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Abstract

Recent numerical simulations have demonstrated that transverse coronal loop oscillations are susceptible to the
Kelvin–Helmholtz (KH) instability due to the counterstreaming motions at the loop boundary. We present the first
analytical model of this phenomenon. The region at the loop boundary where the shearing motions are greatest is
treated as a straight interface separating time-periodic counterstreaming flows. In order to consider a twisted tube,
the magnetic field at one side of the interface is inclined. We show that the evolution of the displacement at the
interface is governed by Mathieu’s equation, and we use this equation to study the stability of the interface. We
prove that the interface is always unstable and that, under certain conditions, the magnetic shear may reduce the
instability growth rate. The result, that the magnetic shear cannot stabilize the interface, explains the numerically
found fact that the magnetic twist does not prevent the onset of the KH instability at the boundary of an oscillating
magnetic tube. We also introduce the notion of the loop σ-stability. We say that a transversally oscillating loop is
σ-stable if the KH instability growth time is larger than the damping time of the kink oscillation. We show that
even relatively weakly twisted loops are σ-stable.

Key words: instabilities – magnetohydrodynamics (MHD) – plasmas – Sun: corona – Sun: magnetic fields – Sun:
oscillations

1. Introduction

Transverse oscillations of coronal loops have been a subject of
extensive study since their original observation on 1998 July 14
by the Transition Region and Coronal Explorer (Aschwanden
et al. 1999; Nakariakov et al. 1999). For a review of the theory of
these oscillations see Ruderman & Erdélyi (2009).

In particular, the damping mechanism of transverse loop
oscillations has received much attention (e.g., Goossens
et al. 2002; Ruderman & Roberts 2002; Van Doorsselaere
et al. 2004; Dymova & Ruderman 2006; Williamson & Erdélyi
2014), with the caveat that many studies have relied on the
assumption that the oscillations are in the linear regime. The
nonlinear damping of transverse coronal loop oscillations has
also been studied, both analytically (Ruderman et al. 2010;
Ruderman & Goossens 2014; Ruderman 2017) and numeri-
cally (e.g., Terradas & Ofman 2004; Magyar & Van Door-
sselaere 2016a). The numerical studies revealed important
effects, such as that of the ponderomotive force, and the
presence of the Kelvin–Helmholtz instability (KHI) at the loop
boundaries. More recently, Goddard & Nakariakov (2016)
carried out a statistical study of observations of the damping of
coronal loop kink oscillations.

Terradas et al. (2008) suggested that a kink oscillation may
render a flux tube unstable owing to the shear motions at the
boundaries. The authors found that, for a smooth transition layer,
the instability developed rapidly where the difference between the
internal and external flow amplitudes was the greatest. However,
increasing the thickness of the transitional layer significantly
decreased the growth rate of the instability. It is worth noting that
the KHI in smooth transition layers via other mechanisms (e.g.,
phase mixing, resonant absorption) had also received attention
previously (see, e.g., Heyvaerts & Priest 1983; Ofman et al. 1994;

Poedts et al. 1997). For a recent review on modeling the KHI see,
e.g., Zhelyazkov (2015).
The topic of the transverse-wave-induced Kelvin–Helmholtz

(TWIKH) instability was subsequently investigated by Antolin
et al. (2014), who suggested that this phenomenon may be
responsible for the fine strand-like structure observed in some
coronal loops. In their numerical modeling these authors found
that this structure is formed near the loop boundary even when
the oscillation amplitude is very small, about 3 km s−1. This
result implies that the TWIKH instability develops even for
very small oscillation amplitudes. The TWIKH instability has
since been studied by Antolin et al. (2016), Magyar & Van
Doorsselaere (2016a, 2016b), Antolin et al. (2017), Karampelas
et al. (2017), Howson et al. (2017a, 2017b), and Karampelas &
Van Doorsselaere (2018), who considered various aspects of
the instability onset, growth rate, and observational properties.
The configuration of the equilibrium magnetic field is an

important aspect of TWIKH instabilities. It was suggested by
Terradas et al. (2008) that a twisted magnetic field may
suppress the instability. The effect of twist on the stability of
transverse loop transverse oscillations was studied numerically
by Howson et al. (2017b), who investigated the energetics of
the instability of a magnetically twisted coronal loop and found
that its evolution is affected by the strength of the azimuthal
component of the magnetic field. The authors also found that,
when magnetic twist is present, the KHI leads to greater ohmic
dissipation as a result of the production of larger currents.
Furthermore, Terradas et al. (2018) studied the evolution of the
instability and found that the magnetic twist increases the
instability growth time.
Numerical simulations have provided some insight into the

development of the KHI but have not thoroughly established
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what conditions are needed for its onset. In this paper, we find
these requirements analytically by modeling the boundary of
the flux tube where the shearing is greatest as a single interface
separating regions of different densities and magnetic fields and
performing a local stability analysis. We emulate the effect of
the transverse oscillation by subjecting each region to
temporally periodic counterstreaming flows.

