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Evo-devo
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Tony J. Prescott, University of Sheffield (t.j.prescott@sheffield.ac.uk) 

Leah Krubitzer, University of California, Davis (lakrubitzer@ucdavis.edu). 

 

Technology in the areas of artificial intelligence, cognitive systems and robotics has 

already made many significant advances. We have constructed bipedal robots that 

walk and run, quadrupeds that negotiate uneven ground, cars that drive themselves, 

micro-scale hover-bots that fly in formation.  We have developed sensing systems that 

read hand-writing, recognize faces, and parse human speech; and we have devised 

planning, reasoning and inference systems that integrate terabytes of information to 

co-ordinate traffic, handle the logistics of large organizations, optimize complex 

financial transactions, and mine scientific data-sets.  In some areas we are close to 

mimicking the achievements of biological systems, in others we have already 

outstripped them. But we are reaching a limit in the design of these systems and this is 

reflected in their brittleness in the face of unexpected challenges and the increasing 

difficulty and cost of updating these systems to keep pace with the changing world. 

“Evolvability” is therefore recognized as an important challenge for the design of 

complex artifacts (1985; Mannaert, Verelst, & Ven, 2012) and technologists have 

been inspired by biological systems to make artificial systems that are more dynamic 

and evolvable (Fortuna, Bonachela, & Levin, 2011; Le Goues, Forrest, & Weimer, 

2010).   

 

But what can we learn from nature about evolvability? In the biological sciences, 

evolution has traditionally been considered through the lens of selection—preferring 

organisms that thrive over ones that fail. Selection is inarguably one of the most 

powerful mechanisms operating in biology that has made possible the evolution of 

complex organisms with rich repertoires of behavior.  However, selection can only 

work if there is suitable variation within the population from which to select. Put it 

another way, whilst selection is the mechanism through which evolution operates it is 

not what makes organisms evolvable. The study of biological evolvability points to 
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the sources of natural variability (e.g. Figure 1) as critical to understanding and 

replicating the power of natural evolution (Carroll, 2012; Kirschner & Gerhart, 2006).   

 

 

 

Figure 1. Variability in natural systems.  Understanding how evolution operates requires 

that we go beyond the processes that allow selection of genetic material and decode the 

mechanisms that give rise to variation. For example, the stunning variety of patterns in these 

butterfly wings is thought to arise through changes in the way that regulatory gene networks 

operate without requiring any changes in the underlying gene sequences. Image from 

Prud'homme, Gompel, and Carroll (2007). 

 

A general  definition of biological evolvability (e.g. Wagner and Altenberg (1996)) 

might consider two sources of variability in the population. The first is concerned 

with how gene sequences vary within a population to give rise to variations in 

phenotype. Mechanisms that affect this form of variability include processes that 

directly alter chromosomal DNA such as mutation, crossover and recombination, as 

well as population effects such as migration, translocation and so forth.  A second 

important source of variability, less widely known, derives from the developmental 

processes through which this genetic infrastructure produces a specific phenotype, as 

beautifully illustrated by the differences in patterning of the butterfly wings in Figure 

1.  This kind of phenotypic diversity does not require variability in the underlying 

gene sequences but instead relates to variation in the way that genes are expressed 

during development.  

 



To understand variability due to development we first have to appreciate that genes do 

not specify the organism directly, rather there is a rich set of mechanisms, operating 

inside the cell, and across the embryo, that, amongst other things, determine how 

genes are transcribed into proteins and messenger molecules, and the probability with 

which they are transcribed.  The operation of these epigenetic mechanisms determines 

whether any given cell becomes a neuron or a white blood cell, and they resolve the 

mystery of how bodies can form that have a myriad of different parts despite the fact 

that all cells share the same DNA.  Developmental biologists have now dissected 

many of the underlying molecular mechanisms that regulate gene expression.  

Interestingly, we are now realizing that these mechanisms can also be affected by the 

environment, within and outside the embryo, in a manner that can produce non-

genetic (epigenetic), but heritable, trans-generational change.  

 

In recent decades the evo-devo—evolutionary and developmental—approach (see, e.g. 

Carroll, 2012; Muller, 2007) has become central to our current understanding of 

biological evolvability. A key starting pointing was the discovery that similar 

networks of regulatory genes underlie body patterning in all modern multi-celled 

animals from sea urchins to humans (see Figure 2 and Raff, 1996; Swalla, 2006). This 

surprising finding demonstrated the flexibility of these networks to generate different 

body plans and also drove the realization that the manner in which genes determine 

phenotypic outcomes depends on multiple interactions across different organizational 

levels—the adult organism is the outcome of a series of genetic cascades modulated 

in time and space by the wider embryological, bodily, and environmental context. 

Selection can operate on phenotypic variability that arises at any stage in this process.  

 



 

Figure 2. The evo-devo of biological systems.  In the first half of the twentieth century 

evolutionary biology was dominated by a reductionist emphasis on the role of genes.  A 

renewed interest in the contribution of development began with the discovery that the 

homeotic gene clusters, involved in body patterning in Drosophila, were strongly conserved 

across all multi-celled animals including vertebrates, despite obvious differences in the 

morphological outcomes they produced. This finding forced a re-examination of the role of 

developmental processes in specifying body and brain designs. This figure, from Swalla 

(2006), shows how the same regulatory gene cluster (Hox) is involved in specifying body 

patterning in all the different groups of modern multi-celled animals (our own species is a 

member of the class of tetrapods).  

 

What we have also learned since these remarkable discoveries is that the toolbox of 

the genetic-developmental system is both sensitive to small changes and at the same 

time remarkably robust.  For example, slight alterations in the spatial and temporal 

patterning of gene expression can lead to large changes in the developmental 

outcomes, as we illustrate with respect to nervous system evolution below. However, 

at the same time, the wider system is able to respond flexibly to these shifting patterns 

in a manner that still results in a viable organism. This takes us far from traditional 

notions of evolution as exploring random changes in form.  Understanding how 

developmental dynamics resists damaging perturbations and promotes convergence to 

viable outcomes could allow us to crack the puzzle of biological evolvability and 

uncover principles that can be usefully applied to artificial systems. 

