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Research Article

Utilising artificial intelligence to determine patients at risk of
a rare disease: idiopathic pulmonary arterial hypertension

David G. Kiely1,2,3, Orla Doyle4, Edmund Drage4, Harvey Jenner4, Valentina Salvatelli4,

Flora A. Daniels4, John Rigg4, Claude Schmitt5, Yevgeniy Samyshkin5 , Allan Lawrie2,3,* and

Rito Bergemann6,*
1Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK; 2Department of Infection, Immunity & Cardiovascular Disease, University of

Sheffield, Sheffield, UK; 3INSIGNEO, University of Sheffield, Sheffield, UK; 4Real-World & Analytical Solutions, IQVIA, London, UK; 5GSK, Middlesex, UK;
6Evalueserve UK Ltd, London, UK

Abstract

Idiopathic pulmonary arterial hypertension is a rare and life-shortening condition often diagnosed at an advanced stage. Despite

increased awareness, the delay to diagnosis remains unchanged. This study explores whether a predictive model based on

healthcare resource utilisation can be used to screen large populations to identify patients at high risk of idiopathic pulmonary

arterial hypertension. Hospital Episode Statistics from the National Health Service in England, providing close to full national
coverage, were used as a measure of healthcare resource utilisation. Data for patients with idiopathic pulmonary arterial hyper-

tension from the National Pulmonary Hypertension Service in Sheffield were linked to pre-diagnosis Hospital Episode Statistics

records. A non-idiopathic pulmonary arterial hypertension control cohort was selected from the Hospital Episode Statistics

population. Patient history was limited to �5 years pre-diagnosis. Information on demographics, timing/frequency of diagnoses,

medical specialities visited and procedures undertaken was captured. For modelling, a bagged gradient boosting trees algorithm

was used to discriminate between cohorts. Between 2008 and 2016, 709 patients with idiopathic pulmonary arterial hypertension

were identified and compared with a stratified cohort of 2,812,458 patients classified as non-idiopathic pulmonary arterial hyper-

tension with �1 ICD-10 coded diagnosis of relevance to idiopathic pulmonary arterial hypertension. A predictive model was
developed and validated using cross-validation. The timing and frequency of the clinical speciality seen, secondary diagnoses and age

were key variables driving the algorithm’s performance. To identify the 100 patients at highest risk of idiopathic pulmonary arterial

hypertension, 969 patients would need to be screened with a specificity of 99.99% and sensitivity of 14.10% based on a prevalence

of 5.5/million. The positive predictive and negative predictive values were 10.32% and 99.99%, respectively. This study highlights the

potential application of artificial intelligence to readily available real-world data to screen for rare diseases such as idiopathic

pulmonary arterial hypertension. This algorithm could provide low-cost screening at a population level, facilitating earlier diagnosis,

improved diagnostic rates and patient outcomes. Studies to further validate this approach are warranted.
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Introduction

Idiopathic pulmonary arterial hypertension (iPAH) is a rare,

progressive and life-shortening disease. It is characterised by

a small vessel vasculopathy and elevated pulmonary artery

pressure; and if it is untreated, it leads to right heart failure

and death, with a median survival of less than three years.1
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The annual incidence of iPAH has been estimated at 1–3.3

cases per million per year.2–4 Estimates of UK prevalence of

idiopathic, heritable or anorexigen-induced PAH range from

12.4 to 24.8 per million,5 with recent published data from the

national audit, identifying a prevalence of 15 per million of

population in England.6 The symptoms of iPAH are non-

specific and clinical signs are subtle until the disease is

advanced. Progressive shortness of breath and fatigue are

common; and as the disease progresses, exertional chest tight-

ness, pre-syncope and syncope may occur. Leg swelling is a

late sign in young patients and reflects severely impaired right

ventricular function.7 Given the rarity of iPAH and the non-

specificity of symptoms, patients are frequently misdiagnosed

with other common cardiorespiratory diseases. A lengthy

delay between the onset of symptoms and a definitive diag-

nosis is normal, typically around two years; and this delay is

unchanged over the last two decades.8Consequently, iPAH is

often diagnosed at an advanced stage in terms of symptom

burden and haemodynamic severity.9 In contrast, systemic

sclerosis-associated pulmonary arterial hypertension (SSc

PAH) is typically diagnosed earlier, as the high prevalence

(9%) of PAH in SSc has led to the implementation of specific

screening programmes in this high-risk group of

patients.10–12 Furthermore, an evidence-based algorithm for

early SSc PAH detection has recently been developed.13

The application of artificial intelligence (AI) capabilities,

and specifically machine learning algorithms, has created the

opportunity to identify actionable healthcare insights from

large and complex healthcare datasets.14,15 One proposed

application of such technologies is to use routinely collected

patient data to screen for or predict those at high risk for

disease to potentially improve patient outcomes.16 Examples

of such data include the National Health Service (NHS)

Hospital Episode Statistics (HES) database in England,

which provides close to full national coverage for a popula-

tion of approximately 55 million, and medical insurance

records in the United States, where coverage varies depend-

ing on provider and/or location.