Although this work is the first local analysis of the TWIKH
instability in the presence of magnetic twist, the KHI in the
presence of transverse shear and twisted magnetic fields has
previously been studied by Soler et al. (2010) and Zaqarashvili
et al. (2015). The aforementioned studies, however, consider
steady axisymmetric flows in a cylindrical geometry, while this
paper is concerned with the analysis of temporally periodic
flows in a Cartesian geometry.

The paper is organized as follows: In Section 2, we introduce
a Cartesian model of the boundary of a twisted flux tube and
derive the governing equation for the displacement. The
stability of the flow is analyzed in Section 3, followed by
applications to transverse coronal loop oscillations in Section 4.
Section 5 contains the summary of the obtained results and our
conclusions.

2. The Governing Equation

It is well established that a magnetic flux tube undergoing
transverse oscillation is prone to the KHI owing to the shearing
motions at the boundaries (Terradas et al. 2008). Considering
only the fundamental mode of oscillation, we wish to obtain the
TWIKH instability criterion. We start by considering a
magnetically twisted flux tube of length L. For mathematical
simplicity, we consider the boundary of the tube to be a
tangential interface, meaning that there is no smooth boundary
layer connecting the interior with the exterior. The amplitude of
a fundamental transverse oscillation is greatest at the half-
length of the tube, L 2, where the shearing is the greatest. We
consider a plane Π orthogonal to the tube axis and crossing it at

its half-length. The intersection of this plane with the tube

boundary is a circle. We also assume that the kink oscillation of

the magnetic tube is linearly polarized and introduce the angle

j in the plane Π, measured from the direction of the oscillation

velocity in the counterclockwise direction. Then, the shear

velocity at the tube boundary takes its maximum at j=π/2
and j=3π/2, i.e., at the two points where it is parallel to the

oscillation velocity (see Figure 1).
In order to study the effect of the shearing motions around this

region, we model it as a single interface separating temporally

periodic counterstreaming flows. We introduce the Cartesian

coordinate system x, y, z, with the x-axis parallel

to the direction of the polarization of the kink oscillation and

the z-axis parallel to the tube axis. The interior and exterior

of the tube are represented by the regions y 0< and y 0> ,

respectively. The equilibrium quantities in these regions are

denoted by the subscripts i and e, respectively.
We assume that the equilibrium magnetic field is in the

xz-plane. Since we wish to obtain the stability criteria for both

straight and twisted tubes, we assume that the equilibrium

magnetic field is parallel to the z-axis in the region y 0> and

makes an angle θ with respect to the z-axis in the region y 0< .

Here θ corresponds to the degree of twist (Figure 2(a)), which

should be small since highly twisted magnetic flux tubes are

prone to other types of instabilities, such as the kink instability,

with which we are not concerned in the present study (e.g.,

Kruskal et al. 1958; Shafranov 1958; Hood & Priest 1979). In

the case of a nontwisted flux tube, θ=0.
In the present model, the background flows are similar to the

velocity field at the boundary of a cylindrical flux tube

undergoing a transverse oscillation. In transverse oscillations of

coronal loops, the displacement of the flux tube boundary is

almost perpendicular to the background magnetic field in the

low-beta plasma approximation (see, e.g., Ruderman 2007);

therefore, we consider unperturbed magnetic fields and flow

Figure 1. Sketch of a straight magnetic flux tube with stationary footpoints undergoing transverse (kink) motion. The right panel represents the velocity field in a cross
section of the tube, at half the length of the tube. The greatest shearing occurs between the vectors colored in red.
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velocities of the form
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as illustrated in Figure 2(b). Here the period of the oscillatory

flow, 2p W, corresponds to the period of oscillation of the

flux tube.
The kink oscillation of a coronal loop creates not only the

oscillating velocity but also the oscillating magnetic field
orthogonal to the background field B. However, in our model
we carry out a local analysis of the stability of the region near
the middle of the loop where the amplitude of oscillating
velocity takes its maximum. Since the oscillating magnetic field
has a node at the middle of the loop, that is, its amplitude is
zero there, we do not take this oscillating magnetic field into
account in our model.

