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Abstract. Previous first-principles calculations have failed to reproduce many of

the key thermoelectric features of Fe2VAl, e.g. the maximum values of the Seebeck

coefficient S and its asymmetry with respect to the chemical potential. Also, previous

theoretical predictions suggested that the pseudo band gap of Fe2VAl switches from

indirect to direct upon doping. In this work, we report first-principles calculations that

correctly reproduce the experimentally measured thermoelectric properties of Fe2VAl.

This is achieved by adding a larger Hubbard U term to V atoms than to Fe atoms

and including a scissors operator afterwards. As a result, bulk Fe2VAl is modelled as

a gapless semiconductor with maximum S values of 76 and −158 µV/K for p- and

n-type, respectively, which agree well with the experimental measurements.

1. Introduction

Fe2VAl is a Heusler-type intermetallic compound which has been extensively studied

as a potential thermoelectric material due to its ecologically friendly properties and

earth abundance of Fe, V and Al [1, 2, 3, 4]. Fe2VAl alloys have a very large power

factor comparable to some of the best thermoelectrics, e.g. Bi2Te3. However, their

thermal conductivity, which is about 10 times higher than Bi2Te3, results in a small

thermoelectric figure of merit (ZT ) [5, 6]. The high thermal conductivity of Fe2VAl

is phonon dominated and provides much room for improvement of ZT, hence several

theoretical and experimental studies which aim to optimise the thermal conductivity

(κ) as well as the Seebeck coefficient (S ) and electrical conductivity (σ) have been

conducted in the past two decades [2, 3, 7, 8, 9, 10, 11, 12].

The majority of the thermoelectric properties can be calculated from the density

of states (DOS), the conductivity tensor and the group velocity of the electrons [13].

Therefore, it is important to obtain a proper electronic structure in order to calculate

the transport properties correctly. In the case of Fe2VAl, bulk band structure

calculations [7, 14, 15, 16, 17, 18, 19, 20] consistently predict the presence of an

indirect pseudo band gap at the Fermi level. In contrast to these predictions,

experimental measurements of Fe2VAl alloys show typical behaviour for direct band
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Effective modelling of the Seebeck coefficient of Fe2VAl 2

gap semiconductors with hole carriers. Photoelectronic spectroscopy [1, 21] and optical

conductivity measurements [22] confirm the existence of a pseudo band gap without

taking into account the k-dependence and hence cannot distinguish between direct and

indirect gaps. These studies show that the widely accepted and theoretically predicted

level of EF in the band structure of Fe2VAl cannot explain both the experimentally

measured hole carrier concentration [23] and the lack of temperature dependence in

optical conductivity [22]. Moreover, recent Angle-resolved photoemission spectroscopy

(ARPES) measurements of off-stoichiometric Fe2VAl alloys mapped the k-dependence

and showed that no conduction bands are crossing the Fermi level at the high

symmetry X-point in the irreducible Brillouin zone [24], once again disagreeing with

the theoretically predicted band structure [16, 17, 18, 20, 25, 26].

In addition, current theoretical band modelling underestimates the maximum

value of the Seebeck coefficient (S) and cannot explain its asymmetry with respect to

doping [7]. Several studies have tried to explain the magnitude of S (for both n- and p-

type doping) by modifying the electron-electron exchange-correlation functional [16, 17],

by including the Hubbard U [18] or by considering the effect of anti-site defects [12, 16].

In all cases the calculations failed to model the asymmetric behaviour of the Seebeck

coefficient and thus overestimated the maximum value of S for p-type doping. In this

work, we use a very pragmatic approach to the problem and show that conduction bands

responsible for the p-type behaviour of Fe2VAl come from Fe rather than V, and as a

result the experimentally measured values of the Seebeck coefficient can be reproduced,

but only if a larger Hubbard U term is added to V than to Fe. We also thoroughly

investigate the band structure of Fe2VAl, describe how the bands fold when the size of

the simulation cell is changed and show that the periodicity of the conduction bands is

changed by the inclusion of the Hubbard U . Also, the Hubbard U model can predict

the asymmetry in the Seebeck coefficient, i.e. the dependence of S on the chemical

potential.

