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ABSTRACT

In radar observations of hydrometeors, the 08C isotherm in the atmosphere (i.e., the freezing level) usually

appears as a region of enhanced reflectivity. This region is known as the bright band (BB). In this study,

observations over 12 months from a vertically pointing 35-GHz radar and a collocated disdrometer at the

Natural Environment Research Council (NERC) Facility for Atmospheric and Radio Research (NFARR)

are used to identify and compare microphysical differences between BB and non-brightband (NBB) periods.

From these observations, the relationship between radar reflectivity Z and rainfall intensity R is found to be

Z5 772R0.57 for BB periods and Z5 108R0.99 for NBB periods. Additionally, the brightband strength (BBS)

was calculated using a novel method derived from the Michelson contrast equation in an attempt to explain

the observed variability in BB precipitation. A series ofZ–R relationships are computed with respect to BBS.

The coefficients increase with increasing BBS from 227 to 926, while the exponents decrease with increasing

BBS from 0.85 to 0.38. The results also indicate that NBB periods identified in the presence of a 08C isotherm

in other studies may be misclassified due to their inability to identify weak brightband periods. As such, it is

hypothesized that NBB periods are solely due to warm rain processes.

1. Introduction

High-quality initial observations are important for

numerical models to produce accurate weather fore-

casts. Various instruments and methods can be used to

measure precipitation, such as tipping-bucket rain

gauges, disdrometers, and weather radar. The weather

radar is currently the most suitable technology to mea-

sure rainfall rate R over a large area (;100 000km2)

with high temporal and spatial resolution. Furthermore,

weather radar has the ability to monitor rapidly devel-

oping events as well as tracking the speed and direction

of movement of precipitation systems (Fabry 2015,

chapter 1.1). However, the full potential of weather ra-

dar can be limited by errors and uncertainty in radar-

based quantitative precipitation estimates (QPE). The

errors and uncertainties in QPE can result from, for

example, variable drop size distributions, variations in

precipitationmicrophysics, the geometric uncertainties

due to curvature of the Earth and radar beam broad-

ening and the process of relating the measured radar

reflectivity to the precipitation falling at the ground

[described in, e.g., Harrison et al. (2000) and Vasiloff

et al. (2007)].

In radar observations of hydrometeors, the freezing

level (08C isotherm in the atmosphere) usually appears

as a region of enhanced reflectivity at a relatively con-

stant altitude, known as the bright band (BB) (Fabry

2015, chapter 4.4.2). This occurs as ice crystals or ag-

gregatesmelt and become coated in liquid, which a radar

observes with the same reflectivity as a very large rain-

drop (Rogers and Yau 1996; Smyth and Illingworth

1998; Fabry 2015, chapter 4.4.2). Significant errors in

precipitation intensity estimation can result from the

enhanced radar signal of the radar BB if it is not adjusted

(Joss andWaldvögel 1990). As such, various methods of

BB detection and correction have been discussed in the
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literature and applied to national radar networks (e.g.,

Harrison et al. 2000; Tabary et al. 2007; Villarini and

Krajewski 2010).

According to White et al. (2003) and Martner et al.

(2008), the BB can be occasionally absent during strat-

iform precipitation. Such times are referred to as non-

brightband (NBB) periods. At Cazadero and Bodega

Bay, California,Martner et al. (2008) report a statistically

significant (P value of 0.01) difference in R and drop

size distribution (DSD) between BB and NBB periods.

Martner et al. (2008) also hypothesize that during NBB

periods the precipitation can still undergo a process of

freezing and subsequent melting before it reaches the

surface. However, the underlying mechanism for the

occurrence of NBB precipitation is not explained by

Martner et al. (2008). When relating the radar re-

flectivity factor Z to R, the reflectivity enhancement

due to the BB is corrected, but BB and NBB precipita-

tion are not currently considered as different rain types

in current operational radar-based QPE schemes, which

could result in erroneous precipitation estimations.

a. Brightband detection algorithms

The enhanced radar return due to the BB can lead to

significant errors in QPE (Harrison et al. 2000). Thus,

BB detection and correction schemes are essential in

order to make accurate surface rain rate estimations.

The widely adopted methods for BB detection and cor-

rection analyze the vertical profiles of parameters mea-

sured by weather radar, such as radar reflectivity, Doppler

vertical velocity (DVV), signal-to-noise ratio (SNR), and

spectral width (e.g., Mittermaier and Illingworth 2003;

Villarini and Krajewski 2010; Pfaff et al. 2014).

There are two basic approaches to detect and correct

BB signals using the vertical profiles of reflectivity

(VPR). One consists of applying a standardized VPR to

the observed signatures. Kitchen et al. (1994) proposed

a VPR correction scheme wherein the height of the

brightband top (BBT) is fixed to the level of the 08C
wet-bulb temperature and the brightband width (BBW)

is typically 700m. The average error of this method is

less than 150m (Mittermaier and Illingworth 2003),

but the BBT height is not diagnosed from radar itself.

Rather it comes from surface synoptic observations and

assumes a constant lapse rate. Another approach is to

use the three-dimensional radar reflectivity to derive

the brightband height (BBH), such as the scheme de-

scribed in Sánchez-Diezma et al. (2000). However,

VPRs are highly variable in space and time, and hence

the mean or standard profiles are not sufficiently rep-

resentative. A well-defined brightband bottom is often

not found in the VPRs (Qi et al. 2013). The BBW also

varies in different cases. Tabary et al. (2007) illustrated

that 15%of the BB are thicker than typical BBwhile 7%

of the BB are ultrathin wherein the thinnest BBW is

;20m. In practice, the thinnest BBW that a radar is

able to measure also greatly depends on the minimum

gate resolution of the radar being utilized.

The BBH can also be derived by analyzing the ver-

tical profiles of DVV with a vertically pointing radar

beam. The fall velocity of hydrometeors increases in

the melting layer where ice particles melt into liquid

water particles and become denser with lower drag

coefficients. The BB is located where a significant in-

crease in fall velocity occurs. Pfaff et al. (2014) illus-

trated that a DVV algorithm is likely to derive a more

accurate BBH than the algorithms analyzing VPR or

the vertical gradients of VPR. Some weather radars

also measure spectral width and SNR. These two pa-

rameters can be used to detect the BB, but the behavior

of spectral width resembles that of the DVV (Emory

et al. 2014), and the changes in SNR are similar to those

seen with radar reflectivity (Pfaff et al. 2014). White

et al. (2002) established an algorithm to identify BB

using both the SNR and DVV. However, the thresholds

for SNR can be considerably different depending on

the radar. Thus, only reflectivity and Doppler veloc-

ity are considered to be suitable parameters for BB

identification in this study so that the algorithms can be

applied to a wide range of radars with minimal ad-

justment and efforts.

b. Precipitation without a bright band (NBB)

The absence of a BB could occur in several cases.

