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Generative Localisation with Uncertainty Estimation

through Video-CT data for Bronchoscopic Biopsy

Cheng Zhao1∗, Mali Shen1, Li Sun2, Member, IEEE,

and Guang-Zhong Yang1,3, Fellow, IEEE

Abstract—Robot-assisted endobronchial intervention requires
accurate localisation based on both intra- and pre-operative
data. Most existing methods achieve this by registering 2D
videos with 3D CT models according to a defined similarity
metric with local features. Instead, we formulate the broncho-
scopic localisation as a learning-based global localisation using
deep neural networks. The proposed network consists of two
generative architectures and one auxiliary learning component.
The cycle generative architecture bridges the domain variance
between the real bronchoscopic videos and virtual views derived
from pre-operative CT data so that the proposed approach
can be trained through a large number of generated virtual
images but deployed through real images. The auxiliary learning
architecture leverages complementary relative pose regression
to constrain the search space, ensuring consistent global pose
predictions. Most importantly, the uncertainty of each global pose
is obtained through variational inference by sampling within the
learned underlying probability distribution. Detailed validation
results demonstrate the localisation accuracy with reasonable
uncertainty achieved and its potential clinical value.

Index Terms—Computer Vision for Medical Robotics, Medical
Robots and Systems, Localization, Visual Learning, Deep Learn-
ing in Robotics and Automation

I. MOTIVATION

LUNG cancer is now the leading cause of cancer-related

death world-wide, and an efficient early diagnosis is in

high-demand. A more favourable approach, the bronchoscopic

biopsy is an emerging technology for lung cancer diagnosis

staging. During the bronchoscopic biopsy, the physician needs

to estimate the intra-operative position and orientation of the

scope through the intra-operative 2D image from camera in

the coordinates of the preoperative 3D computed tomography

(CT) scan. The conventional bronchoscopic localisation ap-

proaches [1][2][3][4] are mainly based on video-CT registra-

tion or electromagnetic (EM) tracking. The localisation error

gradually accumulates when using a continuous video-CT
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Fig. 1: The pipeline of the proposed system.

registration approach whose current camera pose is initialised

on the basis of a prior guess given by previous image obser-

vation. Due to the incremental nature of video-CT registration

approaches, continuous tracking is likely to be suspended

when one registration fails due to paucity of airway features.

For the EM-based localisation, the EM field can be distorted by

any presence of surrounding ferromagnetic objects. Therefore,

special setup in the operating room is required for deploying

any EM-based localisation system for bronchoscopic exam-

ination. Moreover, the existing conventional bronchoscopic

localisation approaches only provide the position prediction

but without the corresponding uncertainty estimation.

Recently, the deep learning significantly improved the

visual-based localisation [5][6] and mapping [7][8] in the com-

puter vision and robotics community. Also, the deep learning-

based approaches [9][10][11][12] have achieved remarkable

performance in a variety of clinical applications. Inspired by

these researches, this letter investigates the ability of deep neu-

ral network (DNN) to advance the vision-based bronchoscopic

localisation, as shown in Figure 1. For the bronchoscopic

localisation, we formulate the conventional 2D/3D registration

problem as a data-driven learning problem. To be specific, we

resolve the bronchoscopic localisation as a continuous global

pose estimation problem through deep regression. Comparing

with conventional methods, it can significantly eliminate the

localisation drift caused by continuous video-CT registration.

Different from the conventional global localisation meth-

ods [13][14] that utilise the same sensor for both observation

and mapping, bronchoscopic localisation uses the camera to

obtain intra-operative observation while relies on preoperative

CT scans to generate the global 3D map. Therefore, there is

a domain variance between the current observation reading

i.e. RGB image and the global map i.e. CT scans. Moreover,

it is very challenging to generate a huge number of training

data with ground truth for the DNN training in the clinical
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application. In order to solve the above two problems, we

employed a domain transfer learning network to transfer both

RGB image and CT depth to the same virtual RGB domain.

In this case, the proposed deep network not only can solve the

domain variance between the different sensor readings but also

can be trained through the virtual RGB images while deployed

on the real RGB images.

Another challenge of bronchoscopic localisation is non-

unique image readings, and in other words, there are locations

with similar appearances in the endobronchial environment.