2. Calculations setup

2.1. Crystal structure of Fe2VAl

Heusler alloys have chemical formula X2YZ, where X and Y are transition metals and

Z is a main group element. Calculations were performed on the ordered L21 structure

of Fe2VAl, which is shown in Fig. 1. The structure is face-centred cubic, having space

group Fm3̄m (225). There are four Fe2VAl formula units (f.u.) in the cubic unit

cell. A primitive rhombohedral unit cell, which contains 1 f.u., can be extracted from

the cubic cell. The Fe atoms in the rhombohedral cell have fractional coordinates of

(1/4, 1/4, 1/4) and (3/4, 3/4, 3/4), while Al are at (1/2, 1/2, 1/2) and V are at (0, 0,

0). Bulk properties of Heusler alloys are usually calculated with a primitive unit cell,

whereas doped systems are investigated with a supercell in order to obtain the desired

doping concentration.
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Effective modelling of the Seebeck coefficient of Fe2VAl 3

Figure 1. Schematic of the cubic (solid lines) and rhombohedral (dashed lines) Fe2VAl

unit cell. Fe atoms (orange) reside at (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4), Al (grey) at

(1/2, 1/2, 1/2) and V (red) at (0, 0, 0).

2.2. Density functional theory calculations settings

The first principles calculations were performed with the CASTEP [27] code and a

GGA-PBE exchange-correlation functional [28]. On-the-fly ultrasoft pseudopotentials

(C9 set) were used with a plane-wave cut-off energy of 700 eV with a grid scale of

size 2.0. The Brillouin zone was sampled using a Monkhorst-Pack [29] grid with a

24 × 24 × 24 k-points mesh (equivalent to k-points spacing of 0.013 2πÅ−1) for the

rhombohedral unit cell. Spin-orbit coupling was included for the rhombohedral cells

but did not influence the final results significantly and therefore was not considered

for the other cases. The structure was fully optimized until pressure and energy were

converged to 0.01 GPa and 0.02 meV/atom, respectively. Transport properties were

calculated using the semi-classical Boltzmann transport formalism within the constant

relaxation time approximation as implemented in the BoltzTraP code [13]. BoltzTraP

calculates both electrical and electron thermal conductivity as σ/τ and κel/τ where τ is

the relaxation time and is obtained by fitting to experimental results. The eigenenergies

required for the transport properties were calculated with a 48× 48× 48 k-points mesh.

Density of states (DOS) and partial density of states (PDOS) were analysed using the

OptaDOS code [30].
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Effective modelling of the Seebeck coefficient of Fe2VAl 4

2.3. Theoretical expectations

Theoretically, the relation between the thermoelectric figure of merit, ZT, and S, σ, and

κ, is given by Eqn. 1:

ZT =
S2σT

κ
, (1)

where σ and κ are the electrical and thermal conductivity, respectively.

One of the requirements for a good thermoelectric material is the presence of a rapid

change in the density of states across the Fermi level (EF). This can be explained with

the formula for the Seebeck coefficient S (T ) for metallic systems at a given temperature

T [31]:

S(T ) =
π2kB

2T

3(−e)

(∂lnσ(E)

∂E

)

E=EF

. (2)

Considering that the electrical conductivity σ(E ) is proportional to the density

of states, N (E ), it could be shown with Eqn. 2 that a steep slope, ∂N(E)/∂E, near

EF, would result in a large Seebeck coefficient and better ZT. Thus, semiconductors

whose DOS varies rapidly on either side of the band gap are considered as promising

candidates for efficient new thermoelectric materials. The purpose of Eqn. 2 is to

highlight this point, whereas the actual Seebeck coefficient is computed in accordance

with the BoltzTraP implementation.

3. Electronic structure

We start by presenting the electronic properties and band structure of Fe2VAl using

a primitive rhombohedral cell without the inclusion of the Hubbard U on any of the

atoms. After relaxation, the optimized lattice constant of the primitive rhombohedral

cell was found to be 4.03 Å (equivalent to 5.70 Å for a cubic cell). The obtained

lattice constant is smaller than the experimental value of 5.76 Å [1, 26] by 1%, similar

to other ab initio GGA-PBE studies [7, 14, 25]. Spin-polarised calculations showed

that Fe2VAl is nonmagnetic, in good agreement with other theoretical [21, 32, 10] and

experimental [1, 14] studies.

Fig. 2(a) and (b) show the band structure of Fe2VAl in the irreducible Brillouin zone

and the contribution of the V and Fe d -orbitals to the total DOS near EF, respectively.

Fig. 2(a) shows the small overlap between the bottom of the conduction band (X-point)

and the top of the valence band (Γ-point), which is typical for semimetals. The small

indirect overlap between them leads to the formation of a pseudo band gap with a

magnitude of −0.13 eV, in good agreement with other DFT studies [7, 14, 25, 33].