One particular case is when solid hydrometeors do not

undergo a phase change before reaching the surface.

Smyth and Illingworth (1998) found that the absence

of a recognizable BB was due to precipitation con-

taining graupel. Another case is when the precipitation

occurs with a warm rain process, such as a warm-

frontal period described in White et al. (2003) and the

supercooled warm rain process (SWRP) described in

Huffman and Norman (1988), hydrometeors exist in

a liquid phase from nucleation and do not freeze be-

fore reaching the surface. However, the underlying

reasons why the NBB rain occurs and whether it can

be also associated with melting of small ice crystals as

Martner et al. (2008) hypothesized are still unclear.

White et al. (2003) examined the data of the strong El

Niño 1997/98 winter from the S-Band Doppler Radar

Profilers (S-PROF) at a site near Cazadero, California,

and discovered that the BB was frequently not visible

during nonconvective periods. White et al. (2003) con-

cluded that NBB rain usually occurs when no part

of the precipitable cloud extends above the freezing

level due to a quasi-steady and shallow rain process.
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White et al. (2003) found that the Z–R relationships

(Z 5 aRb) for BB and NBB periods are significantly

different, and that BB rain contains more large drops

and fewer small drops than NBB rain.

In combination with the S-PROF radar, Martner et al.

(2008) used a Joss–Waldvögel disdrometer (JWD) to

measure the DSD of the observed precipitation. Data

from 11 December 2003 to 1 March 2004 at Cazadero

and Bodega Bay were analyzed. Approximately half of

the rainfall data were classified as occurring during

NBB periods. Martner et al. (2008) illustrated the

difference in DSDs and rainfall rates and found that

BB/NBBDSDs are essentially the same across the mid

drop size range (diameter of 0.6–2mm) but are much dif-

ferent at smaller and larger drop size ranges. Accordingly,

during BB periods Martner et al. (2008) found the expo-

nent b in the Z–R relationship to be smaller, but the co-

efficient a to be greater.Martner et al. (2008) indicated that

NBBclouds, whose echoes extend above themelting layer,

do not display a melting-layer bright band because they

either contain ice crystals that are too small to produce

a recognizable BB [using the BB criteria of White et al.

(2003)] or they are composed of supercooled liquid

droplets only.

c. Brightband strength (BBS)

The aforementioned studies do not consider the im-

pact of BBS on precipitation. Sarma et al. (2016) sug-

gested that the microphysical properties are not only

different between BB and NBB cases, but also different

whenBBS changes. In Sarma et al. (2016), the stratiform

rain was characterized into three different types: strong

bright band (strong BB) (BBW. 0.49 km), weak bright

band (weak BB) (BBW# 0.49 km) and NBB. The value

0.49 km was set according to the mean BBW of the 12

stratiform events observed at National Atmospheric

Research Laboratory (NARL), Gadanki, India. These

observations were carried out from 1998 to 2000 using

a JWD and an L-band (frequency of 1–2GHz) wind

profiler (Sarma et al. 2016). Sarma et al. (2016) found

that the mean drop size is much larger for strong BB

situations. Following this, Sarma et al. (2016) showed

that accounting for these difference in the utilizedZ–R

relationships can improve QPE.

Although all these studies provided evidence that

the NBB rain and BB rain are significantly different

and different Z–R relationships should be adopted,

their data and results are not sufficiently represen-

tative for further application. For more widespread

applicability, an algorithmic study covering season-

ality in precipitation is needed. White et al. (2003)

only used a 21-day dataset, while only 12 stratiform

cases were studied in Sarma et al. (2016). Martner

et al. (2008) analyzed a 3-month dataset, but the BBs

were identified manually.

Addressing this concern, Matrosov et al. (2016) ex-

tended the study of Martner et al. (2008) with a 1-yr

observational period in the southeastern United States.

Similarly, Matrosov et al. (2016) determined that the

NBB rain should be categorized as a different rain type

to yield QPE improvements. Significant underestimates

(on average ;40%) in surface precipitation were found

to occur if using the Z–R relationships for BB or con-

vective rain in NBB occasions. However, the NBB rain

is still not given a sole Z–R relationship in current op-

erational radar-based QPE schemes.

2. Methods

The main purpose of this study is to propose and

develop a BB/NBB detection technique that could im-

prove radar based QPE if applied to operational obser-

vations. In addition, the Michelson contrast (Michelson

1927) is used to determine the relationship between

rainfall intensity and brightband strength (BBS). Details

of the instruments used in this study, algorithms and BBS

calculations are described below.

a. Instrumentation

Two instruments were used in this study—a disdrometer

and a radar. The disdrometer is a Thies Clima Laser

Precipitation Monitor (LPM) (Adolf Thies GmbH &

Co. KG 2011) deployed as part of the Disdrometer

Verification Network (DiVeN) described in Pickering

et al. (2019). By measuring every particle passing

through its beam, the disdrometer produces a dataset

of DSDs and precipitation rates. The disdrometer differ-

entiates hydrometeors into 20 diameter bins from 0.125

to .8mm, and 22 speed bins from ,0.2 to .20ms21.

For a detailed specification of the instrument see Pickering

et al. (2019). The Copernicus radar is a 35-GHz, vertically

pointing, fully coherent, dual-polarization, pulse com-

pression Doppler radar with antenna diameter of 2.4m

that results in a beamwidth of 0.258 (NFARR 2019).

Typically, the maximum unambiguous range of Copernicus

is 30 km with a maximum resolution of 30m, and the

maximum unambiguous velocity measured by Copernicus

is 5.36ms21 (NFARR 2019). Echoes beyond the maxi-

mum unambiguous range or velocity are corrected (STFC

et al. 2003). For a vertically pointing radar, the observa-

tional range is equivalent to the observational height.

Both instruments are located at Natural Environment

Research Council (NERC) Facility for Atmospheric

and Radio Research (NFARR) as shown in Fig. 1. The

distance between the disdrometer and Copernicus is ap-

proximately 150m. The time interval of the disdrometer
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data is 1min. The raw disdrometer data were processed

into 5-min average samples. Five minutes is long enough

to provide an adequate number of samples to apply

statistical methods and to mitigate uncertainties in the

measurements. The typical observation cycle of Copernicus

is every 45 s, while data are sometimes missing with

subsequent inconsistent time intervals due to issues in

data acquisition and initial processing. In this study, 5-min

averages of the radar data were used to facilitate the

comparison with the disdrometer data, which represent

4–6 individual vertical profiles. This also represents the

periodicity of most national government-funded oper-

ational radar networks.

b. BB identification algorithm

Periods of BB and NBB rain referred to hereafter are

periods of precipitation as classified by the following al-

gorithms. Figure 2 is a flow diagram of the BB/NBB

identification processes with the possible outcomes de-

tailed. The details of the BB algorithm, NBB algorithm,

speckle filtering, the comparison between the BB algo-

rithm and NBB algorithm, data quality control, and cal-

culation of BBS are presented in the following sections.