Recently, we published data from the Sheffield

Pulmonary Hypertension IndeX (SPHInX) project, demon-

strating that patients with iPAH have high levels of health-

care resource utilisation (HCRU) in the three years prior to

diagnosis, with approximately 25 hospital visits.17 We also

demonstrated that national HES data can be linked to

patient-level hospital diagnostic data in patients with

iPAH in 99% of cases. Our analyses showed that HES

data has the potential to support the development of a pre-

dictive model to screen for iPAH.17 In this study, we now

describe the development and internal validation of a pre-

dictive AI model to identify patients at risk of iPAH.

Methods

Construction of the SPHInX dataset

To identify HCRU patterns in the years prior to a diagnosis

of iPAH, we obtained NHS HES patient records from April

2000 to March 2017 for all patients diagnosed with iPAH at

the Sheffield Pulmonary Vascular Disease Unit (SPVDU)

during 2008–2016. These HES data consisted of information

relating to inpatient, outpatient and accident and emergency

attendances. For a non-iPAH group, we identified a cohort

of patients using codes from the 10th revision of the

International Statistical Classification of Diseases and

Related Health Problems (ICD-10) that were associated

with cardiorespiratory disease and frequently used in

patients with iPAH.

NHS numbers were used to link the HES datasets with

positive iPAH cases diagnosed at SPVDU. A diagnosis of

iPAH was confirmed by medical expert, and the study

included only those that had undergone detailed clinical

assessment including blood testing, lung function testing,

exercise testing, echocardiography, multi-modality imaging

(nuclear medicine imaging, computed tomography, mag-

netic resonance imaging), right heart catheterisation and

classification according to international guidelines and

multidisciplinary assessment.18 Patient linkage was quality

controlled by comparing the consistency of gender, year of

birth, general practitioner postcode and key dates (first diag-

nosis, first right heart catheterization and first visit at

SPVDU). The initial non-iPAH cohort included all HES

patients who had at least one primary or secondary diagno-

sis in ICD-10 codes relevant to cardiorespiratory disease,

that would result in high levels of HCRU similar to iPAH

but whose pattern of behaviour would ideally be distin-

guishable from iPAH. The list of pre-specified ICD-10

codes for the definition of the non-iPAH cohort can be

found in Supplementary Table 1.

Selection of clinical variables for inclusion in the

predictive model

We considered diagnoses (ICD-10 coding scheme), proced-

ures codes (OPCS coding scheme) and the clinical specialty

of the treating physician (‘clinical specialty’ codes) as poten-

tial variables for the predictive model. Diagnosis and pro-

cedure codes were labelled as either primary or secondary in

the HES dataset; primary diagnosis referred to the main

condition investigated, and primary procedure referred to

the most resource-intensive procedure carried out. All

other diagnoses and procedures contained within the epi-

sode were captured as secondary.

To select a set of diagnosis and procedure codes relevant

to the iPAH HCRU footprint, a hybrid data- and clinically

driven approach was used. First, all codes that appeared in

�1% of the iPAH cohort (condition 1) or <1% of the iPAH

cohort and >2% of the non-iPAH cohort (condition 2) were

selected. The non-iPAH cohort in this selection step com-

prised 5630 patients confirmed to not have iPAH who

attended SPVDU within the study window. This method

ensured that variables found rarely in the iPAH cohort

but more commonly in non-iPAH were retained for model-

ling (i.e. the anti-correlated events). To reduce the number

2 | Using AI to identify patients at risk of iPAH Kiely et al.



of variables further, variables were included only if they

were: (i) definitely or possibly related to the iPAH journey

(for those identified by condition 1) and (ii) definitely or

possibly relevant to the exclusion of iPAH (for those identi-

fied by condition 2), following independent review by two

clinical experts. For inclusion, a variable had to be selected

by at least one of the experts. The experts were blinded to

the prevalence of the codes. All clinical specialty codes

appearing in at least 1% of the iPAH cohort were included

in the model.

The selected variables were described using three metrics;

frequency variables (e.g. the frequency of certain proced-

ures), date difference variables (e.g. the number of days

between a procedure and the index date) and aggregated

time variables (e.g. the number of new diagnoses within 12

months of the index date). Clinical codes or events that were

missing were assumed to represent an absence of the event

and were encoded as a zero for count metrics. Data differ-

ence metrics for absent events were coded as missing and

passed to the model directly.