Fig. 2(b) illustrates several important points. First, states below EF are due to Fe

d -orbital electrons, whereas states above EF are mainly due to V d -orbital electrons.

Secondly, the change of DOS near EF is symmetric, illustrated by the arrows in Fig. 2(b).

According to Eqn. 2 this symmetry would also be imposed on the Seebeck coefficient,
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Figure 2. Band structure of Fe2VAl (a) and the contribution of Fe and V d -orbitals

to the total DOS near the Fermi level (b). The small arrows in (b) show the symmetry

problem.

consistent with previous theoretical predictions [7]. This predicted symmetry is contrary

to the experimentally observed asymmetry of S [6]. Therefore, the similarity in the

dispersion of the valence and conduction bands in Fig. 2(a), which is also responsible

for the change in DOS near EF, does not correspond to experimental results [3, 34].

4. The pseudo-gap and the periodicity of the conduction bands

It has been argued in the literature that doping Fe2VAl changes the position of the

pseudo band gap [7, 8]. Next we show that the shift of the pseudo gap is not a result

of doping but merely a consequence of the change of the size of the simulation cell.

Fig. 3 presents (a) the band structure of the primitive rhombohedral cell along the W-

X-L-Γ-X-W path, (b) the band structure obtained with a cubic cell and (c) a 2× 2× 2

rhombohedral supercell. The band structure in Fig. 3(b) can be obtained from Fig. 3(a)

by folding the right X-point onto the Γ-point and overlaying the X-W section on top

of the new Γ-X section. The R-Γ region in Fig. 3(b) can be obtained by folding the

W-X-L-Γ section along the L-point towards the Γ-point so that the X-point goes again

on top of the Γ-point. The band structure in Fig. 3(c) is obtained by folding the R-Γ

section in Fig. 3(b) to the right and overlaying an X-K region from the primitive cell

onto the Γ-X region in Fig. 3(c). Therefore, the change in the position of the pseudo

band gap is due to band folding rather than doping, and can be seen even in the undoped

material.

Fig. 3(a) also reveals an interesting periodicity in the conduction bands when

plotted along the X-L-Γ-X path. The two X-points are equivalent and form a closed

path, but the conduction bands along this path do not return to the same eigenvalues,
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Figure 3. Fe2VAl band structure of (a) a primitive rhombohedral unit cell; (b) a cubic

unit cell; and (c) a 2×2×2 rhombohedral unit cell. The Fermi level is indicated with a

horizontal dashed line. The orbital character for each conduction band exactly at the

X-point in (a) is labelled as (1) V dx2
−y2 , (2) Fe dx2

−y2 , (3) Fe dz2 and V dxz, (4) Fe

dz2 . The green (solid and dashed) bands illustrate the starting (1) and (3) positions

at the left X-point and the possible final (2) and (4) positions at the right X-point.

The red (solid and dashed) bands illustrate the starting (2) and (4) positions at the

left X-point and the possible final (1) and (3) positions at the right X-point.

nor with the same orbital character. This is illustrated by the red and green coloured

bands in Fig. 3(a) where at the X-point, the band labelled ‘1’ is due to V and band

‘2’ is due to Fe. Note that the colours of the bands do not represent their orbital

character but rather aim to make them distinguishable for the reader and illustrate the

changed periodicity. This periodicity is observed with both PBE and LDA exchange-

correlation functionals and the only crossing point between the ‘red’ and ‘green’ band

in Fig. 3(a) happens in a region where there is almost no hybridisation in the bands;

this band topology is in agreement with another DFT study [18]. We would further

like to emphasise that the PBE band structure is in qualitative disagreement with the

experimental evidence (thermoelectric response). It is, of course, perfectly possible for a

material to have such features in its band structure, but in this case they arise because

of the spurious self-interaction inherent in standard PBE calculations (and LDA) and

disappear with even the modest Hubbard U potentials used in this work (see section 5).
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Effective modelling of the Seebeck coefficient of Fe2VAl 7

Recent ARPES measurements [24] managed to map the top valence bands in

Fe2VAl. Our results agree well with the ARPES mapping and show that these bands

are entirely due to Fe. The top valence bands are also responsible for the p-type

behaviour and magnitude of the Seebeck coefficient, which could be modelled well even

within the standard DFT framework. It has also been shown in a recent DFT+DMFT

study [35] that the V site displays stronger orbital-localised states than the Fe site. Other

theoretical studies, which compute the value of the Hubbard U term, indicate that the U

value on Fe should be larger than on V [18]. Nevertheless, the experimental asymmetry

of S is not reproduced. Considering all that, we will employ a more pragmatic approach

and test different Hubbard U settings in order to model experimental results. In the

following sections we apply an additional on-site Coulomb term to V in the form the

Hubbard U , while leaving Fe either untouched or with a Hubbard U value smaller than

the one used for V.