It is very challenging to eliminate the ambiguity through a

single image measurement. Therefore, leveraging the previous

motion information can provide a geometric consistency with

current measurement for pose estimation. Inspired by [14],

an auxiliary learning approach that jointly optimizes relative

and global pose is adopted to constrain the search space for

the global pose regression.

Lastly and most importantly, different from the general

global localisation problem, the uncertainty estimation has

critical importance for the bronchoscopic localisation when

being applied in the real clinical scenario. The uncertainty

estimation indicates the confidence level of the scope position

predicted by the neural network for the physician. The uncer-

tainty of the DNN model, i.e. epistemic uncertainty usually

can be attributed to distinguish two different sites with similar

appearances or to extrapolate unknown locations with insuf-

ficient training data for training a discriminative model. Our

intuition is to leverage variational inference to approximate

the localisation posteriori using a variation distribution in the

latent space. Benefiting from the sampling mechanism over

the latent variable distribution, the espistemic uncertainty of

the prediction can be naturally modelled.

In summarise, our novel contributions for learning-based

bronchoscopic localisation are: 1) as the domain variance is

bridged by the domain transfer learning, the proposed localisa-

tion network can be trained through virtual data but deployed

on the real data, 2) an auxiliary learning architecture can con-

strain the search space of global pose prediction to guarantee

consistent predictions, 3) the deep variational regression can

estimate the predictive uncertainties through sampling within

the learned underlying probability distribution. To the best of

our knowledge, this is the first learning-based localisation with

uncertainty estimation for the bronchoscopic localisation. A

video demo is available on the website1.

II. RELATED WORK

The most recent research effort in bronchoscopic localisa-

tion mainly depends on 2D/3D image registration or EM track-

ing. The visual bronchoscopic localisation methods can be

broadly grouped into two main categories including geometry-

based localisation and learning-based localisation.

A. Geometry-based localisation

The conventional approaches of visual bronchoscopic lo-

calisation reply on 2D/3D registration between the intra-

operative video frames and the pre-operative CT airway model.

1https://www.dropbox.com/home/RAL2020 demo?preview=RAL2020
demo.mp4

Various similarity measures based on image intensity [1], gra-

dient [15][2], depth [3] or airway lumen features [16][17][4]

have been investigated to improve the registration accuracy.

Similarity metrics based on image intensity [1] require

generating realistic virtual bronchoscopic views using CT

airway model. However, the illumination effects caused by

the moving light source and endoluminal surface texture are

difficult to recover in the rendered views. Since intensity-based

measures often suffer from the paucity of image features and

illumination artefacts, texture invariant gradient-based simi-

larity metrics [15][2] and a depth-based similarity metric [3]

are applied for comparing the structural similarity between

video images and CT virtual views. Furthermore, rather than

using the time consuming pixel-wise similarity measures, more

efficient registration approaches based on airway lumen feature

matching have been proposed in [17][16][4] to perform real-

time bronchoscopic localisation. In addition, a feature-based

visual SLAM [18] is also investigated for localisation in the

endobronchial environment. However, the visual odometry

approach is prone to insufficient visual features such as SIFT

or ORB for tracking.

B. Learning-based localisation

Recently, the deep learning-based approaches significantly

improve the depth estimation from monocular images. There-

fore, some research [9][10][11] employ the DNN to estimate

the depth, which further can be registered to the 3D CT

scan for localisation. However, generating large annotated

in vivo datasets for DNN training is difficult due to ethical

issues and the labour-intensive labelling process, so some

research [9][10][12] try to train the DNN through generated

synthetic images.

Marco et al. [9] take advantage of two CNNs to transfer

the real image to rendering image and then map the generated

rendering image to depth image. Faisal et al. [10] propose a

reverse domain adaptation to make the real image look like the

synthetic image through adversarial training. With the domain

adaptation process, a large number of synthetic images can

be used to train the depth estimation network. However, those

methods only focus on the depth estimation but the camera

localisation is not investigated.

Our previous work [11] proposes a context-aware depth

recovery approach through a CycleGan-like network trained

using unpaired videos and CT depth maps. The camera pose is

estimated through maximising the similarity between predicted

video depth and CT depth. However, the localisation part is

still dependent on the geometry registration rather than neural

network.