 

Our particular interest is in understanding the evolution and development of one 

specific complex biological system—the mammalian brain and nervous system—and 



in the possibility of designing brain-like adaptable architectures that could control 

biomimetic robots. In the next section, we give some additional consideration to 

particular mechanisms involved in brain evo-devo and to the evolutionary history of 

brains including our own. In the third part of the chapter we then explore how the 

principles underlying natural evo-devo have inspired, and are continuing to inspire, 

the design of artificial living machines.   

 

 

Evo-devo of the mammalian nervous system 

As a control system becomes more complex, inter-connected and integrated, it 

becomes more likely that any structural variation will result in degraded function. So 

how did animal nervous systems retain the capacity to evolve as they became larger 

and more sophisticated? One answer is by avoiding over-specification of the system 

in the genome and by exploiting developmental mechanisms that, as we have 

discussed above, promote compensation for disruptive change (Deacon, 2010; Katz, 

2011). More generally, evo-devo research in neurobiology is now beginning to 

identify the toolbox of developmental processes that can give rise to useful forms of 

variability in nervous system organization, recognizing that this set of mechanisms 

has itself been the target of strong selection pressure during evolution (Charvet, 

Striedter, & Finlay, 2011).  

 

The toolbox for brain evolvability 

So what’s inside the tool-box for brain evolvability?  First, like other developing 

systems the complex wiring of the brain is the result of a much simpler (though still 

very complex!) set of growth rules, implemented through genetic cascades, and 

interacting within a self-assembling structure, first over-specifying and then using 

intrinsic mechanisms, such activity-based pruning, to sculpt out useful network 

topographies.  One set of tools thus relates to the generative, or self-organizing, 

mechanisms that permit the brain to wire during early development by tuning in to 

internal neural signals (see also Wilson—this volume).  The system is first directed to 

incoming sensory signals, and then to the correlations between inputs from different 

modalities (see, e.g. Krubitzer and Kaas (2005)).   

 



Second, there is a set of tools that instantiate adaptive mechanisms (which in this 

article we use to mean those involved in learning as opposed to general adaptation).  

Learning operates to promote the selection of circuits that support behavioral 

capacities that are well matched to the environment in which the individual develops.  

The development of cortical areas, for instance, is driven in significant part by 

specific patterns of incoming sensory inputs that can support tasks such as object 

recognition and detection, decision-making, path-planning and motor control. These 

circuits are continually modified and honed by experience in the world, using 

different forms of internal and externally-mediated feedback (see Herreros, this 

volume).  

 

A third set of tools relates to systems components and architectural principles as 

discussed in sections IV (building blocks) and V (capabilities) of this book.  For 

example, oscillators that can create the patterned rhythms, decision circuits that can 

resolve competitions, and sensorimotor circuits that can implement predictive control. 

Architectural principles include layered control whereby lower tier pathways that link 

sensing with action can operate in the absence of higher ones (Prescott, Redgrave, & 

Gurney, 1999), and redundancy, where multiple substrates provide alternative means 

to support a given function (Deacon, 2010). These architectural features create 

robustness and thus provide protection against catastrophic local change—smoothing 

out the fitness landscape by providing more options for exploring useful variability 

(Kauffman, 1990).  An important feature that we see in brain evolution, and that can 

underlie layering and redundancy, is the duplication of existing structures. Making 

copies of working sub-circuits can lead to system components that are under-used and 

that can then adjust to take on new functions (Deacon, 2010; Whitacre & Bender, 

2010).  

 

From phenotypic variability to hopeful monsters 

Biologists have long been puzzled by the difficulty of reconciling rapid changes in 

animal lineages with the notion of gradual change brought about by genetic operators 

such as mutation.  In the 1940s, the biologist Richard Goldschmidt coined the phrase 

“hopeful monster” (Goldschmidt, 1940) to capture the idea of an organism that 

represented a large leap in design-space (also termed macroevolution). This idea was 

deemed controversial by many biologists of the day who reasoned that any change in 



the genome that brought about a radical re-organization of the organism would be 

likely to be lethal.  Nevertheless, evolution does seem to have proceeded by taking a 

number of larger steps in addition to many smaller ones.  How might this be possible?  

Evolvability again appears to be key and the new understanding engendered by the 

evo-devo approach is resurrecting Goldsmith’s hopeful monster hypothesis.  

Specifically, genetic mutations, or consistent non-genetic departures from normality, 

that bring about radical changes, can be compensated for by pattern-forming 

processes that steer development towards building a viable animal.  Moreover, where 

a single population is affected by a significant disruptive event, such as abrupt 

environmental change, similar changes might be triggered in multiple individuals. 

Where this happens successful large strides within design space could be made. 

 

We can illustrate this idea using studies of brain evolution that show a number of 

dramatic changes in the size and organization of the mammalian cortex through 

evolutionary history, perhaps most remarkably, in terms of speed of change, in the 

sequence of primate and hominid forms leading to modern humans.  This is illustrated 

in Figure 3 which shows approximate shape and areal structure of the cortex in 

different groups of modern mammals. 

 



 

Figure 3. Cortical evolution in mammals.  The major mammalian groups and their family 

relationships illustrating how the shape of the cortical mantle, and of some of its primary 

sensory areas, vary relative to an inferred common ancestor. From Krubitzer and Seelke 

(2012). 

 

Experimental manipulations in brain development are beginning to suggest how such 

changes may have come about.  For example, Chenn and Walsh (2002) have shown 

that the impact of a single change in the sequence of developmental events involved 

in early neurogenesis in the mouse, can lead to a change from a smooth rodent-like 

neocortex, to a convoluted primate-like one, bringing about an expanded cortical 

surface without an increase in thickness. Although these particular mice have brain 

abnormalities that make them non-viable, what is impressive is that the over-

production of neural progenitor cells triggers changes later in the developmental 

cascade that at least partially compensate for this perturbation (see Rakic (2009) for 

further discussion).  This study demonstrates that changes that occur early in 

development can have particularly profound effects (thus larger strides).  Other 

experiments, summarized by Krubitzer and Seelke (2012), have used knock-out mice 

to explore the role of different transcription factors in regulating arealization—the 



size, shape and position of different cortical areas.  As illustrated in Figure 4, 

eliminating any one of the four factors Emx2, COUP-TF1, Pax6, or Sp8, radically 

alters the size and shape of multiple fields—enlarging some, reducing others, whilst 

preserving their overall topological relationships.   