X L Γ X
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(d)

Figure 4. Band structure of Fe2VAl along the X-L-Γ-X path with UV of 1.0 eV (a),

2.0 eV (b), 2.75 eV (c) and 3.0 eV (d). The Fermi level is represented by a dashed

horizontal line. Arrows indicate which bands are being pushed upwards. The colour

of the bands is for illustration purposes and shows that a simple Bloch periodicity is

recovered in (c) and (d).
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Effective modelling of the Seebeck coefficient of Fe2VAl 8

5. Testing the Hubbard model on Fe2VAl

Next we present the results of the Fe2VAl band structure initially with the inclusion

of the U parameter only on V. Figure 4 shows how the band structure changes when

UV = 1.0, 2.0, 2.75 and 3.0 eV is added (UFe = 0 eV in all cases). The inclusion of

UV modifies mostly the bottom conduction band at the X-point, as expected and in

agreement with another study [18]. The general trend presented in Fig. 4(a)-(d) shows

that the eigenvalue of the bottom conduction band at the X-point moves upwards with

the increase of UV. Looking specifically at the X-L section of the band structure, the

bottom conduction band (green) moves upwards up to UV = 2.75 eV. An increase of

UV above 2.75 eV stops affecting the movement of the bottom conduction band (green),

while the band above (red) starts moving upwards. As a result, a simple Bloch-style

periodicity is recovered for these bands, for all UV values > 2.75 eV. In addition, the

green band in the Γ-X section, which for this region specifically is due to Fe, becomes

the major contributor to the conduction states. The flat dispersion of the Fe band in the

Γ-X section results in a sharp change in DOS, thus eliminating the symmetry problem

outlined in Fig. 2. This result agrees very well with the recent DFT+DMFT study [35]

which also reports the lifting of the DFT-based symmetry.

As discussed above we demonstrate that the values of UV larger than 2.75 eV

overcome the DOS symmetry and band structure periodicity issues. The precise value

of UV is difficult to determine without experimental data which maps the dispersion of

the V conduction bands in Fe2VAl, which to the best of our knowledge is not available at

present. In order to remain as close as possible to the original PBE exchange-correlation

functional the smallest value of UV (2.75 eV), which solves the problems discussed above,

was used for transport properties calculations.

We also compare our results of the band structure with the Hubbard U to the

available ARPES data from Soda et al. [24] in Fig. 5. There is a set of white bands

on top of the ARPES data, which comes from the original study and is also obtained

via DFT. For comparison, we added two overlays of our results without the Hubbard U

(red overlay) and with the Hubbard U (UV =2.75 eV; green overlay). In both cases, the

bands responsible for the p-type Seebeck coefficient maximum (between 0 and -1 eV)

overlap with the results of the ARPES study.

The inclusion of the Hubbard U only on V opens a modest band gap of 0.4 eV. This

value of the band gap results in an overestimate of S maxima when compared to the

experimental results [3]. As indicated by the more accurate DFT+DMFT method [35]

the band gap is a lot smaller at low temperatures. Therefore, a scissors operator was

added to the thermoelectric calculations in order to correct for the significant increase in

S. The scissors operator set the difference between the top conduction and valence bands

to 0.04 eV and 0.2 eV at the Γ- and X-points, respectively, with an overall (indirect)

band gap value of 0 eV. This zero-band gap semiconductor model is also implied by

experimental studies [34].
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Effective modelling of the Seebeck coefficient of Fe2VAl 9

Figure 5. Comparison between Soda et al. [24] experimental (ARPES; grey

backgrounds) and theoretical results (white bands) and band structures obtained in

this study without the Hubbard U (red bands) and with the Hubbard U (UV =2.75

eV; green bands).