1) ALGORITHM TO IDENTIFY BRIGHTBAND

PERIODS

A schematic of a vertically pointing radar observing

the bright band and the standard vertical profiles of the

Doppler velocity and reflectivity are shown in Fig. 3. The

criteria used to partition BB and NBB precipitation is

dependent on whether significant changes (i.e., a bright-

band peak) exist in the Doppler velocity and radar re-

flectivity. Algorithms analyzing the VPR or the vertical

derivative of VPR alone cannot produce ideal identifi-

cation results. Hence, this study also analyzes the vertical

profiles of the Doppler velocity to identify bright bands.

A flowchart describing the principal steps involved in the

BB identification algorithm is shown in Fig. 4a.

(i) Step 1: Detecting the BB

For vertically pointing radars, the measured Doppler

velocity is the fall speed of the hydrometeors. The fall

speed of a particle changes with its size and shape

wherein rain and wet snow particles generally falling

faster than dry snow particles when no updrafts or

downdrafts are present (Yuter et al. 2006). This study

classifies the dominant type of particles with fall speeds

between 0.5 and 1.5m s21 as snow/ice, and the dominant

type of particles with fall speeds exceeding 2.5m s21 as

rain (based on Locatelli and Hobbs (1974) and Gunn

and Kinzer (1949)). The BBT is the lowest altitude of

snow/ice (where melting starts), while the brightband

bottom (BBB) is the highest altitude of rain (where the

dominant hydrometeor type is liquid). Kitchen et al.

(1994) indicated that the typical BBW is 700m but it

could vary and is weighted toward narrower bright-

band widths (Tabry et al. 2007). Accordingly, within

the algorithm, the maximum BBW is set to be 750m

FIG. 1. Map depicting the location of NFARR and the instruments used in this study. The top-left panel shows the

Thies disdrometer (image�BenPickering). The inset in the right panel shows theCopernicus radar. (ContainsOrdnance

Survey (OS) data � Crown copyright and database right 2018; imagery �2018 Google; map data �2018 Google).
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(i.e., 25 height gates) to mitigate possible errors in BBH

estimation (see Fig. 5). Otherwise, the periods with the

distance between BBB and BBT over 750m will be ex-

cluded from BB analysis.

(ii) Step 2: Locating the BBH

The Doppler velocity can be affected by vertical air

motion. When updrafts or downdrafts occur, the BBB

and BBT identified in step 1 can shift upward or down-

ward by several height gates, which may lead to bias in

locating the BBH. Therefore, this BB algorithm adopts

the first-order vertical derivative of theDoppler velocity

(›DV) to determine the BBH. The bright band should

be located where the absolute value of ›DV is the largest

because the greatest increase in the Doppler velocity is

located at the height where the melting is strongest. A

central difference scheme is used to compute the de-

rivative. At a point x the first-order derivative is ex-

pressed as

dy(x)

dh
’

Dy

Dh
5

y
(x1Dh)

2 y
(x2Dh)

h
(x1Dh)

2 h
(x2Dh)

, (2.1)

where y is the Doppler velocity and Dh is the height

interval. The minimum height interval for the central

difference scheme is 60m (the maximum height reso-

lution is 30m). To identify the BBH more accurately,

the height interval needs to be adjusted and should not

be too narrow or too wide. Figure 5 shows a schematic

depicting the determination of BBH utilizing intervals

FIG. 2. Flowchart describing the outline of the BB/NBB identification processes. Text in rounded rectangles describes the outcomes.
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that are too narrow, too wide, and optimal. A narrow

interval can lead to misidentification of the BBH due to

poor-quality data near the surface and above cloud

top, where a significant change in the Doppler velocity

can exist within a 60-m height. When the interval is too

wide, the largest change in velocity may include sev-

eral hundred meters above or below the bright band.

Because the algorithm has the freedom to vary the BBH

by several hundred meters within a wide brightband

region as shown in Fig. 5, the BBH can be misplaced

when using an interval that is too wide. After several

tests, the optimal interval was found to be 360m for this

study. The BBH will be used when calculating the BBS

(section 2c).

2) ALGORITHM TO IDENTIFY NON-BRIGHTBAND

PERIODS

Although a BB identification algorithm is estab-

lished in section 2b(1), algorithms on observational

data are rarely 100% accurate, particularly when con-

sidering processes with several influences such as the

BB and NBB precipitation. The flow diagram of the

NBB algorithm used in this study is shown in Fig. 4b.

The dual-pass nature of the combined algorithm is em-

ployed in order to improve the fidelity of the overall

BB/NBB classification. The first pass identifies the BB

and the second identifies the presence of NBB periods.

Cases where the algorithms conflict, are excluded from

the study due to the lack of confidence created by the

ambiguity.

(i) Step 1: Calculating derivative

During both the BB and the NBB periods, the largest

›DV (›DVmax) is always situated at the height where the

Doppler velocity changes most significantly. For BB pe-

riods, this is the BBH. For NBB periods, this is where

collision and coalescence occur most efficiently. As no

hydrometeor type classification is performed beforehand,

the height of ›DVmax is marked as the location to

distinguish the BB/NBB criteria.

(ii) Step 2: Detecting NBB

The criteria to identify the presence of a BB is

whether there is a significant decrease in the Doppler

velocity (over 1ms21) with height within the 750-m BB

region (from ›DVmax2 360 to ›DVmax1 360m, i.e., the

algorithm-derived BBH grid plus 360m above and be-

low it) (as shown in Fig. 3). Precipitation periods (i.e.,

when the disdrometer observed precipitation–threshold

0.1mmh21) that do not meet these criteria are classified

as possible NBB periods. Periods with poor-quality data

which do not meet both the BB criteria and the NBB

criteria are excluded from the study [see section 2b(4)].

3) SPECKLE FILTERING

Both the BB and NBB algorithms may misidentify

some BB or NBB cases due to poor-quality data or

when the specified thresholds fail to be satisfied. In

addition, large random or erroneous fluctuations in

the radar return signal may remain in the 5-min av-

erages. To reduce errors and noise in the identification

results, a speckle filtering scheme (Crimmins 1985;

Lee et al. 1994) is applied. The speckle filtering only

compares adjacent 5-min time pixels to exclude pos-

sible misidentifications of BB/NBB regardless of the

BBH. The four categories of BB/NBB identification

results are defined as:

d Correct BB: a BB is identified by the BB algorithm at

time t with a BB detected at either time t 1 5min or

t 2 5min.
d Correct NBB: an NBB is identified by the NBB

algorithm at time twith an NBB detected at either

time t 1 5min or t 2 5min.
d False BB: a BB is identified by the BB algorithm at

time t but with NBB detected at both time t 1 5min

and t 2 5min.
d False NBB: an NBB is identified by the NBB algo-

rithm at time t but with BB detected at both time t 1
5min and t 2 5min.