 

 

Figure 4. The effect of removing specific transcription factors (via genetically-modified 

‘knock-out’ mice) on arealization in mouse cortex.  The size and shape of major cortical 

areas—primary visual (v1), auditory (a1), somatosensory (s1) and motor (m1) cortices—is 

radically disrupted by each knock-out whilst the overall topology is maintained. From 

Krubitzer and Seelke (2012). 

 

In a final illustrative experiment, by Fukuchi-Shimogori and Grove (2001), an 

electrically-induced overexpression of a growth factor in a specific locus in the mouse 

forebrain caused the animal to develop a second complete barrel field (a 

representation of the facial whiskers) that was a mirror-image of the normal one.  This 

result indicates the relative ease with which developmental processes can generate 

useful redundancy in the form of substantial and well-organized structures that can 

then be co-opted to serve new roles.  

 

Krubitzer and Seelke (2012) summarize the main differences in mammalian cortex 

that can be observed by comparing across species as shown in Figure 3.  These 

include (i) the size of the cortical sheet, (ii) the relative amount of space allocated to 

different sensory domains (and more generally, to the different cortical fields), (iii) 

cortical magnification of behaviorally-relevant body parts, (iv) the addition of new 



modules, (v) the overall number of cortical fields, and (vi) the connections between 

cortical fields.  Interestingly, many of the same changes can be seen when comparing 

between individuals of a given species but to a much less dramatic extent than when 

comparing across species. This illustrates that the phenotypic variability required to 

allow selection to direct cortical evolution in any of these different directions may be 

present in most species most of the time. 

 

Conservation of basic design principles 

Whilst exploring the paths to effective change through biological evolution it is also 

important to recognize that some things have stayed the same. Indeed, the story of 

biological evolution can be regarded as one of conservation of basic design principles, 

that were discovered early on, and that instantiated evolvable control architectures 

(Kirschner & Gerhart, 2006). For example, fossil evidence shows a remarkable 

explosion of animal forms during the Cambrian period (~541–485 million years ago) 

in which all of the major bilaterian phyla were represented, despite being absent, for 

the most part, from the fossil record at the end of the previous Ediacaran period (see 

also Prescott—Biomimetic Systems, this volume). Current hypotheses suggest that the 

last common ancestor of all modern bilaterian animals, the Urbilateria, evolved some 

time before the Cambrian boundary, and is thought to have possessed the “essential 

bilaterian toolbox” (Erwin & Davidson, 2002) of regulatory genes, including the 

homeotic gene clusters that underlie cell differentiation and body patterning in all 

modern bilaterians (as in Figure 2). Vertebrate-like animals also appear earlier than 

was once thought—finds from Chengjiang in China (the Chinese ‘Burgess shale’) 

show the presence of fish-like creatures (craniates) in the early Cambrian (Mallatt & 

Chen, 2003).  This evidence implies a rapid evolution of complex nervous systems, as 

part of the general evolution of new body plans (Gabor  Miklos, Campbell, & Kankel, 

1994).  

 

Analysis of comparative brain architecture indicates some startling conservation of 

nervous system structure across all vertebrate classes.  Notably, all vertebrate brains 

comprise a layered architecture with spinal, hindbrain, midbrain, and forebrain 

components; an integrative core, comprised of the medial reticular formation and the 

basal ganglia; and a number of specialized learning/memory systems (hippocampus, 

striatum, cortex, cerebellum) (Prescott et al., 1999).  Of course there have been 



considerable changes in the size, shape, number of sub-divisions (parcellation), and 

microstructural organization of many brain regions, as well as the addition of new cell 

types, and the migration of cell clusters within the brain. Connectional changes have 

included axonal invasion of new areas and increased differentiation of local areas 

through selective connection loss.  Nevertheless, comparative neurobiology indicates 

that the scope for alteration of the basic vertebrate brain plan may be remarkably 

limited (Charvet et al., 2011).  Vertebrates have a control architecture that is 

evolvable but only within a set of constraints that were already laid down within the 

nervous system of a 500 million-year-old fish.  If we could better understand this 

constrained but evolvable architecture—that carried generations of owners from sea 

to land, from four legs to bipedal walking, into the air, even to explore space—this 

should make for a powerful model for the design of artificial living machines. 

 

 

Biomimetic and biohybrid systems 

To learn from the evo-devo of natural systems it is clearly necessary to identify, 

simulate and abstract the evolutionary and developmental mechanisms that gave rise 

to their evolvable nature. This approach could result in a toolbox of generative, 

adaptive, and selective mechanisms that can be used to formulate a design 

methodology to be applied to complex bio-inspired systems. Such a framework will 

also require an abstracted understanding of body plans and control architectures since 

it is clear that evolution acts to select evolvable and flexible control systems and then 

operates within some limits determined by those designs (and by the laws of physics).  

 

 In computational neuroscience, artificial intelligence, and robotics, researchers have 

explored generative methods, such as self-organization, or selective methods, such as 

genetic algorithms and genetic programming, and adaptive methods such as 

reinforcement and supervised learning for several decades.  A smaller, but still 

significant, community have investigated how generative, selective and adaptive 

mechanisms, or some combination of these, can operate together. Much of this 

literature has followed a biomimetic approach.  There is insufficient space here to 

provide a comprehensive review therefore we briefly survey the history of this field 

and highlight some examples that were particularly groundbreaking or insightful. 



 

Foundations of artificial evo-devo 

The attempt to create artificial systems using the methodologies of evolution, 

development and learning is driven by the recognition that engineered systems cannot 

match either the complexity or the robustness of biological life, and moreover, that 

nature has invented some remarkable techniques for encapsulating the specification 

for such complex entities in highly compact codes.  For example, the human brain is 

estimated to have 100 trillion neural connections and yet our genome has less than 

30,000 active genes.  One of Nature’s most important tools, then, is this indirect but 

superbly productive mapping of the genome onto the phenotype.   