6. Electronic thermoelectric properties

Considering the Hubbard U on V and the scissors operator correction we calculated

the thermoelectric properties of Fe2VAl at room temperature. The calculated values

of S, σ/τ and κelτ within PBE and PBE + ∆, with ∆ = U + scissors operator, are

presented in Fig. 6. The Seebeck coefficient maxima obtained within PBE (Fig. 6(a),

black line) are 58 and −52 µV/K for p- and n-type, respectively. This is in good

agreement with other theoretical studies [7, 16, 18, 36], but as expected disagrees with

experimental results [6, 34]. In contrast, the maximum values of S obtained within PBE

+ ∆ (Fig. 6(a), green line) yield 76 and −158 µV/K for p- and n-type, respectively.

These results capture the asymmetry in the variation of S and are now in good agreement

with the experimental results [3, 2]. The values of σ/τ and κel/τ (Fig. 6(b) and (c))

within the constant relaxation time approximation are presented in Table 1. The value

of τ (Table 1) is obtained by fitting the theoretical value of 1/σ to the experimental one

of 0.75 mΩcm [34, 37].

Our calculations also showed that the theoretically obtained maxima of S heavily

depend on the strength of the scissors operator, in agreement with other studies [16,
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Figure 6. Thermoelectric properties of Fe2VAl at T=300 K. Black and green solid

lines represent results obtained within PBE and PBE + ∆, respectively; ∆ represents

U + scissors operator. Fermi level is indicated by a vertical dashed line at 0 eV.

The subfigures show the Seebeck coefficient (a), electrical conductivity (b) and the

electronic thermal conductivity (c).

Table 1. Values of σ/τ , κel/τ and τ obtained within PBE and PBE + ∆.

Method σ/τ (Ω−1m−1s−1) κel/τ (Wm−1K−1s−1) τ (s)

PBE 1.14 × 1019 1.23 × 1014 1.17 × 10−14

PBE + ∆ 0.82 × 1019 1.50 × 1014 1.62 × 10−14

18, 17]. A small variation of 30 meV in the magnitude of the band gap (set at 0 eV

in the present calculations) moves the maximum of S across the whole experimental

range, especially for the n-type semiconductor. Therefore, the uncertainty in the

experimental [2, 3, 6] measurements of S makes it difficult to determine the precise

value of the band gap. Furthermore, we also note that the valence bands at the X-point

(Fig. 4(d)) are slightly lower in energy compared to ARPES measurements [24]. As

shown in this study, the bands dispersion determines the magnitude and the symmetry

of the Seebeck coefficient. Therefore, a small increase in the energy of the bands at the

X-point would increase the p-type and decrease the n-type values of S, putting them in

even better agreement with experimental data.
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Figure 7. Power factor (a) of Fe2VAl at T=300 K for PBE (black) and PBE +

∆ (green); ∆ represents U + scissors operator. Horizontal dashed lines show the

experimental range for the power factor. Comparing S (b) obtained with PBE +

∆ and experimental measurements at different doping levels [2]. Doping values of

x are with an included offset of 0.027 to the p-type side to take into account the

intrinsic number of holes in experimental samples. This value is obtained by using the

experimentally reported S for bulk Fe2VAl at 300 K as a reference point.

Next we show a further comparison between our theoretical prediction and

experimental results in Fig. 7. Subfigure (a) shows the power factor computed with PBE

Page 11 of 16 AUTHOR SUBMITTED MANUSCRIPT - JPCM-114826.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Effective modelling of the Seebeck coefficient of Fe2VAl 12

(black) and PBE + ∆ (green). We compare n-type PF performance to the reported

experimental values (horizontal dashed lines) between 5.0–5.5 mW/m·K2 [38, 2] for

Fe2VAl1−xSix with x = 0.1. We obtain a new value for τ by fitting the theoretical

value of 1/σ to the experimental one of 0.35 mΩcm for x = 0.1 in Fe2VAl1−xSix [2].

Chemical doping of x=0.01 corresponds to an energy of 0.09 eV above the Fermi level

in the PBE + ∆ model in Fig. 6. Compared to τ values in Table 1 the relaxation

time increases by 65% for PBE and decreases by 27% for PBE + ∆. A reduction in

τ is the expected behaviour as dopants increase the scattering rates. Regarding the

power factor we see that the n-type peak for the PBE + ∆ curve agrees very well with

experimental results and falls within the experimental range marked by the horizontal

dashed lines. In addition, the BoltzTraP analysis shows that the position of the peak for

the PBE + ∆ curve matches the expected experimental doping level of x=0.1, whereas

the position of peak obtained without the Hubbard U (black curve around 0.5 eV)

suggests an unrealistically high doping of x=0.35. Figure 7(b) compares the Seebeck

coefficient obtained via PBE + ∆ to experimental results for doping concentrations of

0, 6, 10 and 20% additional electrons per formula unit [2]. The good agreement between

our prediction and experimental measurements means that the PBE + ∆ method not

only captures correctly the maximum values of the Seebeck peaks for p- and n-type

semiconductor but also model properly their position and spread along the chemical

potential.