Definition of index date and lookback period for devel-

opment of predictive model

In this study, the pre-diagnosis history window was limited

to a maximum of five years from the index date

(Supplementary Fig. 1). For the non-iPAH cohort, the

index date corresponded to the most recent relevant event

in the patient’s history. An event was considered relevant if

it – (i) contained a diagnosis code belonging to the list of

pre-specified ICD-10 codes relevant to iPAH and (ii) was a

cardiology, respiratory or neurology clinical specialty. For

the iPAH cohort, the index date was the most recent rele-

vant event prior to the first visit at the SPVDU, ensuring

that the pre-diagnosis history occurred prior to their referral

to SPVDU and hence substantially prior to the date of con-

firmed diagnosis. Patients in both cohorts without a valid

index date were excluded. The lookback period was defined

as either five years or the entire length of a patient’s history

in the HES records, which ever was shortest.

Selection of population for development of

predictive model

To build a robust predictive model for iPAH, it is crucial to

ensure that the non-iPAH cohort is comprised of patients

who have similar patterns of HCRU in the years leading up

to diagnosis. That is, we want to ensure that the predictive

model is being trained to learn an iPAH HCRU footprint

rather than merely distinguishing patients who have low

versus high HCRU. Stratification was applied to narrow

the non-iPAH cohort to patients who more closely resemble

patients with iPAH. Each patient was required to have at

least one of the selected ICD-10 codes (see ‘Selection of

clinical variables for inclusion in the predictive model’) in

the primary diagnosis field.

AI methodology underpinning the predictive model

For rare disease detection based on historical HCRU, a pre-

dictive model design should be sensitive to interactions

between HCRU events and avoid overfitting while lever-

aging the richness of the data available (Supplementary

Fig. 2). To accommodate this, we utilised gradient boosting

trees, a supervised machine learning algorithm, to develop

our predictive model.19 This algorithm is an ensemble of

decision trees implemented using boosting, whereby the suc-

cessive tree aims to reduce the error of the previous tree. The

algorithm was embedded within a bootstrap aggregation

framework whereby 100 base learners were trained on a

bootstrapped sample of the training dataset where sampling

was carried out with replacement.20 The scores of all the

learners were averaged to produce the prediction on the

test set.20 The base learner of the model was implemented

using the XGBoost package.21 Each gradient boosting tree

model was a combination of 50 trees. All other XGBoost

parameters were set to default values. XGBoost handles

missing data by learning which branch of the node (pertain-

ing to the missing variable) is optimal for a given observa-

tion. The analysis was performed on a local Dell PowerEdge

R730xd Server with 2� Intel Xeon E5-2695 v3 2.3GHz pro-

cessors and 64Gb LRDIMM 2400MT/s RAM. Fig. 1(a)

provides an overview of the key steps in the algorithm’s

development.

Validation of the predictive model

To assess model performance, data were partitioned into

training and test sets. Training data were used to learn the

parameters of the model while test data were used to esti-

mate how well the model would generalise to new patients.

Given the relatively small number of patients with iPAH

available, a cross-validation strategy was used to assess

model performance while providing predictions for all

patients included in modelling.22 Specifically, a five-fold

cross-validation was used (Fig. 1(b)), in which patients

were partitioned into five non-overlapping groups. Four

groups were used for training of the model and the final

group was used for testing. This process was iterated using

each group served as a test set.

The contribution of each variable to the performance of

the individual gradient boosting tree model was averaged

across all learners in the bagged ensemble to provide a

single view of variable importance. The output of the

model, a risk score assigned to each patient that ranges

from 0 to 1, was compared with a determined threshold to

categorise patients predicted as iPAH-positive or iPAH-

negative.

The performance metrics for the predictive model were

based on conservative estimates of prevalence of iPAH from

published data.23,24 Rates of 1/1,000,000 (lower bound), 5.5/

1,000,000 (middle) and 10/1,000,000 (upper bound) were

used. These prevalence estimates provide guidance for how

to scale the expected count of false positives in a real-world

Pulmonary Circulation Volume 9 Number 4 | 3



clinical setting. Sensitivity (true positives/(true posi-

tivesþ false negatives)) and specificity (true negatives/(true

negativesþ false positives)) were calculated. Positive pre-

dictive values (PPV) and negative predictive values (NPV)

were calculated for the three levels of stratified prevalence

whereby the count of false positives was projected to the

level expected to be observed at a stratified population

level. That is, performance metrics were scaled so that

they are representative of what would be expected in a

real world clinical setting. The likelihood of a positive test

(sensitivity/(1 – specificity)) was calculated as a measure of

how frequently a positive diagnosis prediction is made for

those with compared with iPAH versus those without iPAH.