Overall, 1390 BB profiles and 106 NBB profiles are ex-

cluded after the speckle filtering. Some BB/NBB events

occurred at the beginning or the end of a precipita-

tion period may be excluded after the speckle filtering.

These events do not affect the results of this study.

Only the correct BB/NBB data are used to analyze the

microphysical differences because attempting to clas-

sify the false BB/NBB periods introduces further out-

liers in the results. Speckle filtering is also a reasonable

technique to use for operational processing as it would

only require a delay of 5min for the next sample to be

FIG. 3. Schematic showing ideal vertical profiles of Doppler ve-

locity and reflectivity during BB (solid line) and NBB (dashed line)

precipitation.
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made. Therefore, the method used here is directly ap-

plicable to operational schemes.

4) COMPARISON OF ALGORITHMS

As shown in Fig. 2, the combination of the BB and

NBB algorithms aim to filter out periods when the BB

algorithm and the NBB algorithm do not agree with

each other. Namely, if the BB algorithm identifies a

period as BB while the NBB algorithm classifies it as

NBB, that period is considered to be a false detection

and should not be used in the subsequent analysis. This

circumstance only occurs three times in the total 3906

BB/NBB 5-min samples used in this study. These three

samples are considered to be marginal cases, which

are possibly caused by poor-quality data. Operational

implementations of this algorithmmay therefore choose

to remove this step for computational speed and still

maintain a high BB/NBB detection skill with a single-

pass version of the algorithm.

5) DATA QUALITY CONTROL

A data quality control scheme (as shown in Fig. 2) is

adopted because the identification algorithms can fail

when the vertical profile has missing data points, such as

the case shown in the dotted circle area in Fig. 5. Even

though the interval of DDV calculation is adjusted, the

BBH determination can still be affected by poor-quality

data points.

First, the data for periods of very light rain or drizzle are

more likely to be noisy. For both BB and NBB periods

FIG. 4. Flowcharts describing (a) the BB identification algorithm and (b) the NBB identification algorithm.
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with the disdrometer data available, the reflectivity at 450m

should be larger than 210dBZ and the rainfall rate mea-

sured by the disdrometer should behigher than 0.1mmh21.

Otherwise, the precipitation periods are removed.

Second, as the cloud particles have a typical radar

reflectivity of 220dBZ (Fabry 2015, chapter 3.2), if the

reflectivity at the BBH identified is lower than220dBZ, it

is not a bright band at all. The SNR at BBH must also be

larger than 10dB to ensure the radar return is of good

quality.

Third, poor-quality data, which usually are shown as

NaN in the Copernicus dataset, such as the dotted area

shown in Fig. 5, should not exist within the brightband

region, which may lead to possible false detection. If

the data are of poor quality at 360m above or below the

BBH, the precipitation period is excluded from the

analysis. In addition, a special case of near-ground BB is

considered. The Copernicus data are only available for

range gates larger than 240m. If the height of the bright

band is close to the ground (below 360m), only data

above the identified BBH are checked.

Periods that are not identified as BB and NBB periods

by the algorithms and do not pass the speckle filtering and

data quality control will be excluded from the analysis.

c. Brightband strength

Martner et al. (2008) only analyzed the Z(BB,NBB)–R

relationships using hand-picked data, whose identification

is reliant upon the radar frequency aswell as the contrast in

the color scale used when plotting a time series of radar

observations. Weak or less visible BB can easily be ne-

glected or misinterpreted as NBB when utilizing this sort

of analysis. The visibility of a BB is considered to re-

late to the BBS and rainfall intensity. As such, we

extend the results of Martner et al. (2008) and others

by examining any subsequent relation between BBS

and precipitation rate. However, former studies did

not introduce a reliable, repeatable, and operationally

viable method to compute the BBS. Sarma et al. (2016)

partitioned the strong BB and the weak BB by iden-

tifying the BBW (mentioned in section 1b), but the

BBW is not solely affected by precipitation intensity.

The vertical air temperature profile also controls the

rate of melting. Doppler velocity and reflectivity can

be enhanced significantly within a very narrow BBW

[smaller than the 0.49 km set in Sarma et al. (2016)],

which indicates a strong bright band. Measuring the

specific amount of enhancement of the BB in every

Doppler velocity and reflectivity profiles to calculate

the concentrations of melting hydrometeors in the BB

region is computationally expensive and infeasible in

practice. Therefore, a simple and computationally ef-

ficient formula is established in this study.

As human eyes can easily distinguish the brightband

location and strength, this study aimed to replicate al-

gorithmically the way that a human would subjectively

identify the ‘‘strength’’ of a BB in an objective manner.

Humans distinguish the BBS based on the contrast of

colors in the brightband region. A bright band that

contrasts more with its surround reflectivity signatures

by having a significant, sharp increase in reflectivity

is usually subjectively identified as a stronger one.

The Michelson contrast (Michelson 1927), initially

used to express the visibility of interference fringes, is

defined as

C
R
5

I
max

2 I
min

I
max

1 I
min

, (2.2)

where Imax is the maximum and Imin is the minimum

intensity. This is used for the identification of periodic

spatial patterns (Shapley and Enroth-Cugell 1984) as

shown in Fig. 6. The Michelson contrast describes the

extent of how an imaging pixel can be distinguished

from its nearby pixels.

However, Eq. (2.2) cannot be used to compute the

BBS directly. Higher rainfall intensity is generally as-

sociated with larger drops and more efficient collision–

coalescence, even though the number of large drops is

still much less than the number of small drops (Rogers

and Yau 1996). In addition, radar reflectivity is more

FIG. 5. Schematic of taking narrow (dotted gray), wide (solid gray),

and optimal (red) intervals to compute the BBH. The dotted circle

area indicates possible poor-quality data above/near the cloud top.
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sensitive to the size of the particles than their number.

Thus, hypothetically, the BBS depends on the precip-

itation intensity, and stronger bright bands are assumed

to be associated with stronger enhancement in reflectivity,

strongermelting, higher rainfall rates and larger drop sizes.

When larger solid hydrometeor particles melt, a radar

would observe them as much larger raindrops leading to

stronger enhancement. Subsequently, within the 750-m

BB region defined in this study, both the maximum and

the minimum reflectivity should be higher for stronger

bright bands, while the difference between the maxi-

mum and theminimum reflectivity is lower. Examples of

strong BB and weak BB are shown in Fig. 7. In the

strong BB case, the Michelson contrast equals to 0.24

with Zmax 5 34dBZ and Zmin 5 21dBZ, while in the

weak BB case, the Michelson contrast is 0.39 with

Zmax 5 16dBZ and Zmin 57 dBZ. This means stronger

bright bands would have smaller Michelson contrast.