OffsetNet [12] employs DNN to regress the 6 DOF relative

pose between two adjacent real and rendering images, and

further accumulate them to generate the whole trajectory of

camera. The performance of proposed network is improved

by augmenting the training data with rendering images. The

domain gap between the real and rendering RGB images is

bridged by a generative adversarial network. However, the lo-

calisation error will accumulate gradually when estimating the

global pose from a sequence of predicted relative poses along
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a long trajectory. The localisation accuracy will be severely

jeopardised for the subsequent frames after a tracking failure

occurs due to such incremental pose estimation approach.

III. METHODOLOGY

A. Overview

The overview of the proposed neural network for broncho-

scopic localisation is shown in Figure 2. It consists of two

generative architectures and one auxiliary learning architec-

ture. The first generative architecture is a cycle generative

network for the domain transfer learning between the real and

virtual RGB image. The second generative architecture is a

variational inference for the uncertainty estimation of predicted

global pose. An auxiliary learning architecture is a dual-stream

network to jointly optimise the relative and global pose during

training.

B. Domain Transfer Learning

The pipeline of the proposed domain transfer between the

real RGB image and the CT depth is illustrated in Figure 3.
1) CT Depth and Virtual RGB Generation: Using the

3D active contour segmentation approach provided in ITK-

SNAP [19], the 3D bronchial tree is segmented from the pre-

operative chest CT scans. The 3D airway mesh is further

generated as a global map from this bronchial segmentation.

Given a specific 6 DOF camera pose, a corresponding depth

image can be generated by modelling a virtual camera with

the same intrinsic parameters as the real bronchoscope camera.

Finally, a virtual RGB image is rendered from the depth image

using VTK2. A large amount of virtual RGB images can be

generated for the localisation network training.
2) Cycle Generative Architecture: In order to make the

deep model trained on virtual images and deployable on real

images, a CycleGAN-like architecture is employed to bridge

the domain variance between the real RGB image x ∈ X and

the virtual RGB image y ∈ Y . LSGAN [20] loss LLSGAN is

adopted to achieve a stable adversarial training to generate

high-quality images. To empower the network to learn the

transformation of an individual input to the desired output

domain from unpaired data, the cycle consistency loss Lcyc

in the original CycleGAN [21] is adopted to reduce the

space of possible mapping functions, which makes the learned

mapping function cycle-consistent. Moreover, a consecutive

warping loss Lwarp in our previous work [11] is incorporated

to provide a spatial transformation constrain between two

adjacent frames of both real and virtual images. The overall

loss L of the domain transfer learning is formulated as,

L = LLSGAN ((GX→Y , DY , GY→X , DX)(xt, yt))

+Lcyc((GX→Y , GY→X)(xt, yt))

+Lwarp(GX→Y (xt−1, xt)),

(1)

where G is the generator and D is the discriminator. The train-

ing data of the cycle generative architecture are unpaired real

RGB video and rendering virtual RGB video. The generator

and discriminator have the same architectures as those in the

CycleGAN [21].

2https://vtk.org/doc/nightly/html/classvtkRenderWindow.html

C. Auxiliary Learning

Auxiliary learning which leverages the complementary rel-

ative pose regression to constrain the search space of global

pose regression, is employed to alleviate the non-unique image

reading problem. To be specific, the propose network is a dual-

stream architecture including a global pose regression stream

and a relative pose regression stream.

During training, the network can predict the global

pose Poseg = [pt, qt] and the relative pose Poser =
[pt,t−n, qt,t−n], n ∈ [1, 10] through a pair of images, i.e.

current image It and one image randomly selected from the

previous ten images It−n, n ∈ [1, 10]. In the deployment, the

network can predict the global pose Poseg = [pt, qt] with the

corresponding uncertainty ut only given the current image It.

The position p ∈ R
3 is described by a 3D position (x, y, z)

and the orientation q ∈ R
4 is described by a quaternion

(qw, qx, qy, qz).