Results

Sample population

Fig. 2 summarises the sampling strategy used to identify

patients within the iPAH and non-iPAH cohorts. A total

of 864 patients with a confirmed iPAH diagnosis at the

SPVDU were initially identified. A comparison of the

SPVDU and HES datasets revealed that 13 patients had

duplicate database IDs, resulting in an initial group of 852

patients in the iPAH cohort. After application of the strati-

fication criteria, designed to ensure that the variable distri-

butions of the two cohorts closely resembled one another,

this was reduced to 750 patients. The initial non-iPAH

cohort consisted of 11,354,750 patients, and was reduced

to a cohort of 2,952,235 patients after application of the

stratification criteria. Patients without a valid index date

or at least one month of history prior to the index date

were removed, resulting in 709 and 2,812,458 patients

within the iPAH and non-iPAH cohorts, respectively. The

demographics for the iPAH and non-iPAH cohort are

shown in Supplementary Table 2, and the baseline pheno-

typic characteristics of patients with iPAH in

Supplementary Table 3. Patients with iPAH had a lower

median age (60 years versus 71 years) and had a lower

rate of systemic hypertension (48% versus 60%) than

Fig. 2. Sampling strategy to select patients for the iPAH and non-iPAH cohorts used in the modelling procedure. Stratification of the non-iPAH

cohort was used to narrow the cohort to patients who more closely resemble those with iPAH.

HES: Hospital Episode Statistics; ICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision; iPAH:

idiopathic pulmonary arterial hypertension; SPVDU: Sheffield Pulmonary Vascular Disease Unit.

(a) (b)

Fig. 1. (a) The bagging approach adopted in the predictive model. Each learner of the bagged ensemble is a gradient boosting tree model

composed of 50 trees (N¼ 100). (b) Cross-validation strategy used for the training and the test of the model performance. This strategy has been

preferred to a single hold-out set due to the modest size of the iPAH cohort.

iPAH: idiopathic pulmonary arterial hypertension.

4 | Using AI to identify patients at risk of iPAH Kiely et al.



those without iPAH. For the iPAH cohort, the average time

between the first visit at SPVDU and the index date was

76� 272 d.

Clinical variables for inclusion in the predictive model

Following variable selection, a total of 141 clinical variables

were initially identified for inclusion in the model: 23 pri-

mary diagnoses, 74 secondary diagnoses, 24 primary proced-

ures and 19 secondary procedures, plus the age at the index

date (see Supplementary Table 4). After an initial analysis,

the ICD-10 codes I270 (primary pulmonary hypertension)

and I272 (other secondary pulmonary hypertension) were

excluded from the model variables. These predictors are

strongly related to receiving a subsequent diagnosis of

iPAH and could therefore artificially inflate the performance

of the model, and are typically coded for patients shortly

before their referral to tertiary care for the iPAH cohort.

A total of 142 clinical specialty codes were contained in the

two cohorts; of these, the 52 clinical specialty codes (see

Supplementary Table 5) appearing in at least 1% of the

iPAH cohort were included as variables in the model.

Validation of the predictive model

In Fig. 3(a), the PPV is plotted as a function of sensitivity

and specificity at three different levels of iPAH prevalence.

Fig. 3(b) shows the PPV and NPV as a function of iPAH

prevalence. Assuming an iPAH prevalence of 5.5:1,000,000,

the predictive model would need to screen 969 patients to

identify 100 patients with iPAH. At a prevalence of

10:1,000,000, the number of patients required to identify

the 100 patients with iPAH would drop to 587. Based on

the conservative prevalence estimate of 5.5 per million, the

Fig. 3. (a) PPV as a function of sensitivity (left) and specificity (right) for different levels of prevalence. (b) PPV and NPV as a function of iPAH

prevalence per million in the full population when the model is optimized to find 100 patients with iPAH.

iPAH: idiopathic pulmonary arterial hypertension; NPV: negative predictive value; PPV: positive predictive value.
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model has 99.99% specificity, 14.10% sensitivity with

10.32% PPV and 99.99% NPV. This corresponds to a like-

lihood ratio of a positive test of 1151. A 2� 2 contingency

table of the model when optimized to identify 100 true posi-

tive patients with iPAH is shown in Table 1. To contextual-

ise these results, the stratified population with this

conservative estimate of prevalence in the absence of the

predictive model would be expected to contain one patient

with iPAH in every �10,000 screened. This corresponds to a

PPV of 0.01%, as compared with a PPV of 10.32% for the

predictive model.

