged using an Olympus microscope BX51
(Tokyo, Japan) fitted with a CapturePro 2.6-JENOPTIK Laser camera (Optik, System
GmbH, Germany). Finally the ratio of 40:60 (FS:CA) was selected as modified

syntrophic co-culture medium for saccharification and fermentation.
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2.4. Preparation of MG hydrolysate and fermentation

MG was grown in York, North Yorkshire, UK, under field conditions. The materials
used represent the sixth year of harvest. After harvest and drying, it was milled using
a Restch impact mill to 1 mm particles. The composition of raw MG is cellulose (34%
+ 2.5 %), hemicellulose (42% * 2.8 %), lignin (28% + 2%) and ash (0.83% % 0.03%).
MG hydrolysate was obtained by treatment with either hot water or 100 mol m?
H»SO. or 200 mol m™ NaOH at 130°C for 40 min. The supplementary salt medium
was added to each bottle containing hydrolysates at concentration suggested by
Wang and Chen [21]. The supplementary salt medium contained (per dm®): 6 g
(NH4)2,S04, 1.77 g KH2POy4, 2.938 g KoHPO4, 2 g CaCO3 and 10 mg p-aminobenzoic

acid, 10 mg biotin and 1 cm?® mineral salt solution as described by George et al. [27].

The hydrolysates were then neutralised to pH 6.5 (optimal pH for growth and acid
production) using H,SO4 and NaOH and centrifuged at 1000 x g for 2 min to remove
precipitates. Supernatants obtained from each treatment were then sterilised using
0.2 pym polyethersulfone steritop-GP Millipore filter (Loughborough Fisher Scientific
UK). A total of 400 cm® of MG hydrolysate from each treatment (biological triplicates)
was added to 500 cm?® capacity bottles fitted with rubber tight caps provided with inlet
and outlet ports. The hydrolysates were further boiled and cooled down by
continuous flushing with nitrogen for 10 min. Finally, bottles were tightened using
clips. A reducing agent cysteine-HCI (1 g dm™) was added to remove remaining
oxygen from the bottles. The pH of the media was finally re-checked to ensure that
the pH was 6.5. The medium was inoculated with 4 cm?® of freshly prepared inocula
of C. acetobutylicum to each bottle and incubated at 37°C. The experimental set-up
of the fermentation of MG hydrolysate is shown in Appendix A. Supplementary data

Fig. S2. Finally, the supernatant collected from the fermentation broth and were

10
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subjected to acetone, butanol, ethanol. The headspace gas was collected for

hydrogen concentration measurements.

2.5. Biological saccharification of lignocellulosic biomass and fermentation

For biological saccharification, we selected MG, ASC, and MC. Alkali pre-treatment
was employed on MG in order to remove maximum lignin from the biomass [28] and

to get access to cellulose for biological saccharification using F. succinogenes.

One hundred cm?® of this optimised syntrophic co-culture media (ratio of FS to CA =
40:60) was prepared with 5 g dm™ of MG, ASC, and MC as a carbon source.
Triplicate bottles of the media for each condition were firstly inoculated with F.
succinogenes to achieve saccharification. F. succinogenes immediately adhered to
the cellulose substrate particles and subsequently produced biofilms and released
saccharide into the solution [29]. After inoculation, bottles were incubated at 37°C for
40 hours (approximately 40 hours was required to achieve mid-exponential phase of
growth on cellulose). During this period, to avoid utilisation of the released
monosaccharides by planktonic cells and to achieve maximum saccharification,
bottles were kept stagnant to allow biofilm formation. After 40 hours of incubation,
the media was then inoculated with C. acetobutylicum. The sampling times were
selected based on ethanol and butanol production in fermentation broth. As a result,
supernatants were collected after 80 and 120 hours of incubation, analysed for
ethanol, butanol and acetone, and the headspace gas analysed for hydrogen.
Appendix A. Supplementary data Fig. S3 shows F. succinogenes growth on MC

cellulose and subsequent fermentation by C. acetobutylicum.