1) Global Pose Learning: In order to estimate both trans-

lational and rotational pose components, the loss function of

global pose regression is defined as

Lp(It) =‖ pt − p̂t ‖2, (2)

Lq(It) = 1− |qt · q̂t|, (3)

LG(It) = Lp(It) + λ1Lq(It). (4)

p̂t and q̂t denote the predicted translational and rotational

global pose through current image It, pt and qt denote the

corresponding ground-truth translational and rotational global

pose. λ1 is the scale factor to balance the weights of translation

and orientation. ℓ2 loss is adopted for the position regression

and the inner product loss is applied for the orientation

regression to mitigate the gimbal problem.

2) Relative Pose Learning: The relative pose is regressed

using a pair of images directly, and it is also optimised by

the predicted global poses from the global pose network.

Integrating the predicted global poses for the relative pose

regression can provide a strong geometric consistency to the

network training. The loss function of relative pose regression

is defined as,

Lp(It, It−n) =‖ pt,t−n − p̂t,t−n ‖2

+ ‖ pt,t−n − (p̂t − p̂t−n) ‖2,
(5)

Lq(It, It−n) = 1− |qt,t−n · q̂t,t−n|

+1− |qt,t−n · (q̂−1

t−n · q̂t)|,
(6)

LR(It, It−n) = Lp(It, It−n) + λ2Lq(It, It−n), (7)

where n ∈ [1, 10]. p̂t,t−n and q̂t,t−n denote the predicted

translational and rotational relative pose between the current

image It and one image randomly selected from previous

ten images It−n. pt,t−n and qt,t−n denote the corresponding

ground-truth translational and rotational relative pose. p̂t, q̂t
and p̂t−n, q̂t−n denote the predicted global position and

orientation through the current image It and previous image

It−n. λ2 is also the scale factor to balance the weights of

translation and orientation.
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Fig. 2: The architecture of proposed neural network.

Fig. 3: The pipeline of proposed domain transfer between the

real RGB image and the CT depth.

Jointly performing the global and relative pose regression

enables collaborative learning between sub-networks during

backpropagation to minimise the loss function. The neural

network can learn spatially consistent features to constrain

the search space of global pose estimation, which can guar-

antee consistent global pose predictions. During the test, the

localisation network can be deployed jointly using both global

and relative pose sub-networks or individually using only

global relative pose sub-network, because there is no inter-

network dependency between the global and relative pose

sub-networks. In order to boost the runtime performance and

lighten the size of the trained model for real-time bron-

choscopic operation, only the global pose sub-network is

employed for the bronchoscopic localisation. Therefore, only

the current image is required instead of a pair of images during

the test. By only using the current image as input, the model

can also automatically rescue the ”kidnapped robot” (lost and

recover) for more robust localisation.

D. Uncertainty Modelling

The variational inference rooted in Bayesian inference is

employed to estimate the uncertainty of each global pose

prediction. It can model the probability distribution of the

observation as a variational distribution in the latent variable

space so that the prediction can be made by marginalising the

estimated posteriori.

Our objective is to predict the 6 DOF global pose pose =
[p, q] with uncertainty u given the observation I . This can be

achieved by introducing a normally distributed latent variables

ξ whose mean and variance are approximated by neural

network. Then the predictive probability can be obtained by

marginalising over ξ,

P (pose|I) =

∫
P (pose|ξ)P (ξ|I)dξ. (8)

However, this integral is analytically intractable. This can be

addressed by Monte-Carlo sampling with reparameterisation

trick i.e. variational inference. The problem is to minimise

the KL divergence between the true distribution P (ξ|I) and

variational distribution Q(ξ|I). By the Bayesian rule, the

objective function of variational inference is:

KL(Q(ξ|I)||P (ξ|I)) ≥ KL(Q(ξ|I)||P (ξ))−E[logP (pose|ξ)],
(9)

where the first term is the KL divergence between the

variational distribution and the prior distribution of ξ, and the

second term is the negative log likelihood of the prediction.