The specificity and sensitivity of the model vary accord-

ing to the risk score threshold used to determine whether a

patient is classified as iPAH or non-iPAH. This threshold

can be lowered in order to identify higher numbers of

patients with iPAH. Similarly, the less prevalent the disease,

the more patients that must be screened to identify the same

number of true positive patients with iPAH. A detailed

breakdown of the number of positively-identified patients

who would need to be screened to identify a certain

number of patients with iPAH is shown in Table 2.

Fig. 4 shows the top 15 most important variables for

model performance. The timing and frequency of the clin-

ical speciality seen, the burden of co-morbidities and

patient age were found to be the key variables driving

the performance of the algorithm. To evaluate whether

the model is selecting patients for clinically meaningful

patients for iPAH screening, we examined the profiles of

the top 100 patients with iPAH predicted as such by the

model (i.e. the true positives: patients with iPAH and the

highest scores) and the top 500 non-iPAH patients pre-

dicted as iPAH (i.e. the false positives; patients receiving

high score that are not affected by the disease)

(Supplementary Table 6). We observed similar frequencies

of physician clinical specialties across these two groups,

particularly for Respiratory Medicine, Cardiology and

General Medicine. The top false positives were observed

to have similar or higher proportions of patients with sec-

ondary ICD codes. This suggests that the false positives

identified by the model are indeed patients that experience

a pre-diagnosis HCRU footprint similar to that of patients

with confirmed iPAH.

Discussion

To our knowledge, this is the first study to describe an AI

approach using routinely collected data on HCRU to

develop a screening algorithm to identify patients at high

risk of iPAH. Key variables for model performance were

the timing and frequency of clinical specialities, secondary

diagnoses and procedures. The promising results reported in

this study indicate the potential role for the application of

AI to routinely collected healthcare data for population

health screening in iPAH and other rare diseases.

The screening algorithm has been developed through

numerous iterative steps by a multi-disciplinary team,

including clinical and AI experts, and specifically to account

for the epidemiology and confounding conditions related to

diagnosing iPAH. We have also accounted for the diagnos-

tic service model for iPAH in the NHS in England, which is

delivered by a network of specialist pulmonary hypertension

centres; this is reflected in the iPAH population index date

definition (i.e. only using patient data prior to referral to a

specialist centre for modelling).

In the present study, to identify 100 patients with iPAH

(true positives), 969 patients identified by the model as being

at a high risk of iPAH would be needed to be screened

(based on a prevalence of 5.5 per million). This corresponds

to a specificity of 99.99%, a sensitivity of 14.10%, PPV of

10.32% and NPV of 99.99%. The likelihood ratio of a posi-

tive test is 1151, meaning that the model would identify a

patient as being at a high risk of iPAH 1151 times more

often in patients who do have iPAH than in patients who

do not. These performance metrics represent a conservative

Table 2. Performance of the model. The performance of the model

is expressed in terms of patients who would need to be screened

(patients identified as positive by the model) in order to find a certain

number of patients with iPAH (true positive patients). The number of

patients to be screened also depends on the population/stratified

prevalence of the disease, as indicated in the heading rows.

Number of model-identified

patients to screen for iPAH

Stratified prevalence: 1:5600 1:10,000 1:56,000

Population prevalence: 10:1m 5.5:1m 1:1m

iPAH Patients Identified

10 44 70 346

25 109 175 864

50 212 340 1672

75 383 624 3151

100 587 969 4965

200 1911 3256 17,312

250 3163 5453 29,385

300 5970 10,426 57,004

350 9616 16,897 93,011

400 19,189 33,953 188,295

iPAH, idiopathic pulmonary arterial hypertension; m, million.

Table 1. A 2� 2 contingency table of the model output when opti-

mised to find 100 patients with iPAH. It is assumed that the prevalence

of the disease in the stratified population is 1:10,000.

Predicted:

non-iPAH

Predicted:

iPAH Total

Actual: non-iPAH TN¼ 7,089,131 FP¼ 869 7,090,000

Actual: iPAH FN¼ 609 TP¼ 100 709

7,089,740 969

FN: false negative; iPAH: idiopathic pulmonary arterial hypertension; TN: true

negative; FP: false positive; TP: true positive.

6 | Using AI to identify patients at risk of iPAH Kiely et al.



view of the likely prevalence of iPAH in England. For the

purpose of this study, we focussed on the lower bound of

prevalence found in the published literature (5–6 cases per

million18), whereas in England national audit data have

indicated a prevalence of 15 per million.6 As we demon-

strate, the performance of the model would improve with

increased prevalence levels; and based on a prevalence of 10

per million, 587 patients flagged as being at high risk by the

model would need to be screened to identify 100 patients

with iPAH.