One analogy that occurs repeatedly is that of a language—with a small vocabulary, 

and a clutch of grammatical rules saying how words can combine, a language can 

generate millions of varying but valid sentences.  In computer science, the 

productivity of a formal language, defined as set of rules that operate over an 

identified set of symbols, has been understood since Chomsky’s work in the 1950s 

and this general idea was first applied to model biological development by 

Lindenmayer (1968), to make branching shapes, similar in structure to threads of 

algae (e.g. Figure 5).  This approach, now known as L-systems (a contraction of 

Lindenmayer-systems), continues to be widely used. For instance Torben-Nielsen, 

Tuyls, and Postma (2008) describe a modeling system, EVoL-Neuron, that builds 

models of single neuron arborization, using genetic algorithms to tune these to match 

experimentally-measured cells. The L-systems approach was generalized by Kitano 

(1990) to the construction of artificial neural networks.  Whereas Lindenmayer’s goal 

was to show that a small grammar could give rise to differentiated and life-like 

structures, Kitano sought to demonstrate a specific advantage, in terms of coding 

efficiency, of a grammar-based system compared to a more direct encoding approach.  

Moreover, Kitano used L-systems in combination with selective (genetic algorithm) 

and adaptive (backpropagation) methods, that is, as part of a toolbox approach, and 

sought to show that this combination of methods could be usefully applied to difficult 

computational problems (he chose decoding, a classic problem in computer science).  

Kitano demonstrated that, compared to a direct encoding, a grammar-based generative 

model converged faster and scaled better as the size of the target network increased—

a clear win for evo-devo. He also showed that larger networks could be specified 



without growing the size of the genetic coding—a path to concise and scalable 

developmental codes for specifying useful artificial complex systems was beginning 

to emerge.  

 

Figure 5.  A plant-like structure generated by an L-system grammar for modeling biological 

development. From Lindenmayer (1968). 

Whilst grammars beautifully capture some of the power of a compact encoding to 

recursively express a developmental program it is not obvious how such a system can 

map onto the chemical and mechanical systems inside the cell.  Historically, two other 

approaches have provided important leads.   

The first begins with Turing’s (1952) paper on the chemical basis of morphogenesis 

(the development of body form).  Now seen as a foundational paper for understanding 

self-organizing systems in general (see Wilson, this volume), Turing was particularly 

concerned with the question of how the genes of a fertilized egg enable it to develop 

into a multi-cellular organism with asymmetric differentiated structure. Drawing on 

the idea that development can be guided by diffusing chemicals, that he termed 

morphogens, Turing provided a mathematical model of interacting chemical gradients, 

termed reaction-diffusion processes, that could create elegant patterns such as 

dappling, stripes and whorls. Models based on Turing’s idea are able to capture some 

of the more analog and non-local character of processes that happen inside the 

developing organism.  For instance, Lewis (2008) reviewed half a century of work 

building on Turing’s idea that has used mathematical models to understand the role 

chemical gradients in gene expression with examples from patterning in plant 

meristems to the dorsoventral organization of frog embryos. Fleischer and Barr 

(1994), in following a tool-box approach, combined reaction-diffusion modeling 



based on differential equations, with a grammar-based model of growth through cell-

division, and a mechanical model of cell-to-cell interactions, to create a 2-d model of 

a developing cell sheet.  The resulting system produced rich life-like patterns such as 

those illustrated in Figure 6 that have found applications in areas such as computer 

graphics. For a contemporary toolbox for synthetic development capable of defining 

multi-cellular ‘soft robots’ see Doursat and Sánchez (2014). 

 

Figure 6. Fleischer and Barr (1994) applied their developmental tool-box, inspired by 

Turing’s reaction-diffusion model and Lindenmayer’s L-systems to the challenge of 

generating computer graphics such as these spheres coated with animal-like scales (Image 

from Fleischer, 1995). 

 

A third starting point was the realization that chromosomal DNA, and the chemical 

processes that surround it, instantiate a rich dynamical system with compressed 

degrees of freedom and emergent order, and for which it might be possible to define a 

simpler analog with similar dynamical properties. Kauffman (1969a, 1969b) 

attempted just this using randomly-wired Boolean networks as models of regulatory 

gene systems. He showed that, given the right degree of connectivity between 

network nodes, a Boolean network of a size mapped to a specific animal genome, will 

enter dynamically-stable states that can predict the number of cell types in that 

organism, behavior cycles that can predict cell division times, and responses to noise 



that look like behavior switching.  That Boolean networks could be a useful 

abstraction of regulatory gene systems, was further demonstrated by Dellaert and 

Beer (1996) who embedded one within a model cell, and used the state of the network, 

as it varied over time, to regulate cycles of cell division and differentiation.  Using a 

genetic algorithm to configure the initial network, they were able to grow 

multicellular 2-d model organisms, with a mix of sensor and actuators cells, that could 

be evolved to follow curved lines. Dellaert and Beer also built a second model 

organism more closely modeled on the chemistry of genetic regulatory networks, 

however, configuring such a model to be evolvable proved to be less tractable than for 

the simpler Boolean system.  The status of Boolean networks as simplified models of 

cellular regulatory networks is discussed in Bornholdt (2008) who argues that 

Boolean network dynamics can provide useful insights into how cells ‘compute’.  

Giacomantonio and Goodhill (2010) have applied Boolean networks to the problem of 

understanding the genetic regulatory networks underling arealization in mammalian 

cerebral cortex, as shown in Figure 3, and involving all of the genetic transcription 

factors shown in Figure 4 plus one more (Fgf8).  Exhaustively simulating all possible 

network configurations of these five genes they found that only 0.1% of possible 

networks could reproduce experimentally observed expression patterns.  Moreover, 

the networks that worked tended to have certain kinds of within-network interactions 

and not others, thus giving clues as how these gene networks may operate during 

brain development.    

 

Reviewing several decades of work, Stanley and Miikkulainen (2003) proposed a 

taxonomy of model evo-devo, or to use their term artificial embryogeny, systems that 

identified five major dimensions of design choice: (1) cell fate—the mechanism(s) 

through which cell type is determined, (2) targeting—how cells connect with each 

other, (3) heterochrony—how the timing of development events is regulated, (4) 

canalization—how systems are made robust to variation in the genotype, and (5) 

complexification—how the genome (and the phenotype) become more complex over 

time.   Various further proposals have been made as to how these different design 

mechanisms can be abstracted from biological systems to lead to more compact and 

scaleable codings, (and hence to improvements in evolvability). For example, Garcia-

Bernardo and Eppstein (2015) have recently described an approach to 



complexification that involves pruning dense model networks to find minimal 

configurations that retain required functionality then using these more compact 

circuits as fixed building blocks within larger systems.  Other approaches have 

explored the utility of redundancy, via duplication, of network components (R. 