Hence, for the efficiency of computation, theBBS is defined

as the background sum (Zmax1 Zmin) of the BB reflectivity

in the total reflectivity enhancement (Zmax 2 Zmin) of BB,

which is expressed as the inverse of the Michelson contrast

equation:

BBS5
Z

max
1Z

min

Z
max

2Z
min

, (2.3)

where Zmax and Zmin are the maximum and minimum

reflectivity in the BBH6360 region identified by the

BB algorithm. Thereby, the strong BB case in Fig. 7

has a BBS of 4.23 and the weak BB case in Fig. 7 has a

BBS of 2.56.

3. Results and discussion

Section 2 introduced the general vertical-structure

characteristics for BB and NBB periods. In this section, a

case study approach is first utilized to describe and eval-

uate the characteristics and algorithms used. The iden-

tification algorithms are then applied to a 12-month

(11 February 2017–10 February 2018) extended obser-

vation period (EOP) to examine Z–R relationships for

BB/NBB rain and assess the BBS–R relations.

a. Brightband and non-brightband precipitation

1) CASE STUDIES

Figures 8–10 show a BB case, a mixed BB/NBB case,

and an NBB case, respectively. Note that weak bright

bands can be spotted between 0400 and 0600 UTC in

Fig. 8 and between 1030 and 1130 UTC in Fig. 9, but the

rainfall rate measured by the disdrometer during those

periods is below 0.1mmh21, and hence those periods

are not included in the analysis and BBS computation.

Figures 8–10 show that the BB/NBB algorithms are able

to characterize the BB/NBB rain and identify the BBH

accurately compared to human interpretation. These

three cases show that the NBB rain is associated with

a larger number of small drops, while the BB rain usu-

ally has fewer small drops but higher concentrations

of large drops. On 1 March 2017 (Fig. 9), a BB–NBB

transition is seen after 1400 UTC. The rainfall intensity

remained steady, but the radar reflectivity decreased.

The precipitation echo top is generally above or near

the freezing level but descends rapidly during NBB

periods. The profile of reflectivity is generally weaker

throughout NBB periods. After the transition, large

drops (D . 0.75mm) almost disappear from the DSD,

but the total number of small drops (D , 0.5mm) in-

creased significantly. The precipitation becomes driz-

zle, which is generally defined as precipitation with a

drop diameter , 0.5mm (Kantor et al. 1996). The BB–

NBB DSD differences in these cases agree with the

inferences made by White et al. (2003) and Martner

et al. (2008).

Figure 11 presents a summary of the Copernicus data

for the three precipitation cases from Figs. 8–10. These

contoured frequency-by-altitude diagrams (CFADs)

(Yuter and Houze 1995) were produced for compari-

son to the CFADs described byWhite et al. (2003) and

Martner et al. (2008). Figure 12 shows the CFADs of

the 12-month EOP. The 91 296 EOP cases are split into

BB and NBB events using the algorithms presented in

FIG. 6. Schematic showing how tomeasure theMichelson contrast.

Transition fromblack towhite is of higher contrast while intermediate

grays are of lower contrast. (Based on Edmund Optics 2019.)
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section 2. Figures 12c and 12f were produced using the

same procedures described by White et al. (2003) and

Martner et al. (2008). In these two CFADs (Figs. 12c,f),

the VPR and DVV for BB precipitation were plotted

as a function of distance to the algorithm derived BBH.

The reference BBH at 1.85 km is the average BBH

during the entire EOP and was used to adjust the VPR

and DVV for BB cases. Other CFADs shown in Fig. 11

and Fig. 12 are not adjusted. In CFADs of the case

studies (Fig. 11), an abrupt increase in the DVV distin-

guishes the BBH and BB profiles, while no prominent

changes in the VPR can be recognized. The CFADs

taken from the full 12-month EOP (Fig. 12) show that

the BB is easily identified in an abrupt change in the

DVV even though the BBH fluctuated significantly

between 1000 and 3000m throughout the period when

no adjustment applied (Fig. 12b). The enhancement in

the VPR can only be recognized in the adjusted CFAD

(Fig. 12c). In contrast, the NBB CFADs of the case

studies and 12-month observations both show that the

reflectivity and the Doppler velocity increase gradu-

ally with decreasing height which is consistent with

growth of liquid particles by collision–coalescence. At

lower altitudes, the BB precipitation generally has

larger DVV and greater reflectivity than the NBB

precipitation suggesting that larger liquid particles

are observed at the surface when a BB is present. The

CFADs show that DVV is the key indicator of BB and

NBB especially when large variability in BBH exist.

Both of the NBB precipitation events that occurred

during 22 February and 1 March 2017 are suspected to

have occurred due towarm rain processes.On 22 February

2017 a radiosonde launched from Herstmonceux (ap-

proximately 150 km to the east of NFARR) shows that

the freezing level was well above 2000m and therefore

the radar echoes during the whole day were generally

below the freezing level (Fig. 10). On 1 March 2017,

the transition from BB to NBB after 1430 UTC

(Fig. 9) was due to an occluded front passing over

NFARR. Synoptic charts from this day show that an

occluded front moved across south England bringing

warmer air to NFARR, which triggered the transition

in Fig. 9. Although Martner et al. (2008) reported that

the echoes of NBB cases usually extend above the

freezing level, this study argues that there should al-

ways be some amount of enhancement in reflectivity

when ice particles melt and gain a liquid surface.

When melting occurs, the size or density of hydro-

meteors does not appreciably change (Fabry 2015,

chapter 4.4.2), but their dielectric constant increases

leading to strength of the radar echo (Tiuri et al.

1984). The ability to detect a BB, however, is depen-

dent on the radar frequency, the volume the radar ob-

serves in a single voxel, angle of observation, plotting

color scale, and human interpretation. As such, within

the context of the observations shown here, it is sug-

gested that the detection techniques used by Martner

et al. (2008) were unable to identify all of the BB

cases that occurred. Distinguishing BB/NBB periods

manually, using a radar with a less sensitive fre-

quency and coarser spatial and temporal resolution

than the Copernicus radar are likely to have led to

some weak brightband periods being misclassified as

NBB periods.

FIG. 7. Examples of vertical profiles of (a),(c) reflectivity and (b),(d) Doppler velocity during strong BB periods in (a) and (b) and weak

BB periods in (c) and (d). The red dots indicate the BBH identified by the BB algorithm. The two blue dots in each subplot indicate the

ranges of BBH 1 360m and BBH 2 360m, respectively. The values at these three ranges are specified in each subplot.