11
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2.6. Dry weight of cellulosic biomass measurements

The final dry weight of MG, ASC and MC in fermentation broth were determined as
described elsewhere [30]. Briefly, 15 cm® of broth was collected from bottles and
centrifuged at 3000 g for 10 minutes, and then the substrate pellet was washed twice
with 0.1% (w/v) methylcellulose solution to remove bound cells from the substrates.
Substrate pellets were further washed with distilled water and centrifuged at 3000 g
for 10 minutes. The supernatants were removed and tubes were dried in an oven
(Nuve, EN 120) at 80°C until a constant mass was reached. The difference in the
final and initial weights of samples was assumed to be the substrate utilised by co-

culture for biofuel production.

2.7. Analysis of saccharide concentration in MG hydrolysate derived by

thermochemical treatment

The monosaccharides were separated by high performance anion-exchange liquid
chromatography on a Dionex ICS-3000 using a Carbopac PA-20 column (Dionex,
Camberley, UK) with integrated amperometry detection as described elsewhere [31].
The separated monosaccharides were quantified by using external calibrations with
an equimolar mixture of four monosaccharides standards (arabinose, glucose,
mannose and xylose). Each run takes 35 minutes with 25 minutes regeneration. The
buffer system has two phases: 0.5 cm® min™ flow in 1% (w/v) NaOH (200 mol m™),

and then a mixture of 47.5% H,0, 22.5% (w/v) NaOH (200 mol m™), and 30 % of

12
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NaOH (100 mol m™) sodium acetate (500 mol m™). The chromatographic separation

was developed at 30°C.

2.8. Analysis of fermentation products

Fermentation products were identified and quantified as previously reported by
Pham et al. [32]. Briefly, acetone, ethanol and butanol, were detected and quantified
using a GC- chromatograph Agilent 7890A (Cheshire, UK) system coupled with a 30
m x 0.25 mm ID x 0.25 ym Stabbilwax fused silica column (Thames Restek, UK).
Approximately 50 mm? aliquots were collected, centrifuged at 17,000 g for 2 min and
2 mm?® of sample was injected into the GC system. The GC was controlled and
automated by ChemStation Agilent (Rev: 32.3.8) software. The total GC analysis
running time was 14 min and temperature gradient was performed with a hold at
45°C for 3 min, followed by a ramp at a rate of 15°C min™ to 120°C, then 30°C min™
to 210°C and finally a hold 1 min at 210°C. Helium was used as the carrier gas at a
flow rate of 1 cm® min™'. The concentration of by-products ethanol, butanol and
acetone were estimated by obtained standard curves for the respective metabolites
based on its retention time and peak area. The injector, detector and oven
temperatures were 250, 350 and 120°C respectively. A flame ionisation detector
(FID) was used to detect and measure the by-products concentration. Products’
(solvents) productivity was calculated as total solvents (present in the fermentation
hydrolysate) produced in g m™ divided by the fermentation time and is expressed as
g m= h™. Solvents yield was calculated as total solvents produced divided by total

saccharides utilized.

13
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2.9. Hy gas estimation

Gas samples were collected from the headspace of the sampling bottles using 10
cm?® gas tight syringes at different interval times, depending on the sample types and
sample was then injected in to a Varian CP-3800 gas chromatograph (Varian, Polo
Alto, CA) equipped with a 500 mm? sample loop capacity. This volume was then
directly injected via the Varian 1041 splitless on-column injector. Component
separation was achieved using a Haysep (C18-100 mesh, porous polymer column,
2.0 m length and 0.32 cm inner diameter with 2 mm solid support) and a molecular
sieve (13X, 60-80 mesh, packed column 1.5 m length, 0.32 cm inner diameter with 2
mm solid support) with argon carrier at a flow rate of 3.6 cm® min"'. A Thermal
Conductivity Detector (TCD) was used to detect hydrogen production. The GC was
controlled and automated by the Star GC workstation (Version 5.50) software
package (Varian). The instrument was calibrated using standard H; calibration gas
supplied by BOC speciality gases (Guildford, Surrey, UK). An overview of the overall

methodology is shown in Fig. 1.