We acknowledge that the PPV of 100 per 969 (10.32%)

may appear to be low; however, this represents a significant

step change when compared with the estimated prevalence

of iPAH. This algorithm therefore identifies patients for

screening for iPAH at much higher rate than the back-

ground prevalence by a factor of �10,000. Indeed, the per-

formance of this algorithm is similar to the prevalence of

PAH in SSc. The benefits of using screening algorithms to

identify patients with iPAH has been demonstrated in con-

text of SSc using the DETECT screening algorithm.13 In

contrast with iPAH, where the prevalence of disease is low

in the general population, PAH occurs in approximately 9%

of patients with SSc.12 The DETECT model has been

demonstrated to effectively diagnose patients with SSc

PAH in a clinical setting, showing that a targeted approach

that identifies patients at high risk of a rare diseases is feas-

ible.13 Evidence suggests that earlier treatment is associated

with improved outcomes in patients with iPAH25–27; and in

SSc PAH, a comparison of contemporaneous cohorts of

patients diagnosed from screening versus symptomatic pres-

entation demonstrated that those patients identified from

screening had less severe haemodynamic disease and better

survival.28 A criticism of these studies is the potential for

lead time bias to influence outcomes, and no studies in PAH

have unequivocally demonstrated that earlier intervention

alters the natural history of disease.29 Given the success of

PAH screening in SSc, even at current performance, the

model would identify patients for screening at a manageable

level, where investigative approaches to diagnose pulmonary

hypertension could be deployed.

In contrast with SSc, iPAH has no known associated risk

factors that would facilitate such an accurate predictive

model. However, patients with iPAH do have high levels

of HCRU prior to diagnosis, with recent work by our

group identifying an average of 25 hospital interactions in

the three years prior to diagnosis.17 The present study dem-

onstrates that we can identify patients with a high risk of

iPAH at a similar rate to that of PAH in patients with SSc.

The current economic burden of iPAH is high, with patients

presenting with more severe disease requiring more inpatient

admissions, longer lengths of stay and more emergency

department visits.17,30 As the SPHInX predictive model is

based upon existing, accessible and routinely-collected

healthcare data, the cost of identifying patients at high

risk of iPAH would be relatively small, and could therefore

be of value despite the low sensitivity for iPAH. However,

the health economic impact of investigating patients identi-

fied at high risk of iPAH and approaches to contacting these

patients would require further exploration. Developing pre-

dictive models that identify patients at high risk of specific

diseases using routinely collected HCRU data provides an

opportunity to design studies that can explore the health

economic impact of diagnostic and treatment interventions

in these high-risk patients. This would allow the

Fig. 4. The 15 most important variables of the model, ranked by average rank across the 100 bags and five groups. The importance of the

variables is expressed in terms of a normalized value between 0 and 1 that corresponds to how much each variable contributes to the

performance of the gradient boosting tree. Each colour corresponds to the variable class (see key).
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development of novel study designs randomising high-risk

patients to integrated diagnostic and treatment strategies

that would allow a comprehensive health technology assess-

ment. In addition, this would facilitate a comparison of

long-term outcomes eliminating the potential lead time

bias of historic studies comparing earlier treatment interven-

tions in unmatched cohorts.

This study has a number of limitations. First, iPAH is a

rare condition and the methodological approach used due to

the number of patients meant that we used a cross-valida-

tion approach rather than having separate training and test

cohorts. Second, the HES dataset is an example of a system

that records secondary care HCRU from a national cohort;

but the data fields and type of activity that are recorded are

specific to this system. However, the general principles

underpinning these datasets are similar to those used in

other countries and the concept is therefore potentially

translatable, but requires further validation. Finally, the

performance of any predictive model depends on the popu-

lation in which the model is deployed. However, one of the

benefits of using an AI approach is the ability of the model

to learn and be adapted based on the characteristics of the

population studied. Although the algorithm was developed

on an English population, confirmed iPAH cases were

obtained from a single UK centre. However, the Sheffield

centre provides population coverage for over 15 million

people,9,17 representing approximately one-third of the

English population, and the 864 patients identified over a

16-year period equates to an estimated annual incidence of

3.6 per million per year and an estimated prevalence of 19

per million, in keeping with the published national data. The

confirmed iPAH cases were also demographically similar to

that reported in other registries.

In conclusion, this study highlights the potential applica-

tion of AI using existing and routinely collected data to

identify patients at high risk of rare conditions such as

iPAH. Studies to further validate this approach to screen

for iPAH in the general population are now warranted.

Author contributions

All authors contributed to the conception or design of the study

and were involved in analysing or interpreting the data. DGK, AL,

OD, VS, FAD, ED, and HJ also contributed to the acquisition of

the data; and all authors contributed to the writing of the

manuscript.