344 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/2/335/4950761/jhm

-d-19-0085_1.pdf by guest on 02 O
ctober 2020



NBB cases with echoes extending above the 08C iso-

therm are likely to be cases of 1) supercooled liquid

water droplets and/or 2) returns from cloud hydrome-

teors instead of precipitation. Water can exist in liquid

form as cold as 2388C before the homogeneous nucle-

ation threshold is reached (Kanji et al. 2017). In addi-

tion, Huffman and Norman (1988) concluded that ice

is unlikely to form between2108 and 08Cwhen there are

no ice crystals or large drops present. In such cases,

only supercooled liquid is contained in the cold-cloud

parcel. Thereby, the hydrometeors can only be formed

via warm rain process, which is generally referred to as

the supercooled warm rain process (SWRP) (Huffman

and Norman 1988). In supercooled cases, a 08C isotherm

can be observed with liquid hydrometeors below and

above while no melting occurs. Nevertheless, the di-

electric constant, size, and fall speed of hydrometeors

must change duringmelting (Tiuri et al. 1984). Subsequently,

the radar, if sensitive enough, should observe a BB,

while the BBS varies depending on the intensity of

precipitation. However, sometimes a reduction in re-

flectivity below the BBB may not be observed, when

the diameter of densely crystalline solid hydrome-

teors, such as solid ice (hail, graupel), does not signifi-

cantly decrease after melting.

2) COMPARISON OF Z–R RELATIONSHIPS

As mentioned in section 2, the 5-min resampled da-

tasets from the DiVeN disdrometer and Copernicus

radar were used to compute the relationships between

Z (mm6m23) andR (mmh21) for BB andNBB periods.

Due to minor operational issues in both Copernicus

and the DiVeN disdrometer during the EOP, only data

from 317 days were analyzed. 91 296 profiles were

processed overall, and 6280 profiles (6.9%) occurred

when Copernicus was operational alongside the DiVeN

FIG. 8. A BB case. Here data are shown from Copernicus and

DiVeN disdrometer data on 12 March 2017. Time is in UTC. (top)

A time–height display of reflectivity. White circles indicate the

BBH when a BB is detected. (middle) Time series of BBS (blue

bars) and R (red line). (bottom) Contoured number of drops as a

function of time and diameter (DSDs). Note that weak bright

bands can be spotted between 0400 and 0600 UTC but are not

marked because the rainfall rate measured by the disdrometer

during this period is below 0.1mmh21.

FIG. 9. A mixed BB/NBB case. As in Fig. 8, but for 1 March 2017.
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disdrometer detecting a rainfall rate greater than 0.1mmh21.

From this subset of data, the algorithms classified 2318

(36.9%) BB samples and 1585 (25.2%) NBB samples.

The remaining samples, which do not meet the BB and

NBB criteria or do not pass the speckle filtering and

data quality control scheme, were excluded from the

analysis (37.9%). The contribution of BB and NBB

precipitation to the total precipitation (583mm) mea-

sured by the disdrometer during the EOP was 220mm

(37.7%) and 82mm (14.0%), respectively, indicating

that the BB precipitation is more intense while the NBB

precipitation is not negligible. Thus, it will be important

to identify NBB precipitation, if the Z–R relationships

differ in BB and NBB periods.

Figure 13 shows the relative frequency distributions of

the median diameter and the total number of drops

from the DSDs for BB and NBB events. The BB dis-

tributions are shifted toward larger median diameters

Dm and a reduced total number of drops. Approximately

85% of the NBB periods occurred with a median diam-

eter of the DSDs less than 0.5mm, while over 94% of the

BB periods occurred with a median diameter larger than

0.5mm. The total number of drops counted by the

disdrometer was smaller than 1000min21 in 87% of

the BB cases. In contrast, there is a large variation in

the distribution of the drop concentration in the NBB

events. These distributions agree with case studies

analyzed in section 3a(1) and the results of Martner

et al. (2008).

According to Martner et al. (2008), the regression

calculation of Z–R relationships can be sensitive to the

details of the regression technique. In this study, if the

regression is calculated treating R as the dependent

variable and using the R–Z relationship (R5
ffiffiffiffiffiffiffiffi

Z/ab
p

),

then the regression would give either a near-zero coef-

ficient a or a near-zero exponent b resulting in near-

constant Z–R relationships. Such regression would lead

to bias in analysis. Therefore, when calculating the

regressions, theZ–R relationships are in the traditional

form of Z 5 aRb presented in Marshall and Palmer

(1948). The reflectivity Z is treated as the dependent

variable and a nonlinear least squares fit is used to com-

pute the regression. Figure 14 shows the Z–R scatterplot

and regressions for BB (Z 5 771.51R0.57) and NBB

(Z5 108.27R0.99) periods. Additionally, the Marshall–

Palmer (M-P) relations (Marshall and Palmer 1948)

applicable to precipitation measured by 35-GHz radar

(Z5 350R1.32 for rainfall rate between 0 and 5mmh21,

Z5 450R1.15 for rainfall rate between 5 and 20mmh21,

and Z 5 780R0.95 for rainfall rate between 20 and

100mmh21) (Table 1 in Wexler and Atlas 1963) are

also shown in Fig. 14. Hereafter, these three curves for

35-GHz radar in combination are referred to as the

M-P curve. The coefficient of determination (r2) is an

inadequate measure for nonlinear regressions (Spiess

and Neumeyer 2010). Hence, the standard error (SE)

of regression, which represents the distance between

observed data and the least squares fits, is adopted to

analyze the microphysical variation within the Z–R

relationships. The SE for BB precipitation is 7.60 dBZ

indicating that 95% of BB data points are between the

regression line and 67.60 dBZ. The SE for NBB pre-

cipitation is 4.63 dBZ. In comparison, the weighted

arithmetic average SE for the M-P curve for all classes

of rainfall rates is 12.90 dBZ, even though the M-P

curve appears to have a good correlation with all the

data points. These results suggest that separating out

BB and NBB precipitation before applying Z–R rela-

tionships should lead to an improvement in QPE com-

pared to relations that try to summarize both.

The regression is significantly affected by some out-

liers in the data. Although the Z–R relationships differ

between BB and NBB precipitation, recognizable bias

exhibit in Fig. 14 compared with Fig. 9 in Martner et al.