Fig. 1 goes here

3. Results and discussion

Saccharification of lignocellulosic polymers is mandatory in order to ferment them
into useful by-products, both in viewpoint of bioenergy and environment. The basic
challenge for successive or simultaneous saccharification and fermentation of

lignocellulosic polymers is to obtain high degree of hydrolysis for subsequent high
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biofuel yield. Thus efforts for optimisation of efficient pre-treatments techniques will

continue.

In this study, we employed thermochemical (water/acid/alkali pre-treatment at 130
°C) as well as biological (F. succinogenes) saccharification of MG to achieved
fermentable saccharides into solution for subsequent fermentation by C.
acetobutylicum (Fig. 1). We show that both thermochemical and biological
saccharification of lignocellulosic biomass produced fermentable saccharides and
these were subsequently fermented by C. acetobutylicum. Both thermochemical and
biological saccharification/fermentation approaches produced ethanol, butanol and
hydrogen. Interestingly, acetone production was below detection limit during
fermentation. This observation is consistent with our previous study on synthetic
hydrolysate (containing lignin) in which toxic effect on solvent production in C.
acetobutylicum was observed [10]. In fact, several previous studies observed that
the factors such as culture conditions, medium composition, substrates/products
toxicity, reaction kinetics, enzymes and pH could influence dynamics of the ABE
fermentation pathways in C. acetobutylicum [33-35]. Interestingly, study on ABE
fermentation of hydrolysates derived from corncob [36] and domestic organic waste
(DOW) [37] observed that the highest production of acids (called “Acid crash”) [38]
resulted in premature cessation of ABE production ending-up with lower production

of solvents.

3.1. Changes in saccharides concentration before and after thermochemical
hydrolysates fermentation

In the first approach, saccharides (glucose, xylose, arabinose and mannose)

obtained by saccharification of MG using H.O, 100 mol m™ H,SO4 and 200 mol m™

15
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NaOH at 130°C were subjected to fermentation by C. acetobutylicum. Glucose,
xylose, arabinose and mannose were the major fermentable saccharides of the MG
hydrolysates. The changes in concentration of saccharides before and after
fermentation show active utilisation of the saccharides in fermentation as shown in

Table 1.

Table 1 goes here

The concentrations of fermentable saccharides in the hydrolysate varied among the
treatments. The highest concentrations of saccharides was produced in the
hydrolysate derived by 100 mol m™ H,SO, treatment (607 g m™ glucose, 6229 g m™
xylose, 1627 g m™ arabinose and 1399 g m™ mannose), whereas the lowest
saccharides concentrations were observed in hydrolysate derived by H,O treatment
(155 g m™ glucose, 170 g m™ xylose, 114 g m™ arabinose and 311 g m™ mannose).
Xylose was the most abundant saccharide in the hydrolysates examined, particularly
in acid treated hydrolysates. This is in agreement with previous observations that
acid treatment efficiently degraded hemicelluloses, producing xylose [39, 40]. After
fermentation, concentrations of these saccharides significantly reduced in all
treatments (Table 1), which is in agreement with the previous study demonstrating
that C. acetobutylicum can utilise a variety of saccharides including hexoses (e.g.
glucose) and pentoses (D-xylose and L-arabinose) [12] to produce biofuels. The

supporting information is provided in Appendix B. Supplementary data (XLSX).
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3.2. Fermentation products from thermochemical hydrolysates fermentation

Significant reduction in saccharides concentration after fermentation clearly
suggested that saccharides released into the hydrolysate solutions were used to
produce fermentation by-products by C. acetobutylicum depending on amount of
saccharides produced from each treatment condition. Fig. 2A to C show production
of ethanol, butanol and H; in different thermochemical treatment conditions at 80

hours and 120 hours of incubation.

Fig. 2 goes here

Ethanol production (Fig. 2A) shows variation among the pre-treatments at 120 hours
of fermentation. Ethanol production were relatively higher for 200 mol m™ NaOH (40
g m™ culture) and 100 mol m™ H,SO4 (44 g m™ culture) treatments compared to H,0
(34 g m™ culture). The highest butanol production was observed for the H,SO,
treatment (19.7 g m™ culture) compared to NaOH treatment (4.3 g m™ culture), while
no butanol production was observed in the H,O treatment (Fig. 2B). The absence of
butanol production in H,O treatment and lower production of butanol in the 200 mol
m™ NaOH treatment might be a result of lower concentration of saccharides in the
hydrolysates obtained by both these treatments (Table 1). The concentrations of
saccharides were comparatively higher in the 100 mol m™ H,SOj, treated hydrolysate
and that was reflected in the higher concentrations of ethanol/butanol and H;
produced (Table 1). This agrees with previous studies, where it was noted that

saccharides concentration in hydrolysates affected subsequent biofuel production
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and elevated level of glucose or saccharides in the medium resulted in induced

butanol production [41].