Acknowledgements

The authors acknowledge the support of the wider Sheffield

Pulmonary Hypertension IndeX (SPHInX) project team who

have contributed toward the collection of data. Medical writing

assistance, including development of the initial draft based on

author direction, assembling tables and figures, collating authors’

comments, grammatical editing, and referencing, was provided by

Liam Campbell, PhD, of Fishawack Indicia Ltd, UK, funded by

GlaxoSmithKline (GSK).

Conflict of interest

DGK declares grants and personal fees from Actelion, Bayer, GSK

and MSD. YS is an employee and shareholder of GSK. OD, HJ,

FAD, VS, JR and ED are employees of IQVIA. CS was an

employee of GSK at the time of the study, and is now an employee

of Viiv Healthcare, a company partly owned by GSK. AL declares

grants and personal fees from GSK and Actelion, including travel

support from Actelion, and has received research grants fellow-

ships from the British Heart Foundation, and the Medical

Research Council. AL also reports collaboration with Kymab

Ltd. RB was an employee and shareholder of GSK at the time

of the study.

Data sharing statement

Information on data sharing commitments for GSK-sponsored

studies and requesting access to anonymized individual participant

data and associated documents can be found at www.clinicalstu-

dydatarequest.com. Specifically, the datasets reported in this pub-

lication are not publicly available due to restrictions of the licence

granted for use of National Health Service Hospital Episode

Statistics. However, de-identified data used for the purpose of

this study are available from the corresponding authors upon rea-

sonable request and subject to permission from National Health

Service Digital for access to the Hospital Episode Statistics data,

Sheffield Teaching Hospitals National Health Service Foundation

Trust information governance authorities for access to Sheffield

Teaching Hospitals National Health Service Foundation Trust

data as well as the Sheffield Pulmonary Hypertension IndeX

(SPHInX) project team.

Ethics approval

Relevant permissions and approvals were sought and obtained

from the East Midlands – Derby Research Ethics Committee

(ref: 16/EM/0286), and Confidentiality Advisory Group (CAG),

for the linkage of datasets under Section 251 of the Health and

Social Care act 2014 (ref: 16CAG0091). The Independent Group

Advising on the Release of Data (IGARD) at NHS Digital

approved the use of Hospital Episode Statistics data for this

study. The process to receive these permissions required research

approvals from the Sheffield Teaching Hospitals National Health

Service Foundation Trust Caldicott Guardian. We also sought and

received a letter of support for the research from the Pulmonary

Hypertension Association UK (PHA UK) patient advocacy group.

Any patient who had opted out of research was removed from our

analyses.

Funding

These studies were funded by GlaxoSmithKline (GSK; HO-17-

18229), who were involved in the study design, analysis and inter-

pretation of data. AL is supported by a British Heart Foundation

Senior Basic Science Research Fellowship (FS/13/48/30453 and

FS/18/52/33808). Employees of GSK are authors of the article

and were therefore involved in the writing and final decision to

submit for publication.

Guarantor

Prof David Kiely.

8 | Using AI to identify patients at risk of iPAH Kiely et al.

www.clinicalstudydatarequest.com
www.clinicalstudydatarequest.com


ORCID iDs

Yevgeniy Samyshkin https://orcid.org/0000-0003-3561-5585

Allan Lawrie https://orcid.org/0000-0003-4192-9505

Supplemental Material

Supplemental material for this article is available online.

References

1. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients

with primary pulmonary hypertension. Results from a national

prospective registry. Ann Intern Med 1991; 115: 343–349.

2. Peacock AJ, Murphy NF, McMurray JJ, et al. An epidemio-

logical study of pulmonary arterial hypertension. Eur Respir J

2007; 30: 104–109.

3. Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial

hypertension in France: results from a national registry. Am J

Respir Crit Care Med 2006; 173: 1023–1030.

4. Strange G, Playford D, Stewart S, et al. Pulmonary hyperten-

sion: prevalence and mortality in the Armadale echocardiog-

raphy cohort. Heart 2012; 98: 1805–1811.

5. The NHS Information Centre. National Audit of Pulmonary

Hypertension. Leeds, UK: The NHS Information Centre, 2011.

6. The NHS Information Centre. National Audit of Pulmonary

Hypertension. Leeds, UK: The NHS Information Centre, 2015.

7. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and

diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013;

62: D42–D50.

8. Strange G, Gabbay E, Kermeen F, et al. Time from symptoms

to definitive diagnosis of idiopathic pulmonary arterial hyper-

tension: the delay study. Pulm Circ 2013; 3: 89–94.

9. Hurdman J, Condliffe R, Elliot CA, et al. ASPIRE registry:

assessing the Spectrum of Pulmonary hypertension Identified

at a REferral centre. Eur Respir J 2012; 39: 945–955.