FIG. 10. An NBB case. As in Fig. 8, but for 22 February 2017.
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(2008). These outliers are not considered to be due to

impact of updrafts and downdrafts on surface rainfall

rates. Although the distance between the disdrometer

and the Copernicus radar is only 150m, differences

still exist between the hydrometeors observed by the

Copernicus radar at higher altitudes and those ob-

served by the disdrometer near the surface. The falling

hydrometeors may be decelerated or accelerated due

FIG. 11. Contoured frequency-by-altitude diagrams from data of the Copernicus radar at NFARR for three different days. (top)

Conditions during BB events. (bottom) Conditions during NBB events. (a),(c),(e),(g) Vertical reflectivity profiles. (b),(d),(f),(h) Doppler

vertical velocity (downward positive). Panels (a) and (b) are fromdata on 12March 2017with BBHat approximately 2000m (noNBB rain

detected); (c), (d), (g), and (h) are from data on 1 March 2017 with BBH at approximately 1000m (mixed BB/NBB); (e) and (f) are from

data on 22 February 2017 (no BB rain detected).

FIG. 12. CFADs from theCopernicus radar atNFARRfor the 12-monthEOP. (top)CFADs for vertical reflectivity profiles. (bottom)CFADs

forDoppler vertical velocity (downward positive). (a),(d) Conditions duringNBBevents. (b),(e) Conditions duringBBevents. (c),(f) Conditions

during BB events but the profiles are adjusted with respect to the average BBH for the entire EOP at 1.85 km, indicated by the white line.
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to updrafts or downdrafts but shifting the Copernicus

data by 5 or 10min corresponding to the disdrometer

data does not improve the regression. This study only

considers one type of microphysical difference, BB

and NBB, while the relationship between DSD, Z, and

R vary with several different microphysical processes.

Both the BB and NBB rain identified by the algorithm

can include a mixture of different microphysical pro-

cesses, such as convective rain and orographically en-

hanced rain (infrequent at this site but cannot be ruled

out). Not all of the variability in the true Z–R relation

can be explained by the BB/NBB processes alone.

However, this study argues that BB/NBB modes are a

dominant process and should be taken into account

where possible for improved radar QPE. As seen

in Fig. 14, despite some overlap between the BB/NBB

Z–R points, BB precipitation is associated with gen-

erally higher reflectivity than NBB precipitation with

similar rainfall rates. This is consistent with the find-

ings of Martner et al. (2008).

b. Brightband strength and precipitation intensity

BBS is calculated only when a BB is detected by the

algorithm in section 2b. Seven categories of BBS are used

to determine subsequentZ–R relationships. These are:

0,BBS, 1, 1#BBS, 2, 2#BBS, 3, 3#BBS, 4,

4#BBS, 5, 5#BBS, 6, and 6#BBS,‘. BBs with
BBS over 3 are interpreted as strong BBs and those

FIG. 13. Relative frequency distributions of (a) median diameter and (b) total number of drops from the DSDs

measured by the DiVeN disdrometer for BB (solid curve) and NBB (dotted curve) periods.

FIG. 14. Scatterplot showing Z–R relationships and best-fit regressions for BB (solid black

curve) and NBB (dotted black curve). Blue circles indicate BB periods and red circles indi-

cate NBB periods. The solid gray curves are the Z–R relationships for precipitation observed

by 35-GHz radar (Marshall and Palmer 1948; Wexler and Atlas 1963). Note that the rainfall

rate here is in logarithmic scale.
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with BBS below 3 are interpreted as weak BBs.

Scatterplots of the BBS and regressions are shown in

Fig. 15. The corresponding Z–R relationships and de-

termination coefficients of regressions are also presented.

Figure 16 summarizes the trends of the coefficients a and

the exponents b changing with respect to the BBS. Note

that the SE of each Z–R relationship is an improvement

over theM-P relation except for the strongest BB periods.

Figure 15 demonstrates that BB rain with higher BBS

is generally associated with larger reflectivity. Apart

from the category 6–‘ (due to a relatively small number

of samples), the SEs of the regressions in the BBS cat-

egories are less than the SE of the M-P curve. When

BBS increases, there are more data points with rainfall

rate exceeding 1mmh21. As shown in Fig. 17, BBS has a

weak correlation to rainfall rate, and hence could not be

used solely to prescribe rainfall rate. Nevertheless, theZ–

R relationships are different with respect to BBS. The

increase of BBS is associated with an increase of the co-

efficient a and a decrease of the exponent b. The greater

the BBS is, the more the coefficients and the exponents

differ from those ofNBBperiods.Both the increase of a and

the decrease of b are nonlinear. A notable discontinuity

occurs at a BBS of 3–4, where a relatively large number

of samples exists. The expected reasons for the discon-

tinuity are that 1) the issue in computing regressions due

to outliers and microphysical processes other than BB

and NBB [mentioned in section 3a(2)], and 2) the im-

perfections in the BBS calculation. Even though the

pixels are not required to be adjacent for the contrast

calculation described in section 2c, the data used in the

visibility calculation is generally normalized (Michelson

1927), while the reflectivity data used here are not.

In addition to the Z–R relationships, Fig. 18 shows

the cumulative relative frequency distributions of the

median diameter from the DSDs, segregated by NBB

and the seven BBS categories. All of the BB distributions

are different from the NBB distribution. Generally,

strong BB is associated with high concentrations of large

drops (Dm . 0.75mm) in DSDs, while weak BBs have

high concentrations of small drops (Dm # 0.5mm).

Although strong BB generally have larger drops, the

total drop concentration is much smaller (usually below

400min21 when BBS is greater than 5.5). The nonlinear

correlation and scedasticity between BBS and rainfall

intensity is due to the nonlinear variance of both the

FIG. 15. Scatterplots showing Z–R relationships, best-fit regressions, and standard error (SE) of regressions for (a) NBB precipitation,

(b) 0#BBS, 1, (c) 1#BBS, 2, (d) 2#BBS, 3, (e) 3#BBS, 4, (f) 4#BBS, 5, (g) 5#BBS, 6, and (h) 6#BBS, infinity. (i) The

best-fit curves for all seven BBS categories. Except for (i), in each panel, the number at the bottom right indicates the number of data

points in each category.

FEBRUARY 2020 L I N ET AL . 349

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/2/335/4950761/jhm

-d-19-0085_1.pdf by guest on 02 O
ctober 2020



drop size and drop concentration over rainfall rate.

Therefore, strong BB cases do not always preclude a

high precipitation rate. The highest rainfall rates in

Fig. 17 have only a moderate BBS. Compared with the

strong BB cases, the weak BB cases are more similar to

the NBB cases, but that large differences between

weak BB and NBB events still exist.

These results suggest that the BBS may be an indi-

cator of the extent of ice crystal aggregation. Through

this mechanism, ice crystals can aggregate into large

snowflakes and become large liquid drops after melting.

In general, strong BB may be associated with stronger

aggregation, while the aggregation may be weaker for

weak BB. In NBB cases, however, we propose that the

precipitation generally remains liquid growing through

a process of collision and coalescence. The case of pre-

cipitation with ice crystals too small to produce a BB

described by Martner et al. (2008) is hence considered

as an inability to detect such a weak BB event.