Hydrogen, which is a clean and efficient replacement to fossil fuels, was also
produced in all treatments. The highest production of H, was observed in H,SO4
treatment (0.081 mol m™ of culture) while H,O and NaOH treatments were lower,
0.035 mol m™ of culture and 0.0084 mol m™ of culture respectively. The lowest
production of H, gas was found in the NaOH treatment condition possibly due to
generation of soluble lignin and other inhibitor by-products by NaOH treatment that
might affect H, production [42]. Our results suggested that the biomass treatment
conditions significantly affected butanol, ethanol and H; productions. Overall, results
showed that the H,SO4 treatment resulted in a higher yield of by-products (ethanol ;
44.4 g m™, butanol; 19.7 g m™, Hy; 0.081 mol m™) compared to H,O (ethanol ; 34 g
m™ and Hy; 0.035 mol m™) and NaOH (ethanol ; 39.7 g m™, butanol; 4.2 g m™, Hy;
0.0084 mol m'3) treatments. The production of fermentation by-products from
hydrolysate by C. acetobutylicum is purely based on type of lignocellulosic biomass
and pre-treatment conditions used [43]. The previous studies reported that 9600 g m
% of total saccharides were fermented to 3400 g m™ butanol, 500 g m™ acetone, and

900 g m™ ethanol [43].

3.3. Changes in lignocellulosic substrate concentration before and after biological
hydrolysates fermentation

In the second approach, in order to grow F. succinogenes and C. acetobutylicum as
a syntrophic co-culture, we modified the growth media (as mentioned in section 2.3)
so that it could allow both these two bacteria to grow in a single fermentation vessel.
The optimum growth performance for both bacteria was observed at a combination
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of 40 % FS and 60 % CA media (modified syntrophic co-culture media) with growth
rates of 0.074 h™" (doubling time 9.36) and 0.179 h™' (doubling time 3.85) for F.
succinogenes and C. acetobutylicum respectively (Appendix A. Supplementary data
Fig. S1). At this combination, the maximum ODg7snm for F. succinogenes and
ODgoonm for C. acetobutylicum reached 0.912 and 1.018 at 30 hours of incubation
respectively. The mixed culture growth of both bacteria in the modified co-culture
medium is shown in Fig. 3. This modified co-culture medium (40 FS: 60 CA) was
supplemented with 5 g dm™ of each substrate ASC, MC and MG as a sole carbon
source. In this study, we observed that F. succinogenes was able to hydrolyse
cellulosic materials since 5 g dm™ of each ASC, MC and MG were reduced to 1.77 +

0.351 g dm™, 3.09 + 0.433 g dm™ and 2.5 + 0.774 g dm™ respectively.

Fig. 3 goes here

3.4. Fermentation products from biological hydrolysates fermentation

The production of ethanol, butanol and H, was observed in all cellulose substrate
conditions. However, depending on the type of substrates, the concentration of

products varied as shown in Fig. 4 Ato C.