Calabretta, Nolfi, Parisi, & Wagner, 2000), still others have explored the benefits of 

modularity within evolved controlled systems (e.g. Bongard, 2002), and in the 

emergence of functionally distinct sub-networks in mammalian cortex (Raffaele 

Calabretta, 2007).    

 

Many model systems have including adaptive mechanisms (learning) as a key step in 

building a working model organism (e.g. Sendhoff & Kreutz, 1999).  Recognized as 

the ‘Baldwin effect’ (see Wilson, this volume), a learning capacity can make a system 

more evolvable by smoothing out the fitness landscape around peaks (if learning can 

reliably bring the model system to the fitness peak then it should be sufficient for 

evolution and development to place the system somewhere in the vicinity of the peak). 

Adding learning capacity is thus another means for reducing code-size for evolving 

systems whilst making good solutions easier to find (reducing search time).  Of 

course, this comes at the cost of the time needed for lifetime learning and a period of 

reduced fitness while the system adapts.  

 

Scaling-up 

An important goal of research in artificial evo-devo has been to show that model 

solutions can be scaled to cope with real-world complexity.  A useful stepping-stone 

for this has been the use of simulated 3-d worlds that include real-time physics 

engines adapted from applications in computer graphics and gaming.  A well-known 

example of this approach is Karl Sims (1994) ‘creatures’. Sims used genetic 

algorithms to select directed graphs (analogous to an L-system grammar) that specify 

solutions to the problem of being a digital creature built of collections of blocks, 

linked by powered flexible joints, and controlled by circuits. Sims evolved a neural 

network control system for his creatures alongside their physical morphology and 

designed fitness functions for model aquatic and terrestrial environments that selected 

for proficiency at tasks such as swimming speed, swimming after a light source, 

moving across a surface, jumping on a surface, and attempting to possess a square 



block in contest with another creature (a model evolutionary arms race) (see Figure 7). 

These experiments produced a fascinating array of creatures, some with familiar 

morphologies and behavior reminiscent of that of actual animals such as snakes, 

tadpoles, or crabs. Others, often equally effective at their tasks, accomplished them 

with less familiar or bizarre patterns of movement and body-form. The resulting 

panoply of digital organisms has been compared to the Cambrian explosion of early 

life.   

 

		 	
	

Figure	7.	A	simulated	evolutionary	arms	race.		Evolved	artificial	creatures	fight	for	possession	of	

a	block	in	one	of	the	experiments	performed	by	Karl	Sims	(1994).	

 

The success of Sims’ approach depended on the power of a generative encoding to 

build working model organisms out of parameterized simple elements (blocks), and 

the ability of genetic algorithms to exploit physics in a manner that simplified the 

challenge of control. Lipson and Pollack (2000) took this idea closer to physical 

reality by combining evolution in 3D simulation with additive manufacturing (3-d 

printing) of physical robots for the most successful designs. To perform evo-devo in 

an actual physical system is more difficult.  Some work in reconfigurable robots is 

taking up this challenge. For example, the Eyebot, shown in Figure 8, developed by 

Lichtensteiger and Eggenberger (1999) and modeled on the insect compound eye, 

applied genetic algorithms to tune the position of model ommatidia; Gomez, 

Lungarella, and Eggenberger (2004) extended this approach to a robot hand-eye 

system to explore parallel development of control systems and morphology (degrees 

of freedom) in a model of human hand-eye co-ordination.  Most recently Vujovic, 

Rosendo, Brodbeck, and Iida (In Press) have used additive manufacturing, together 



with automated assembly using a robot arm, to evolve and grow robots with variable 

morphology, testing their ability to locomote across a flat arena.  

 

 

Figure 8. Eyebot (right), a reconfigurable robot inspired by the insect compound eye (left), 

designed to apply artificial evolution to robot morphology. Figure from (Pfeifer & Gómez, 

2009). 

 

Future work 

We are reaching a point in time where the widespread availability of super-fast 

computers, combined with increased sharing of open source tool-boxes, could allow a 

much wider community to get going with artificial evo-devo.  On the other hand, a 

limiting factor is education—current approaches require mastery of a range of 

different tool-sets, and if mining of biological principles is to be successful, 

understanding of one of the most daunting scientific literatures—developmental 

biology—with its complicated vocabulary and detailed data-sets.  To overcome these 

problems an emphasis on multi-scale modeling must continue (see Verschure and 

Prescott—A Living Machines Approach to the Mind and Brain, this volume) 

alongside inter-disciplinary training opportunities for young scientists (see Mura and 

Prescott, this volume). 

 

The field of artificial evo-devo also has many territories still to explore.  At the most 

fundamental level the identification of the principles required for living systems—

such as being viable and self-sustaining—can be effectively explored through 

simulation (e.g. Agmon, Gates, Churavy, & Beer, 2016) in parallel with efforts to 

create new artificial living systems from organic chemistry (Mast et al, this volume).  



At the other end of the complexity spectrum, there is also a community seeking to 

apply this approach to the understanding human development and cognition (Parisi, 

1997) through the medium of embodied robotic modeling (e.g. Cangelosi, Schlesinger, 

& Smith, 2015; Metta and Cangelosi, this volume). 

 

One strategy to take these methods into the real-world is to try to circumvent some of 

the bottlenecks that have set limits to natural evolution such as the need to compress 

the information required to created new life-forms into a single cell, to limit 

inheritance to family lines, and to start each experiment afresh with a new organism 

built from that single cell. For instance, we can explore the retention of acquired 

adaptations, mimicking Lamarkian evolution (or memetic cultural evolution) (Le, 

Ong, Jin, & Sendhoff, 2009), perhaps directly copying useful adaptations from one 

experiment to the next (much as biologists now do with genetic tools). As already 

noted, experiments can run in simulated bodies and worlds, where reasonably realistic 

model systems can now be simulated faster than real-time. Model populations can be 

tuned to optimize evolvability, as theories of this improve, for instance by choosing 

additional selection criteria that promote phenotypic diversity (J. Lehman, Wilder, & 

Stanley, 2016).  For physical systems we can repeatedly adapt and re-use modifiable 

and modular robot hardware whilst taking advantage of auto-fabrication methods.  