Furthermore, the differences between the locations,

such as topography, microphysics, and climate, can have

significant impacts on the measurement of BB proper-

ties and lead to differences between this study and

Martner et al. (2008). For example, orographic precipi-

tation is the dominant precipitation type in Bodega Bay

and Cazadero. However, the impact of BBS should not

be ignored. Martner et al. (2008) identified that NBB

rain contributed approximately 40% of the total rainfall

at Bodega Bay and Cazadero, while this study found

NBB rain contributed 27% of the total. The difference

in BB/NBB contributions may also be an indicator of

the misidentification of weak BB cases and climatic

differences. Based on the observations of this study, it

is hypothesized that the NBB precipitation either only

contains liquid hydrometeors (due to warm rain pro-

cesses) or is entirely composed of solid hydrometeors

(no melting occurs).

4. Discussion and implications

The Copernicus radar has a frequency of 35GHz,

which is affected by attenuation, especially when the

rainfall rate exceeds 15mmh21. The attenuation has

not been corrected in the dataset examined in this

study. However, 35GHz is in the borderline between

the Rayleigh scattering regime and the Mie scattering

regime for the sizes of particles being examined, and

the reflectivity used to calculate Z–R relationships in

section 3a(2) and section 3b is taken from near the

FIG. 16. (top) SE of regressions for NBB and seven BBS re-

gressions. (bottom) Coefficients a (blue solid curve) and exponents

b (black dotted curve) of the Z–R relationships for seven BBS

categories. The ‘‘X’’ markers indicate coefficient a (108.27) and the

exponent b (0.99) for NBB data.

FIG. 17. Scatterplot showing rainfall rate with respect to brightband

strength.

FIG. 18. Cumulative relative frequency distributions of median

diameter from DSDs for NBB and seven BBS categories.
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ground (450m) rather than the BBH itself. In addition,

in the dataset analyzed in this study, over 99% of the

precipitation cases are observed with rainfall rate be-

low 15. Hence, the attenuation effect is relatively less

significant. Moreover, the purpose of this study is not

to derive definitive Z–R relationships to be used di-

rectly in current operational radar networks. Instead,

this work focuses on developing new methods which

may be utilized to improve QPE in later studies. Thus,

in this work, the attenuation is not of significant

concern.

Although multiple Z–R relationships are derived in

this study, these Z–R relationships are not definitive or

rigorously evaluated to be utilized. The separation of

BB and NBB precipitation is only an indication that the

difference between BB and NBB precipitation should

be considered in future operation and variability in BB

precipitation can be expressed by BBS. Additionally,

the SE of these Z–R relationships is relatively large.

Using these Z–R relationships can lead to significant

errors in rainfall rate estimation. For example, BB pre-

cipitation has a SE of 7.60 dBZ, which gives an error of

16.31 in R.

The algorithms established in this study can be ap-

plied to any vertically pointing radar, which measures

Doppler velocity and deployed with a collocated in-

strument measuring the rainfall DSDs on the surface, to

calculate the Z–R relationships for the BB and NBB

precipitation. Also, most operational radars in Europe

do a vertical scan for quality checks or calibration. The

vertical pointing data produced by these operational

radars hence can be analyzed using the BB, NBB, and

BBS identification algorithms to improve radar-based

QPE. Another possible instrument for the operational

implications is the airborne active remote sensing radars,

for example, Atmospheric Dynamics Mission (ADM-

Aeolus) (described in Stoffelen et al. 2005), which mea-

sure DVV and cover vast swathes of the Earth. Future

operations may consider the algorithms derived in this

study in order for the improvement of QPE.

5. Conclusions

The BB is a region of enhanced reflectivity observed

by a radar and is indicative of the location of the melting

layer (i.e., the 08C isotherm) within a cloud. The aim of

this work was to establish a reliable and computationally

effective algorithm to identify BB and NBB precipita-

tion periods, and to verify whether BBS is related to

precipitation intensity. The Z–R relationships that were

calculated using Copernicus data and the DiVeN dis-

drometer data from February 2017 to February 2018

indicate that BB and NBB precipitation characteristics

differ. Specifically, as compared to all observed BB

precipitation, NBB precipitation has smaller concen-

trations of large drops (Dm $ 0.75mm) and larger con-

centrations of small drops (Dm # 0.5mm). As such the

NBB Z–R relations have a smaller coefficient a and

larger exponent b. The observed DSDs studied here

also confirm the microphysical inferences of Martner

et al. (2008).

To further examine the role of the BB in precipitation

differences, a computational method that tries to mimic

the human interpretation of the BBS has been demon-

strated through the use of the inverse of the Michelson

contrast formula. Binning our observations into cate-

gories of similar BBS, we found that the concentra-

tion of large drops (Dm $ 0.75mm) generally increases

with increasing BBS, which is also associated with a

decrease in the concentration of small drops (Dm #

0.5mm). Accordingly, in the Z–R relationships applied

to BBS intervals, the coefficient a generally increases

with stronger BB, while the exponent b decreases with

increasing BBS. This study suggests that the hydrometeor

growth during BB periods is primarily the result of ice

crystal aggregation and BBS is related to the extent of

aggregation, whereas the growth duringNBB is dominant

by collision and coalescence of water droplets.

Previous studies, such as White et al. (2003) and

Martner et al. (2008), also concluded that the BB can

occasionally be absent during precipitation occurring

as the result of clouds that extend well above the 08C
isotherm (i.e., into regions with temperatures below

08C). Contrary to these findings, the observations pre-

sented here provide evidence suggesting that Martner

et al. (2008) maymisinterpret some weak BB periods as

NBB periods. Physically, the melting of solid hydro-

meteors should always be associated with an enhanced

region of reflectivity, though the BB signature on any

particular radar may not be visible depending on the

BBS and radar characteristics. We suggest that pre-

cipitation periods interpreted as actual NBB processes,

not weak BB periods) are due to warm rain processes.

Overall, using all available data from the EOP, we

found that 36.9% of the precipitation events were

classified as BB, 25.2% were classified as NBB, and

37.9% were not classified by the dual-pass algorithm.

Based on the disdrometer measurements of rainfall

rate, NBB precipitation contributed to approximately

14% of the total precipitation during the yearlong

EOP. Hence, the NBB rainfall should not be disregarded

and considering multiple Z–R relationships for different

BBS and NBB events may improve radar-based QPE.

However, the Z–R relationships derived in this study are

not recommended to be used especially in low reflectivity

situations (Z , 5 dBZ). We also suggest that future
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studies should make use in situ observations and or

hydrometeor classification algorithms to examine the

differences in the physical processes between NBB and

varying BB periods so that they may be better repre-

sented in weather forecast models.
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