Fig. 4 goes here
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Ethanol production was observed to be higher in ASC supplemented medium (241 g
m™), compared to MC (211 g m™) and MG (217 g m™). A slight decrease in ethanol
concentration were observed in ASC (241 g m™+ 36 gm>to 212 g m™ + 55 g m™)
and MC (212 gm™+ 48 g m™ to 198 g m™ + 43 g m™) hydrolysate between 80 hours
between 120 hours fermentation mainly because of volatilization and ethanol
condensation at top [44]. The maximum butanol productions were 11.2 g m>, 13.7 g
m= and 13.2 g m~ for ASC, MC and MG supplemented medium, respectively. A
slight difference in butanol production was noted among these 3 substrate
conditions. On the other hand, H, production reached the highest concentration in
the ASC (0.03 mol m™) followed by MG (0.029 mol m™) and MC (0.007 mol m™). The
higher productions of fermentation products were observed in the presence of ASC
(ethanol; 241 g m™, butanol; 11.2 g m™ and Hy; 0.03 mol m™) and MG (ethanol; 217
g m>, butanol; 13.2 g m™® and Hy;, 0.029 mol m?) than MC (ethanol; 211 g m™,
butanol; 13.7 g m™ and Hy; 0.008 mol m™). A possible reason for this is ASC and MG
are pre-treated before saccharification thus combined pre-treatment and
saccharification makes substrates more susceptible to microbial hydrolysis to
release maximum fermentable saccharides [5] into the solution to produce more
biofuels over MC. Our results suggest substrate dependent fermentation flexibility of

C. acetobutylicum.

Previous studies reported syntrophic co-culture fermentation of cellulosic materials;
eg. C. cellulolyticum and R. palustris produced 1243 g m™ ethanol and 41mol m= H,,
[20], C. acetobutylicum X9 and E. harbinense B49 produced 55.4 mol m> H2 h™' g’
dry cell [21] and C. thermocellum JN4 and Thermoanaerobacterium
thermosaccharolyticum GD17 produced 1.8 mol Hy mol™ of glucose [45]. In this

study, we have shown for the first time that two efficient mesophilic lignocellulose
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degrading/fermenting microbes, F. succinogenes and C. acetobutylicum, were able
to grow syntrophically, producing C6 and C5 saccharides and converting them to
ethanol, butanol and H; in a single fermentation unit as a CBP. No external enzymes
or additives were required since cellulolytic/xylanolytic activity of F. succinogenes
[10, 22] generated saccharides (C6 and C5) that C. acetobutylicum could utilise and

produce biofuels via a fermentation process.

3.56. Comparison of total solvents yield and productivity achieved from both
approaches

Total solvents yield and productivity during fermentation of hydrolysates
(thermochemical and biological) derived from different lignocellulosic substrates

were shown in Table 2.

Table 2 goes here

The total yield of solvents in thermochemically treated hydrolysates were 0.045 g g'1,
0.0069 g g and 0.01 g g for MG hydrolysates treated with H,0O, 100 g m™ H,SO,
and 200g m % NaOH respectively. While total yield of solvents in biologically treated
hydrolysates were 0.066 g g, 0.103 g g and 0.091 g g derived from ASC, MC
and MG substrates respectively. The total solvents yield and productivity of
biologically derived hydrolysates were comparatively higher than thermochemically
obtained hydrolysates (Table 2). Previous studies showed much higher solvents
yield and productivity than the present study [13]. The yield and productivity in
previous studies using thermochemical saccharification approaches were between

0.30 to 0.40 g g' and 0.140 to 0.63 g dm™ h™' respectively [13]. However,
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hydrolysates used in the previous studies were derived from different wastes (other
than MG), and also were detoxified and supplemented with pure saccharides such
as glucose and lactose. Moreover, all the strains of Clostridia used in previous
studies were other than C. acetobutylicum ATCC 824. Thus, it is difficult to make a
direct correlation with this study. The highest yield 0.1 g g”' was reported in
biologically treated hydrolysate derived from MC substrate. The previous study on
co-culture of C. acetobutylicum with Clostridium cellulolyticum and C. acetobutylicum
with Clostridium thermocellum produced yield of solvents 0.053 g g'1 and 0.3 g g'1
from substrate cellulose solka floc respectively [19, 46]. The productivities in the
present study ranged from 0.28 to 0.53 g m™ h™ for thermochemically treated
hydrolysates and 1.75 to 1.91 g m= h™ for biologically treated hydrolysates. The
results indicated that highest saccharide concentrations were released into
hydrolysate by both thermochemical and biological approaches and also saccharides
were used during fermentation (Table 2) but total solvents yield were very low.
Several factors may cause cessation during fed-batch fermentation such as nutrient
starvation, oxygen contamination in experimental bottles, toxicity of supplemented
minerals, accumulation of undetermined fermentation products (such as acids) and
culture degeneration due to toxicity [47]. It should be noted that there was no oxygen
contamination throughout the experiment that were carried out in well-sealed glass
bottles. Also, the large amounts of saccharides that were utilised during fermentation
indicates C. actobutylicum flourished well on hydrolysates during fermentation and
that the medium was devoid of oxygen contamination. There is another possibility
that the culture apparently failed to switch from acidogenic to solventogenic, a
phenomenon known as “acid crash”, which occasionally occurs in pH-uncontrolled