It is worth noting that the problem of oscillatory counter-
streaming flows has been previously studied by, e.g., Kelly
(1965) and Roberts (1973). Our model is an improvement since
we do not only consider parallel flows. Furthermore, our model
differs from that of Roberts (1973) since we consider magnetic
fields perpendicular to the flows on each side of the interface.

We study the dynamics of the outlined problem in the
framework of linear ideal MHD. In the thin flux tube
approximation, typically valid for transverse loop oscillations,
the effects of compressibility are not significant. As such, we may
use the approximation of incompressible plasma, which greatly
simplifies the analysis. Thus, the set of governing equations is
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where v, b, and pT are the perturbations of the velocity,

magnetic field, and total pressure (magnetic plus plasma),

respectively, ρi,e are the background internal and external

densities, and μ0 is the magnetic permeability of free space.

D Dt is the material derivative defined by
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Equation (1) must be supplemented with the conditions that pT
and yx are continuous at y=0.
We now introduce the Lagrangian displacement x t,x x= ( ),

which is related to the velocity perturbation by v x t, =( )
D Dtx . Combining the momentum and induction equations
and substituting the expression for v in terms of the
displacement yields

B
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Taking the divergence of this equation and using 0x =· ,

we obtain Laplace’s equation for the total pressure

p 0. 3T
2 = ( )

We Fourier-decompose all variables and write them in the form

f f i k x k zexp x z= +ˆ [ ( )]. We immediately obtain that the

solution to Equation (3) satisfying the condition that it is

continuous at y=0 is

p y p
e y

e y

, 0,

, 0,
4T

ky

ky0=
<
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⎧
⎨
⎩
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where p0 is an arbitrary constant, k k k, 0,x z= ( ) is the

wavevector, and k k kx z
2 2= + .

Figure 2. (a) Sketch of a twisted magnetic tube; (b) diagram of the flows on each side of the boundary during transverse oscillation.
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The Fourier-decomposed y-component of Equation (2) reads
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for y 0> . Here v BAi e i e i e,
2

,
2

0 ,m r= are the Alfvén speeds on

either side of the interface. We substitute Equation (4) into

Equations (5) and (6), take y=0, and eliminate the constant p0
from the obtained equations. As a result, we arrive at the

equation for the displacement of the boundary,
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where yx̂ is calculated at y=0.
It is now convenient to introduce the magnitude of the

wavevector, k, and the angle between the wavevector and the
x-axis, f. We may, then, write

k k k kcos , sin . 8x zf f= = ( )

Now, making the variable substitution t g t tyx h=ˆ ( ) ( ) ( ), where
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we reduce Equation (7) to
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tt = W , r e ir r= is the density ratio, M U vA Ai= is the

Alfvén Mach number, v v vA Ae Ai=¯ is the ratio of Alfvén

speeds, and kvAik = W is the dimensionless wavenumber.
It is important to note that, since g t 1=∣ ( )∣ , the variable

substitution does not affect the stability analysis. Hence,
unstable perturbations of the boundary correspond to unstable
solutions of Equation (10). Equation (10) is known as
Mathieu’s equation (McLachlan 1946). It is interesting that
Mathieu’s equation also arises in quite a different kind of MHD

problem. Namely, it describes the amplification of MHD waves
by periodic external forcing (e.g., Zaqarashvili 2000;
Zaqarashvili et al. 2002, 2005) and the Rayleigh–Taylor
instability of a magnetic interface in the presence of oscillating
gravity (Ruderman 2018).

3. Investigation of Stability

In this section, we use Equation (10) to study the stability of
the tangential discontinuity with an oscillating shear velocity.
For comparison, we first briefly outline the well-known results
related to the stability of a tangential discontinuity separating
steady flows. To the best of our knowledge, these results were
first obtained by Syrovatskii (1957; see also Chandrasekhar
1961).

3.1. Stability of Steady Flows

Before analyzing the fully time-dependent governing
Equation (10), we return to Equation (7) and set Ω=0, in
order to perform the analysis of the configuration in the
presence of steady flows. Since the coefficients in Equation (7)
are now independent of t, we can look for the solution to this
equation proportional to e i tw- and obtain the dispersion
equation

Uk

U k

v k v k
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where ω is the angular frequency of the perturbation.