Further, we can more effectively utilize our understanding of biological evolution to 

start with pre-structured models that are not created from scratch. Nature has 

identified many “forced moved and good tricks” (Dennett, 1995) for the construction 

of animal bodies and of complex control architectures and conserves these as species 

evolve (Prescott, 2007). We can identify design features that promote robustness and 

evolvability and either build these in from the beginning or promote them via 

selection criteria. 

 

To apply the lessons of evo-devo to technology will require a continued effort to 

identify the evo-devo principles that gave rise to biological life, to determine 

appropriate levels of abstraction away from the biological detail, and to define design 

methodologies that allow these principles be applied to artificial systems.  Current 

tool-box approaches show great promise, although, in the spirit of evo-devo, these 

systems are now getting sufficiently complex that they themselves could be 

candidates for automated redesign.   



 

Further Reading 

Several books have captured the excitement around the fusion of evolutionary and 

developmental approaches in modern biology—Raff (1996), Carroll (2012) and 

Kirschner and Gerhart (2006) are all good places to start.  The application of the evo-

devo approach to neurobiology is still relatively new with most of aspects of brain 

architecture still unexplored. Charvet et al. (2011) discuss some of the key 

developmental mechanisms in brain evo-devo and consider the balance between 

constancy and change in vertebrate brain evolution, Deacon (2010) and Katz (2011) 

discuss a number of neural generative, selective and adaptive mechanisms that 

operate to make behavior evolvable, whilst Krubitzer and Seelke (2012) explore the 

bases for phenotypic diversity in relation to the evolution of mammalian cortex.  

Much of the research that applies evo-devo methodologies to artifacts has emerged 

under the umbrella of “Artificial Life”, and a number of classic contributions in this 

field are provided in Langton (1995); Parisi (1996) also provides a conceptual 

overview and introduction to much of the foundational work, whilst Stanley and 

Miikkulainen (2003) provide a useful synthesis and taxonomy. Pfeifer and Bongard 

(2006) explore the application of some ideas from evo-devo in robots with particular 

emphasis on embodiment, whilst Haddow and Tyrrell (2011) provide a review and 

critical assessment of the application of evo-devo methodologies to electronic systems. 

Downing (2015) considers many of the topics introduced in this chapter with an 

overall emphasis on the emergent nature of biological intelligence, and with similar 

enthusiasm for re-purposing Nature’s evo-devo toolbox to create new kinds of Living 

Machines. 

 

 

  



References 

Agmon,	E.,	Gates,	A.	J.,	Churavy,	V.,	&	Beer,	R.	D.	(2016).	Exploring	the	Space	of	

Viable	Configurations	in	a	Model	of	Metabolism–Boundary	Co-

construction.	Artificial	Life,	22(2),	153-171.	doi:10.1162/ARTL_a_00196	

Bongard,	J.	C.	(2002).	Evolving	modular	genetic	regulatory	networks.	Paper	

presented	at	the	Proceedings	of	the	2002	congress	on	evolutionary	

computation.	

Bornholdt,	S.	(2008).	Boolean	network	models	of	cellular	regulation:	prospects	

and	limitations.	Journal	of	The	Royal	Society	Interface,	5(Suppl	1),	S85-S94.	

doi:10.1098/rsif.2008.0132.focus	

Calabretta,	R.	(2007).	Genetic	interference	reduces	the	evolvability	of	modular	

and	non-modular	visual	neural	networks.	Philosophical	Transactions	of	

the	Royal	Society	B:	BIological	Sciences,	362(1479),	403-410.	

doi:10.1098/rstb.2006.1967	

Calabretta,	R.,	Nolfi,	S.,	Parisi,	D.,	&	Wagner,	G.	P.	(2000).	Duplication	of	modules	

facilitates	the	evolution	of	functional	specialization.	Artif	Life,	6(1),	69-84.		

Cangelosi,	A.,	Schlesinger,	M.,	&	Smith,	L.	B.	(2015).	Developmental	robotics:	From	

babies	to	robots:	MIT	Press.	

Carroll,	S.	B.	(2012).	Endless	Forms	Most	Beautiful:	The	New	Science	of	Evo	Devo	

and	the	Making	of	the	Animal	Kingdom:	Quercus.	

Charvet,	C.	J.,	Striedter,	G.	F.,	&	Finlay,	B.	L.	(2011).	Evo-Devo	and	Brain	Scaling:	

Candidate	Developmental	Mechanisms	for	Variation	and	Constancy	in	

Vertebrate	Brain	Evolution.	Brain	Behavior	and	Evolution,	78(3),	248-257.		

Chenn,	A.,	&	Walsh,	C.	A.	(2002).	Regulation	of	Cerebral	Cortical	Size	by	Control	

of	Cell	Cycle	Exit	in	Neural	Precursors.	Science,	297(5580),	365-369.	

doi:10.1126/science.1074192	

Deacon,	T.	W.	(2010).	Colloquium	paper:	a	role	for	relaxed	selection	in	the	

evolution	of	the	language	capacity.	Proc	Natl	Acad	Sci	U	S	A,	107	Suppl	2,	

9000-9006.	doi:0914624107	[pii]	

10.1073/pnas.0914624107	

Dellaert,	F.,	&	Beer,	R.	D.	(1996).	A	developmental	model	for	the	evolution	of	

complete	autonomous	agents.	In	P.	Maes,	M.	J.	Mataric,	J.-A.	Meyer,	J.	

Pollack,	&	S.	W.	Wilson	(Eds.),	From	Animals	to	Animats	4:	Proceedings	of	

the	Fourth	International	Conference	on	Simulation	of	Adaptive	Behavior.	

Cambridge,	MA:	MIT	Press.	

Dennett,	D.	C.	(1995).	Darwin's	Dangerous	Idea.	London:	Penguin	Books.	