batch fermentations [48] contributed to premature termination of fermentation due to
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excess acid production. Therefore, further process optimisation is needed. To make
the process (more) efficient, detoxification of hydrolysate and simultaneous product

recovery will be the aim of our future study as suggested previously [13, 49].

The major issue with biological saccharification is slow saccharification depending on
crystallinity of the substrates that often result in low yield of fermentable saccharides.
The combination of a mild pre-treatment such as shockwave treatment with
biological saccharification could potentially increase saccharification, thereby,
improve fermentation. Therefore, our future study will be focused on the combination
of shockwave pre-treatment and biological saccharification as suggested by

Marausek et al [50].

4. Conclusions

In this study, for the first time, it was successfully demonstrated that both
thermochemical and biological pre-treatments approaches produced fermentable
saccharides and subsequently fermented to biofuels (ethanol, butanol and H,) using
C. acetobutylicum. This study also demonstrated the great potential of C.
acetobutylicum as a future biofuel-generating candidate from lignocellulosic
feedstock since it can utilise a wide variety of sugars in fermentation.

In first approach, thermochemical saccharification with 100 mol m™ H,SO4 provided
high degree of saccharification, thus higher subsequent biofuels and H, production
were reported but overall solvents yield were lower (0.0069 g g™') compared to H,O
(0.045 g g') and 200 mol m™ NaOH (0.01 g g™"). The result indicates that although
highest saccharides released into the hydrolysates during 100 mol m™ H,SO,

treatment and utilised during fermentation, the overall conversion to solvents were
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very low (Table 2). Therefore, detoxification of hydrolysate prior to fermentation and
simultaneous product recovery is required to achieve high degree of fermentation.
Similarly, in a second approach, biological saccharification and fermentation with F.
succinogenes and C. acetobutylicum were successfully achieved and produced
solvents but the total solvents yield was lower. The highest solvents yield were
obtained in biological MC hydrolysates (0.103 g g™') compared to ASC (0.07 g g™)
and MG (0.09 g g). Therefore, the results of this study confirm our hypothesis that
biological saccharification is just as promising as thermochemical saccharification
strategies for lignocellulosic biofuel production. Although, the two anaerobic bacteria
used in this study are promising candidates for a future CBP development by
sequential co-culture fermentation of lignocellulosic wastes, the further optimisation
of this technique is required. This would then also require deep subsequent financial

appraisal.

With the present knowledge, two areas that needs to be focused on in order to
achieve a viable biofuel production process. Firstly, thermochemical pre-treatment
requires development of robust fermentation step (i.e. requires industrially robust
fermentation microorganisms) due to the presence of inhibitors. Secondly, biological
saccharification requires a combination of mild pre-treatment such as shockwave
pre-treatment in order to improve saccharification and fermentation. Future work will
be focused on a biological saccharification approach since biological saccharification
and fermentation can provide a potentially eco-friendly technology for lignocellulosic

biofuel generation.
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Fig. S2 Experimental set-up of the fermentation of thermochemically derived MG

hydrolysate using C. acetobutylicum.
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at 40 hrs of incubation (biofilm) and C) Fermentation (F. succinogenes plus C.

acetobutylicum) at 120 hrs.
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Figure captions

Fig. 1. Overview of experimental design. MG; Miscanthus giganteus, ASC; acid

swollen cellulose, MC; microcrystalline cellulose.