7. Applying the Hubbard model to Fe and V

We know from other studies [18] that having a larger Hubbard U on Fe than V does

not result in an asymmetric S. Based on our calculations we find that the U value on V

needs to be at least 2.75 eV in order to make the conduction bands periodic and recreate

the asymmetry in S. In principle, this suggests that the Hubbard U on V needs to be

2.75 eV higher than the U on Fe but does not indicate what would happen if UFe > 0.

As we are using a very pragmatic approach to the problem we would like to investigate

if the difference of 2.75 eV remains the same when we apply the Hubbard U model to

both V and Fe with UV > UFe.

Figure 8 shows the Seebeck coefficient when there is a Hubbard U on both V and

Fe, with UV > UFe. We have set the band gap to 0 eV for all cases when it had a positive

value. Results are presented with dotted and solid curves. Dotted curves do not exhibit

the expected asymmetry of S. We note that in all dotted cases bottom conduction bands

exhibited the periodicity problem. In contrast, solid curves all agree with each other

and recreate the asymmetric behaviour of S, similarly to the result shown in Fig. 6(a).

In addition to our initial settings of UFe = 0 eV and UV = 2.75 eV (green curve), other

successful attempts included UFe = 1 eV and UV = 3.2 eV (red curve), and UFe = 2 eV

and UV = 4 eV (blue curve). The difference between UFe and UV gradually falls down

to 2 eV when we add the Hubbard U to the Fe atoms. We noted that all solid curve

examples belong to cases in which the lowest conduction bands are periodic. Based
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Figure 8. Comparing how different Hubbard U settings on Fe and V affect S of

Fe2VAl at T=300 K. Solid curves show cases when conduction bands are periodic.

Dotted curves represent cases when conduction bands are non periodic.

on Fig. 8 results we can conclude that even with UFe > 0 eV, the Seebeck coefficient

of Fe2VAl can exhibit the expected experimental asymmetric behaviour as long as the

localisation on V atoms is stronger and the conduction bands are periodic.

One might wonder whether the PBE + ∆ approach would remain applicable

for more challenging structures where no experimental data is available. For simple

doping, e.g. with Si or Ge, the states around EF remain unaffected and the parameters

used in this study will be the same. For off-stoichiometric compounds, it was shown

experimentally by Nishino and Tamada [3] that the asymmetry in S is always present.

As our method does not affect the valence states in Fe2VAl, the magnitude of the p-

type peak of S could be used as a guide to deduce the value of the scissors operator for

more complicated structures. Alternatively, if the power factor is used as a reference

point, then the scissor operator becomes less significant since for any positive value of

the band gap, changes in S and σ compensate each other and yield no net change in

the power factor. In most cases, the aim of more challenging modifications of Fe2VAl is

to reduce the lattice thermal conductivity, and our approach provides a very cheap way

of checking whether the rest of the thermoelectric properties are affected. Our method

makes it obvious that Fe2VAl is a special compound which is hard to model within the

conventional DFT/DFT+U framework. Analysis of the results should be done with

care and for more challenging structures it would be appropriate to check the accuracy

of the results with a higher level of theory, e.g. the more expensive but more accurate

DFT+DMFT method.
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8. Conclusions

In summary, our calculations show that in simple DFT the lowest conduction bands in

Fe2VAl have different periodicity to the valence bands. The inclusion of UV > 2.75 eV

modifies the bands’ dispersion, recovering a Bloch-periodicity, and changes the order

of the lowest conduction bands from V to Fe being at the bottom. As a result, the

experimentally observed asymmetry in S can be theoretically reproduced. Furthermore,

Fe2VAl was modelled as a zero-band gap semiconductor by adding a scissors operator to

the transport calculations. Thus, the maxima of S become +76 and −158 µV/K for p-

and n-type, respectively, in good agreement with experimental results [3]. The ability

of our approach to model simultaneously the p- and n-type sides around EF provides a

good starting point for understanding the thermoelectric properties of Fe2VAl, as well

as further studies which may include structure modifications or movement along the

chemical potential in pursuit of a better thermoelectric figure of merit (ZT ). We note

that this should be accompanied by a very careful interpretation and analysis of the

results, especially for more challenging structures.
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