10. Sanchez-Roman J, Opitz CF, Kowal-Bielecka O, et al.

Screening for PAH in patients with systemic sclerosis: focus

on Doppler echocardiography. Rheumatology 2008; 47:

v33–v35.

11. Kiely DG, Elliot CA, Sabroe I, et al. Pulmonary hypertension:

diagnosis and management. BMJ 2013; 346(1): f2028.

12. Avouac J, Airo P, Meune C, et al. Prevalence of pulmonary

hypertension in systemic sclerosis in European Caucasians and

metaanalysis of 5 studies. J Rheumatol 2010; 37: 2290–2298.

13. Coghlan JG, Denton CP, Grunig E, et al. Evidence-based

detection of pulmonary arterial hypertension in systemic scler-

osis: the DETECT study. Ann Rheum Dis 2014; 73: 1340–1349.

14. Ashrafian H and Darzi A. Transforming health policy through

machine learning. PLOS Med 2018; 15: e1002692.

15. Ngiam KY and Khor IW. Big data and machine learning algo-

rithms for health-care delivery. Lancet Oncol 2019; 20:

e262–e273.

16. Chen JH and Asch SM. Machine learning and prediction in

medicine – beyond the peak of inflated expectations. N Engl J

Med 2017; 376: 2507–2509.

17. Bergemann R, Allsopp A, Jenner H, et al. Using real-world

data, can we diagnose iPAH earlier? An overview of the

SPHInX project. Pulm Circ 2018; 8: 1–9.

18. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS

Guidelines for the diagnosis and treatment of pulmonary

hypertension: the Joint Task Force for the Diagnosis and

Treatment of Pulmonary Hypertension of the European

Society of Cardiology (ESC) and the European Respiratory

Society (ERS): endorsed by: Association for European

Paediatric and Congenital Cardiology (AEPC), International

Society for Heart and Lung Transplantation (ISHLT). Eur

Heart J 2016; 37: 67–119.

19. Friedman J. Greedy function approximation: a gradient boost-

ing machine. IMS 1999 Reitz Lecture. Ann Stat 1999; 29:

1189–1232.

20. Breiman L. Bagging predictors. Mach Learn 1996; 24:

123–140.

21. Chen T and Guestrin C. XGBoost: A Scalable Tree Boosting

System. Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining -KDD

‘16, 785–794. New York, USA, 2016: ACM Press.

22. Kohavi R. A study of cross-validation and bootstrap for

accuracy estimation and model selection. In: Proceedings of

the 14th international joint conference on Artificial intelligence

– volume 2, Montreal, 1995, pp.1137–1143. Quebec, Canada:

Morgan Kaufmann Publishers Inc.

23. Lai Y-C, Potoka KC, Champion HC, et al. Pulmonary arterial

hypertension: the clinical syndrome. Circ Res 2014; 115:

115–130.

24. McGoon MD, Benza RL, Escribano-Subias P, et al.

Pulmonary arterial hypertension: epidemiology and registries.

J Am Coll Cardiol 2013; 62: D51–D59.

25. Burger CD, Ghandour M, Padmanabhan Menon D, et al.

Early intervention in the management of pulmonary arterial

hypertension: clinical and economic outcomes. Clinicoecon

Outcomes Res 2017; 9: 731–739.

26. Lau EM, Humbert M and Celermajer DS. Early detection of

pulmonary arterial hypertension. Nat Rev Cardiol 2015; 12:

143–155.

27. Galie N, Rubin L, Hoeper M, et al. Treatment of patients with

mildly symptomatic pulmonary arterial hypertension with

bosentan (EARLY study): a double-blind, randomised con-

trolled trial. Lancet 2008; 371: 2093–2100.

28. Humbert M, Yaici A, de Groote P, et al. Screening for pul-

monary arterial hypertension in patients with systemic scler-

osis: clinical characteristics at diagnosis and long-term

survival. Arthritis Rheum 2011; 63: 3522–3530.

29. Hopkins WE, Ochoa LL, Richardson GW, et al. Comparison

of the hemodynamics and survival of adults with severe pri-

mary pulmonary hypertension or Eisenmenger syndrome.

J Heart Lung Transplant 1996; 15: 100–105.

30. Dufour R, Pruett J, Hu N, et al. Healthcare resource utiliza-

tion and costs for patients with pulmonary arterial hyperten-

sion: real-world documentation of functional class. J Med

Econ 2017; 20: 1178–1186.

Pulmonary Circulation Volume 9 Number 4 | 9

https://orcid.org/0000-0003-3561-5585
https://orcid.org/0000-0003-4192-9505