Fig. 2. Alcoholic fermentation of thermochemically derived MG hydrolysates
(treatments; H,O, 100 mol m 2 H,SO, and 200 mol m 2 NaOH) by C.

acetobutylicum. A) ethanol, B) butanol and C) H, gas. Samples were taken at 80

28



O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
GO WNRPFPODWOWOJOOUDd WNEFEFOWOW-TOOUP WNRPFPOWO®JIOHUDWNREPRODOWOJOUd WNE OWOWJO U D WNDEFE O W

734

735

736

737

738

739

740

741

742

743

744

745

746

747

hours (£) and 120 hours (M) of fermentation. Data were taken from biological

triplicates. Error bars indicate the standard error of the mean.

Fig. 3. Syntrophic growth of F. succinogenes and C. acetobutylicum on modified
media. Rod shaped cells represent C. acetobutylicum and coccoidal shaped cells

represent F. succinogenes.

Fig. 4. Alcoholic fermentation of biologically derived lignocellulosic biomass
hydrolysate by C. acetobutylicum. A) ethanol, B) butanol and C) H; gas. Samples
were taken at 80 hours (LI) and 120 hours (M) of fermentation. Data were taken from

biological triplicates. Error bars indicate the standard error of the mean.
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Medium optimisation for co-culture development

To obtain the modified media, we prepared 6 media bottles of each FS and CA
media with 5 g L™ glucose as a carbon source as discussed in section 2.2 & 2.3.1.
Then, we combined both the media (FS to CA (v/v)) to obtain the ratio of 100 % FS,
20 % FS plus 80 % CA, 40 % FS plus 60 % CA, 60 % FS plus 40 % CA, 80 % FS
plus 20 % CA and 100 % CA. There were two sets of these combinations prepared.
All the combinations were prepared in an anaerobic chamber in pre-sterilized 125
mL serum bottles caped with butyl rubber and crimp sealed. These modified media
were then inoculated with F. succinogenes (ODg75 =0.72) and C. acetobutylicum
(ODgno = 1.2), and grown on their respective media with glucose as a carbon source.
The growth of both bacteria was monitored in their respective sets of media by
measuring OD at 675,, for F. succinogenes and at 600,y for C. acetobutylicum.
From the reading obtained from both bacteria, the combination of 40 % FS plus 60 %

CA media was considered as a modified media for the growth of both bacteria.
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Fig. S 1. Growth profiles of F. succinogenes S85 (A) and C. acetobutylicum ATCC

824 (B) on different combinations of FS and CA media.

H20 | H2SOa

Fig. S2 Experimental set-up of the fermentation of miscanthus biomass hydrolysate

using C. acetobutylicum.




Fig. S3 Biological hydrolysis of cellulose and fermentation. A) Modified cellulose
medium with MC cellulose as substrate, B) Growth of F. succinogenes at 40hrs of
incubation (biofilm) and C) Fermentation (F. succinogenes plus C. acetobutylicum) at

120 hrs.



Appendix B. Supplementary data (XLSX)

Substrate sugars concetration

Average values derived from 3 biological replicates, SD means standard deviation.

Glucose (g/m°) culture

H,0
100 mol m*H,S0,
200 mol m® NaOH

Xylose (g/m?®) culture

100 mol m* H,S0,
200 mol m® NaOH

Arabinose (g/m’) culture

100 mol m* H,S0,
200 mol m® NaOH

Mannose (g/m°) culture

100 mol m* H,S0,

200 mol m® NaOH
Cellulose substrate (g/m3) culture

ASC
MC
MG

Before fermentation

Average SD
154.84 34.69
607.44 106.79
364.74 56.74

Before fermentation

Average SD
169.66 30.36
6229.40 699.18
2199.12 226.58

Before fermentation

Average SD
113.55 23.84
1626.92 249.43
980.15 140.85

Before fermentation

Average SD
311.18 42.90
1399.47 169.71
551.44 117.26
Before fermentation
Average SD
5123.00 110.15
5132.00 190.09
5085.00 57.74

After fermentation

Average SD
1.72 0.47
1.07 0.10
0.56 0.30

'r fermentar fermentation

Average SD
0.00 0.00
27.72 0.29
2.01 0.72

After fermentation

Average SD
5.78 0.49
12.71 1.22
3.42 3.88

'r fermentar fermentation

Average SD
0.00 0.00
248.35 6.23
35.25 14.89

After fermentation

Average SD
1774.67 351.97
3092.00 433.42
2584.67 774.40