A simple normal distribution N (0, 1) is used as the prior

distribution of ξ, and the variational distribution Q(ξ|I) is also

a Gaussian distribution N (µ,Σ), where µ,Σ are obtained from

logits of the neural network (encoder). Hence, the first term

can be expressed as,

KL(Q(ξ|I)||P (ξ)) = KL(N (µ,Σ)||N (0, 1)). (10)

This KL divergence can be resolved by maximisation of

Evidence of Lower Bound (ELBO):
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1

2

∑

k

(Σ + µ2 − 1− logΣ)− E[logP (pose|ξ)]. (11)

Above, k is the dimension of the Gaussian distribution. In

practice, we use two KL distances pKL, qKL for the global

position p and orientation q regression separately in the loss

function,

LGKL
(It) = LpKL

(It) + λ3LqKL
(It). (12)

λ3 is also the scale factor to balance the weights of

translation and orientation. λ1, λ2 and λ3 in Equations 4, 7

and 12 are chosen according to the experience. Considering

the loss functions mentioned in Section III-C, the overall loss

function of localisation network is defined as,

L = LG(It) + LGKL
(It) + LR(It, It−n), (13)

where n ∈ [1, 10]. During inference, the predicted global

poses are obtained through sampling N times within the

variational distribution Q(ξ|I) of latent variables. The final

global pose pose with the corresponding uncertainty u can be

obtained through,

ξ1, ξ2, ..., ξN ∼ N (µ,Σ), (14)

pose =
1

N

N∑

i=1

decoder(ξi), (15)

u =
1

N

N∑

i=1

(decoder(ξi)− pose)2. (16)

E. Network Architecture

As shown in Figure 2, the sub-networks of global and

relative pose regression have similar architecture, including

a fast feature extraction, a convolution stack and two dense

connected stacks. The differences are that two variational units

are inserted within the two dense connected stacks respectively

in the sub-network of global pose regression.

During the bronchoscopic localisation, the real-time opera-

tion is required to enable closed-loop control. Therefore, the

MobileNet V2 [22] truncated before the last pooling layer

is employed for the feature extraction. Its architecture is

comprised of a sequence of inverted residual blocks. Mo-

bileNet V2, which is tailored for the mobile computational

resource, can retain a satisfying accuracy and meanwhile

significantly decrease the memory requirement and the number

of operations. The sub-networks of global and relative pose

regression share the same weights respect to the visual feature

extraction.

The convolution stack consists of a sequence of convolution

layers with 3 × 3 filter and the stride of 1. The numbers

of their channels are 512, 256 and 64. Two four-layer dense

connected stacks are used for position and orientation regres-

sion separately. The numbers of their hidden dimensions are

256, 128, 64 and 32. The sub-networks of global and relative

pose regression have the same architectures of convolution and

dense connected stacks but without sharing the weights.

Fig. 4: Examples of the generated virtual RGB images through

domain transfer learning. First row: real RGB images from

Bronchoscope, second row: generated virtual RGB images by

neural network, third row: CT depths from virtual camera,

fourth row: virtual RGB images rendered by VTK. The

network of domain transfer learning is trained by the unpaired

images.

IV. EXPERIMENTS

A. Sensors and Calibration

In this letter, an airway phantom is used to collect data

for the evaluation. The real RGB videos with dimensions of

307×313 and frame rate of 30 fps are collected using an

Ambu3 bronchoscope. High resolution CT scans with voxel

spacing of [0.4, 0.4, 0.5] mm is acquired for the airway

phantom by the Siemens SOMATOM Definition Edge4. The

trajectories of bronchoscopic camera are captured using a

6DOF NDI Aurora EM sensor5 as a reference for the compar-

ison. The precision of the EM sensor is around 0.80mm for

position and 0.70◦ for orientation, which depends on the tool

design and the presence of metal.

The transformation between the CT scan and EM tracker is

calibrated using a Matlab toolbox ABSOR6. 30 CT markers

are placed on the airway phantom to acquire their 3D positions

in those two coordinate systems. A 7mm×6mm checkerboard

with the size of 17.5mm×15mm is used for the calibration

between the EM tracker and camera. The Matlab Camera Cali-

bration toolbox7 is adopted to compute the intrinsic parameters

of the camera and the transformation matrix between the EM

tracker to the camera.

3https://www.ambu.com/products/flexible-endoscopes/bronchoscopes/
product/ambu-ascope-3-large

4https://www.siemens-healthineers.com/en-uk/computed-tomography/
single-source-ct/somatom-definition-edge

5https://www.ndigital.com/medical/products/aurora/
6https://uk.mathworks.com/matlabcentral/fileexchange/

26186-absolute-orientation-horn-s-method
7http://www.vision.caltech.edu/bouguetj/calib doc/
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Fig. 5: The predicted 3D trajectories of proposed method on sequence 1-5.