Doursat,	R.,	&	Sánchez,	C.	(2014).	Growing	fine-grained	multicellular	robots.	Soft	

Robotics,	1(2),	110-121.		

Downing,	K.	L.	(2015).	Intelligence	Emerging:	Adaptivity	and	Search	in	Evolving	

Neural	Systems:	MIT	Press.	

Erwin,	D.	H.,	&	Davidson,	E.	H.	(2002).	The	last	common	bilaterian	ancestor.	

Development,	129(13),	3021-3032.		

Fleischer,	K.	W.	(1995).	A	multiple-mechanism	developmental	model	for	defining	

self-organizing	geometric	structures.	(PhD	PhD),	CalTech.				

Fleischer,	K.	W.,	&	Barr,	A.	(1994).	A	Simulation	Testbed	for	the	Study	of	

Multicellular	Development:	the	Multiple	Mechanisms	of	Morphogenesis.	

In	C.	G.	Langton	(Ed.),	Artificial	Life	III:	Addison-Wesley.	



Fortuna,	M.	A.,	Bonachela,	J.	A.,	&	Levin,	S.	A.	(2011).	Evolution	of	a	modular	

software	network.	Proceedings	Of	The	National	Academy	Of	Sciences	Of	

The	United	States	Of	America,	108(50),	19985-19989.		

Fukuchi-Shimogori,	T.,	&	Grove,	E.	A.	(2001).	Neocortex	Patterning	by	the	

Secreted	Signaling	Molecule	FGF8.	Science,	294(5544),	1071-1074.	

doi:10.1126/science.1064252	

Gabor		Miklos,	G.	L.,	Campbell,	K.	S.	W.,	&	Kankel,	D.	R.	(1994).	The	rapid	

emergence	of	bio-electronic	novelty,	neuronal	architectures,	and	

organismal	performance.	In	R.	J.	Greenspan	(Ed.),	Flexibility	and	

Constraint	in	Behavioural	systems:	John	Wiley	and	Sons.	

Garcia-Bernardo,	J.,	&	Eppstein,	M.	J.	(2015).	Evolving	modular	genetic	regulatory	

networks	with	a	recursive,	top-down	approach.	Systems	and	Synthetic	

Biology,	9(4),	179-189.	doi:10.1007/s11693-015-9179-5	

Giacomantonio,	C.	E.,	&	Goodhill,	G.	J.	(2010).	A	Boolean	Model	of	the	Gene	

Regulatory	Network	Underlying	Mammalian	Cortical	Area	Development.	

PLOS	Computational	Biology,	6(9),	e1000936.	

doi:10.1371/journal.pcbi.1000936	

Goldschmidt,	R.	(1940).	The	Material	Basis	of	Evolution:	Yale	University	Press.	

Gomez,	G.,	Lungarella,	M.,	&	Eggenberger,	H.	(2004).	Simulating	development	in	a	

real	robot:	on	the	concurrent	increase	of	sensory,	motor,	and	neural	

complexity.	Proceedings	Fourth	International	Workshop	on	Epigenetic	

Robotics:	Modeling	Cognitive	Development	in	Robotic	Systems,	119-122.	

doi:citeulike-article-id:549800	

Haddow,	P.	C.,	&	Tyrrell,	A.	M.	(2011).	Challenges	of	evolvable	hardware:	past,	

present	and	the	path	to	a	promising	future.	Genetic	programming	and	

evolvable	machines,	12(3),	183-215.		

Katz,	P.	S.	(2011).	Neural	mechanisms	underlying	the	evolvability	of	behaviour.	

Philosophical	Transactions	of	the	Royal	Society	B-Biological	Sciences,	

366(1574),	2086-2099.		

Kauffman,	S.	A.	(1969a).	Homeostasis	and	Differentiation	in	Random	Genetic	

Control	Networks.	Nature,	224(5215),	177-178.		

Kauffman,	S.	A.	(1969b).	Metabolic	stability	and	epigenesis	in	randomly	

constructed	genetic	nets.	Journal	of	Theoretical	Biology,	22(3),	437-467.	

doi:http://dx.doi.org/10.1016/0022-5193(69)90015-0	

Kauffman,	S.	A.	(1990).	Requirements	for	Evolvability	in	Complex-Systems	-	

Orderly	Dynamics	and	Frozen	Components.	Physica	D,	42(1-3),	135-152.		

Kirschner,	M.	W.,	&	Gerhart,	J.	C.	(2006).	The	Plausibility	of	Life:	Resolving	

Darwin’s	Dilemma.	Yale:	Yale	University	Press.	

Kitano,	H.	(1990).	Designing	Neural	Networks	Using	Genetic	Algorithms	with	

Graph	Generation	System.	Complex	Systems,	4,	461-476.		

Krubitzer,	L.	A.,	&	Kaas,	J.	(2005).	The	evolution	of	the	neocortex	in	mammals:	

how	is	phenotypic	diversity	generated?	Current	Opinion	In	Neurobiology,	

15(4),	444-453.	doi:Doi	10.1016/J.Conb.2005.07.003	

Krubitzer,	L.	A.,	&	Seelke,	A.	M.	H.	(2012).	Cortical	evolution	in	mammals:	The	

bane	and	beauty	of	phenotypic	variability.	Proceedings	of	the	National	

Academy	of	Sciences,	109(Supplement	1),	10647-10654.	

doi:10.1073/pnas.1201891109	

Langton,	C.	G.	(1995).	Artificial	Life.	Reading,	MA:	Addison-Wesley.	



Le	Goues,	C.,	Forrest,	S.,	&	Weimer,	W.	(2010).	The	case	for	software	evolution.	In	

G.-C.	e.	a.	Roman	(Ed.),	FoSER	'10	Proceedings	of	the	FSE/SDP	workshop	on	

Future	of	software	engineering	research.	New	York,	NY,	USA:	ACM.	

Le,	M.	N.,	Ong,	Y.-S.,	Jin,	Y.,	&	Sendhoff,	B.	(2009).	Lamarckian	memetic	

algorithms:	local	optimum	and	connectivity	structure	analysis.	Memetic	

Computing,	1(3),	175.	doi:10.1007/s12293-009-0016-9	

Lehman,	J.,	Wilder,	B.,	&	Stanley,	K.	O.	(2016).	On	the	Critical	Role	of	Divergent	

Selection	in	Evolvability.	Frontiers	in	Robotics	and	AI,	3,	45.		