Method
Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Average

t(mm) r(◦) t(mm) r(◦) t(mm) r(◦) t(mm) r(◦) t(mm) r(◦) t(mm) r(◦)

Geometry Registration1[3] 9.67 16.74 5.72 12.34 3.23 19.81 3.99 8.10 5.25 14.98 5.57 14.39

Learning localisation2 1.83 12.28 2.07 10.68 1.27 9.25 1.23 10.15 1.79 11.10 1.64 10.69

Learning localisation3 1.65 10.92 1.32 9.87 0.83 9.01 0.97 8.50 1.06 10.23 1.17 9.71

t(mm) and r(◦) are median translational position offset and median rotational angle offset. 1 is tested using real images,
2 is trained using virtual images and tested using real images, 3 is both trained and tested using virtual images.

TABLE I: The performance comparison between the proposed method and geometry registration baseline on sequence 1-5.

TABLE II: The ablation analysis for the overall performance of

localisation. B: CNN feature extraction with dense regressor,

A: auxiliary learning, V: variational inference.

Architecture t(mm) r(◦)

B 3.27 11.83

B+A 1.77 10.96

B+A+V 1.49 10.81

t(mm) and r(◦) are median translational position offset and median rotational angle offset.

The network is trained using virtual images and tested using real images.

B. Dataset Generation and Network Training

Using the virtual camera as mentioned in the Section III-B1,

500 video sequences of CT depths with different lengths,

totally 43743 frames, are captured from the 3D CT model.

Then those CT depth images are transformed to the virtual

RGB images by VTK rendering. 150 videos of real RGB

images with different lengths, totally 14259 frames, are cap-

tured by the bronchoscope from the phantom. Those unpaired

real-virtual RGB videos are employed to train the network

of domain transfer learning. Both the geometric augmentation

(translation, rotation, scaling) and image augmentation (colour,

brightness, gamma) are adopted for data augmentation.

The network of domain transfer learning is trained for 200

epochs with a batch size of 1. The input images are cropped

to 256×256. The linear learning policy is adopted during

training. The initial learning rate is 2e-4 and the momentum

is fixed to 0.5. The size of the image buffer is set to 50, which

stores previously generated images. Some selected generated

virtual RGB images are shown in Figure 4. It can be seen that

the network of domain transfer learning achieves the satisfying

results for the style transfer between the real and virtual RGB

images.

For the data generation for training the localisation network,

45 long videos of CT depths with the virtual 6 DOF ground

truth trajectories are generated by the virtual camera through

the 3D CT model. Similarly, those CT depth images are also

converted to virtual RGB images by VTK rendering. In order

to simulate the real trajectories generated by the physician’s

operation, noises are added to the virtual trajectories. For the

test data of the localisation network, 5 long videos of real RGB

images are captured using the bronchoscope from the phantom.

The corresponding 6 DOF trajectories (after calibration) are

obtained by EM tracker as a reference for the evaluation.

The network of localisation is trained for 900 epochs with

a batch size of 64. The input images are cropped to 256×256.

The step learning policy is employed and the learning rate de-
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Fig. 6: The statistic results of the positional offsets against positional uncertainties (left) and the angular offsets against rotational

uncertainties (right).

cay is fixed to 0.95. The initial learning rate is 1e-3 and the mo-

mentum is fixed to 0.9. The pre-trained truncated MobileNet

V2 model is integrated into the localisation network for the

feature extraction. In order to increase the training robustness,

the gradient clipping is adopted for training. During the test,

the number of sampling times from the latent distribution is set

to 10000. The evaluation and analysis of localisation network

are provided in the following two subsections.

All the networks are implemented through Pytorch8, which

are trained on an NVIDIA Titan GPU accelerated by CUDA

and CUDNN. Using the captured training data, it takes around

24 hours and 6 hours in training the cycle generative model

and localisation model, respectively. The whole system is

implemented under ROS9 framework using C++ and Python

mixed coding. The runtime performance can be boosted to

11-13Hz for the whole system.

C. localisation Evaluation

Because we formulate a bronchoscopic localisation as a

global localisation problem, the standard evaluation metrics for

global localisation i.e. the positional error and angular error

in PoseNet [13] are employed to evaluate the localisation per-

formance. Specifically, the median error of ℓ2(p− p̂) distance

offset between the ground truth position and predicted position

is used for the translational evaluation. And the median error

of 2 arccos(q · q̂) angular offset between the ground truth

quaternion and predicted quaternion is used for the rotational

evaluation.

The predicted 3D trajectories for the five testing sequences

are plotted in Figure 5. The quantitative results of the locali-

sation accuracy are shown in Table I for each testing sequence

and Table II for the ablation analysis. It can be observed

from Figure 5, the trajectories predicted by the localisation

network closely follow the ground-truth trajectories calibrated

from the readings of EM tracker for each sequence. The

average positional error and angular error of sequences 1-5

are 1.64mm and 10.69◦ respectively. The overall positional

8https://pytorch.org/
9https://www.ros.org/

error and angular error of all the sequences are 1.49mm and

10.81◦ respectively. According to Table I, the performance

of the proposed localisation network is superior to the con-

ventional geometry registration method which suffers from

sudden tracking failures. Taking Sequence 1 as an example,

the tracking loss of one frame can result in an extremely

large offset for the localisation of the subsequent frames. In

contrast, our method can significantly alleviate this problem

because we solve it as a global localisation problem instead

of an incremental registration problem. We also provide the

results of localisation network which is tested on the virtual

RGB images instead of the real RGB images. Those virtual

RGB images are generated by making the virtual camera move

along the calibrated EM trajectories in the 3D CT model.

The localisation network achieves inferior performance using

the real RGB images than the virtual RGB images due to

the error from the domain transferring. Furthermore, it can

be observed from Table II that the auxiliary learning makes

the main contribution to the performance improvement. The

variational inference also slightly improves the performance

as well as estimates the uncertainty of each prediction.

D. Uncertainty Evaluation

How to evaluate the uncertainty predicted by the localisation

network remains an open problem. Intuitively, we can propose

an assumption that the uncertainty is proportional to the

localisation error, i.e. the predicted global pose with higher

uncertainty should have a larger localisation discrepancy, and

vice versa.

To verify this hypothesis, we first calculate the ℓ2 norm

of the position (3 dimensions) uncertainty and orientation (4

dimensions) uncertainty. The overall mean uncertainties of

position and orientation are 2.388 and 0.002 respectively. We

further divide those translational and rotational uncertainties

into different intervals separately. Lastly, the mean (not me-

dian) positional and angular errors of the predictions whose

uncertainties lie within the corresponding intervals are calcu-

lated. We also provide the percentage of the predictions in

each interval. The statistical results of the positional offsets

against positional uncertainties and the angular offsets against
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rotational uncertainties are shown in Figure 6. It can be

observed that as the positional/angular uncertainties increase,

the positional/angular geometry errors also generally increase

in each sequence, which can verify the proposed assumption

at the beginning. Comparing with the existing research, the

proposed method is the first work to provide the predictive

uncertainty of each estimation during the bronchoscopic lo-

calisation.

V. CONCLUSION

In this letter, we present a novel generative localisation

approach with uncertainty estimation using only video and

CT data for bronchoscopic biopsy. Comparing with the con-

ventional 2D/3D geometry registration methods, we formulate

the bronchoscopic localisation task as a global localisation

problem solved by a data-driven deep neural network. More

importantly, the proposed method can not only predict the

global pose, but also estimate the corresponding uncertainty

of each prediction via variational pose generation. Finally,

the experiment results verify the resultant improvement of

the localisation accuracy and the rationality of uncertainty

estimation.

The future work will investigate the proposed method in the

real clinical workflow. The basic procedure can be summarised

into three steps. Firstly, a patient-specific airway model is

reconstructed from the pre-operative CT scans. Secondly, a

large number of virtual data are captured from the CT airway

model through the virtual camera for training the neural

networks. Finally, the trained model will be deployed to

localise the camera in patient’s lung with the corresponding

uncertainty during the bronchoscopy.
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