Lehman,	M.	M.,	&	Belady,	L.	A.	(1985).	Program	evolution:	processes	of	software	

change.	San	Diego,	CA:	Academic	Press	Professional,	Inc.	

Lewis,	J.	(2008).	From	Signals	to	Patterns:	Space,	Time,	and	Mathematics	in	

Developmental	Biology.	Science,	322(5900),	399-403.	

doi:10.1126/science.1166154	

Lichtensteiger,	L.,	&	Eggenberger,	P.	(1999).	Evolving	the	morphology	of	a	

compound	eye	on	a	robot.	Paper	presented	at	the	Advanced	Mobile	Robots,	

1999.(Eurobot'99)	1999	Third	European	Workshop	on.	

Lindenmayer,	A.	(1968).	Mathematical	models	for	cellular	interaction	in	

development:	Parts	I	and	II	(Vol.	18}).	

Lipson,	H.,	&	Pollack,	J.	B.	(2000).	Automatic	design	and	manufacture	of	robotic	

lifeforms.	Nature,	406(6799),	974-978.	

doi:http://www.nature.com/nature/journal/v406/n6799/suppinfo/406

974a0_S1.html	

Mallatt,	J.,	&	Chen,	J.	Y.	(2003).	Fossil	sister	group	of	craniates:	Predicted	and	

found.	Journal	Of	Morphology,	258(1),	1-31.		

Mannaert,	H.,	Verelst,	J.,	&	Ven,	K.	(2012).	Towards	evolvable	software	

architectures	based	on	systems	theoretic	stability.	Software-Practice	&	

Experience,	42(1),	89-116.		

Muller,	G.	B.	(2007).	Evo-devo:	extending	the	evolutionary	synthesis.	Nat	Rev	

Genet,	8(12),	943-949.		

Parisi,	D.	(1996).	Computational	models	of	developmental	mechanisms.	

Perceptual	and	cognitive	development,	373-412.		

Parisi,	D.	(1997).	Artificial	life	and	higher	level	cognition.	Brain	and	Cognition,	

34(1),	160-184.		

Pfeifer,	R.,	&	Bongard,	J.	C.	(2006).	How	the	Body	Shapes	the	Way	We	Think:	A	New	

View	of	Intelligence.	Cambridge,	MA:	The	MIT	Press.	

Pfeifer,	R.,	&	Gómez,	G.	(2009).	Morphological	Computation	–	Connecting	Brain,	

Body,	and	Environment.	In	B.	Sendhoff,	E.	Körner,	O.	Sporns,	H.	Ritter,	&	K.	

Doya	(Eds.),	Creating	Brain-Like	Intelligence:	From	Basic	Principles	to	

Complex	Intelligent	Systems	(pp.	66-83).	Berlin,	Heidelberg:	Springer	

Berlin	Heidelberg.	

Prescott,	T.	J.	(2007).	Forced	moves	or	good	tricks	in	design	space?	Landmarks	in	

the	evolution	of	neural	mechanisms	for	action	selection.	Adaptive	

Behavior,	15(1),	9-31.		

Prescott,	T.	J.,	Redgrave,	P.,	&	Gurney,	K.	N.	(1999).	Layered	control	architectures	

in	robots	and	vertebrates.	Adaptive	Behavior,	7(1),	99-127.		

Prud'homme,	B.,	Gompel,	N.,	&	Carroll,	S.	B.	(2007).	Emerging	principles	of	

regulatory	evolution.	Proceedings	of	the	National	Academy	of	Sciences,	

104(suppl	1),	8605-8612.	doi:10.1073/pnas.0700488104	



Raff,	R.	A.	(1996).	The	Shape	of	Life:	Genes,	Development	and	the	Evolution	of	

Animal	Form.	Chicago:	Chicago	University	Press.	

Rakic,	P.	(2009).	Evolution	of	the	neocortex:	Perspective	from	developmental	

biology.	Nature	reviews.	Neuroscience,	10(10),	724-735.	

doi:10.1038/nrn2719	

Sendhoff,	B.,	&	Kreutz,	M.	(1999).	A	model	for	the	dynamic	interaction	between	

evolution	and	learning.	Neural	Processing	Letters,	10(3),	181-193.		

Sims,	K.	(1994).	Evolving	virtual	creatures.	Paper	presented	at	the	Proceedings	of	

the	21st	annual	conference	on	Computer	graphics	and	interactive	

techniques.		

Stanley,	K.	O.,	&	Miikkulainen,	R.	(2003).	A	taxonomy	for	artificial	embryogeny.	

Artificial	Life,	9(2),	93-130.		

Swalla,	B.	J.	(2006).	Building	divergent	body	plans	with	similar	genetic	pathways.	

Heredity,	97(3),	235-243.	doi:Doi	10.1038/Sj.Hdy.6800872	

Torben-Nielsen,	B.,	Tuyls,	K.,	&	Postma,	E.	(2008).	EvOL-Neuron:	Neuronal	

morphology	generation.	Neurocomputing,	71(4–6),	963-972.	

doi:http://dx.doi.org/10.1016/j.neucom.2007.02.016	

Turing,	A.	M.	(1952).	The	Chemical	Basis	of	Morphogenesis.	Philosophical	

Transactions	of	the	Royal	Society	of	London.	Series	B,	Biological	Sciences,	

237(641),	37.		

Vujovic,	V.,	Rosendo,	A.,	Brodbeck,	L.,	&	Iida,	F.	(In	Press).	Evolutionary	

developmental	robotics:	Improving	morphology	and	control	of	physical	

robots.	Artificial	Life.		

Wagner,	G.	P.,	&	Altenberg,	L.	(1996).	Perspective	-	complex	adaptations	and	the	

evolution	of	evolvability.	Evolution,	50(3),	967-976.		

Whitacre,	J.,	&	Bender,	A.	(2010).	Degeneracy:	A	design	principle	for	achieving	

robustness	and	evolvability.	Journal	of	Theoretical	Biology,	263(1),	143-

153.		
 