We note that if the roots to Equation (12) are real, then tyx̂ ( )

is oscillatory and the system is neutrally stable. However, if
complex conjugate roots exist, one of the roots has a positive
imaginary part, meaning that e i t  ¥w-∣ ∣ as t  ¥, and the
equilibrium configuration is unstable. Equation (12) has
complex roots when its discriminant is negative, which occurs
when M MA A0> , where

M
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. 13A
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2
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The right-hand side of Equation (13) is singular for θ =

(2n+1)π and θ + 2f=(2n+1)π, where n is any integer
number. The interface is stable for any value of U, for θ and f
satisfying either of the singularity conditions. We can see that
for θ=(2n+1)π, the velocity has the same magnitude and
direction on both sides of the interface, meaning that there is no
velocity jump across the interface. Hence, the equilibrium is
static in the reference frame moving with the speed U in the
positive x-direction and, consequently, the presence of flow
does not cause instability. In the second case, the interface is
stable with respect to perturbations having wavevectors defined

by n
1

2

1

2
f q p= - + +( ) . The projection of the velocity on

these wavevectors is the same on both sides of the interface,
that is, there is no jump in the velocity projection across the
interface. Hence, these perturbations are stable for any value
of U.
The Alfvén Mach number, MA0, takes its minimum value

with respect to f at f=f0, where
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Substituting Equation (14) into Equation (13), we obtain
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v r
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It follows that the system is stable for any value of MA below

Mmin A0{ }, while there are always unstable perturbations when

M MminA A0> { }. Equation (15) suggests that there are no

stable perturbations for θ=0, and it is in agreement with

Syrovatskii (1957).
We note that the instability growth rate is proportional to k,

which implies that the growth rate tends to infinity as k  ¥.
Since the growth rate is unbounded, we say that the initial
value problem describing the evolution of the surface of
discontinuity is ill-posed. This behavior is further studied in
Section 3.3.

3.2. Stability of Oscillating Flows

We now use Equation (10) to study the stability for arbitrary
values of the equilibrium quantities. Floquet’s theorem states
that Equation (10) has a solution of the form

e P a q, , ,h t t= mt
+( ) ( )

where μ=μ(a, q) is the characteristic exponent and P a q, , t( )

is a periodic function in τ, with period π (see, e.g.,

McLachlan 1946; Abramowitz & Stegun 1965). Since

Equation (10) is invariant with respect to the substitution
t t-  , it follows that e P a q, ,h t t= -mt

-
-( ) ( ) is also a

solution to this equation. Then, the general solution to

Equation (10) is the linear combination of h t+( ) and h t-( )

unless iμ is an integer number.
The parameter μ determines the nature of solutions to

Mathieu’s equation. We may always assume that 0m >( )R ,
unless μ is purely imaginary, whereR indicates the real part of
a quantity. Since we may write

e t i texp exp ,m m= W Wmt ( ( ) ) ( ( ) )R I

where I indicates the imaginary part of a quantity, it follows that

purely imaginary values of μ correspond to neutrally stable

solutions, while real and complex values correspond to unstable

solutions. Hence, 0m >( )R corresponds to an unstable perturba-

tion. Unfortunately, μ cannot be easily computed analytically, and

for this reason, we perform a numerical analysis to gain further

insight.
Following McLachlan (1946), we plot the stability diagram

of Equation (10) in the qa-plane (Figure 3(a)). In accordance

with the definition of q in Equation (11), we only consider

q>0. The white and hatched regions correspond to purely

imaginary and real/complex values of μ, respectively, and thus

to stable and unstable solutions to Equation (10). The contours

bounding the regions are defined by the condition that iμ is an

integer number, so that Equation (10) has either π- or 2π-
periodic solutions when the point (q, a) is on one of these

contours. These contours are called the characteristic curves

and are defined by the equations a=aj(q) and a=bj(q).
These functions satisfy the inequalities a b aj j j1 1< <+ + ,

where j 0, 1, 2,= ¼ The curves aj(q) and bj(q) are shown

by solid and dotted lines, respectively, in Figure 3(a). The

asymptotic behavior of aj(q) and b qj 1+ ( ) for large q is given by

a q b q q2j j 1~ ~ -+( ) ( ) (Abramowitz & Stegun 1965).
Complementary to the above, Figure 3(b) shows the values

of the characteristic exponent μ. Purely imaginary solutions are

plotted in white and are separated from real/complex solutions

by the characteristic curves, while the real part of μ is plotted in

contours in the unstable regions.
The coefficients in Equation (10) depend on six dimension-

less parameters. Four of these parameters, r, θ, MA, and vĀ, are

only dependent on the equilibrium quantities, while the other

two, κ, and f, are related to particular perturbations and are

thus arbitrary. Hence, we must study the behavior of solutions

to Equation (10) for all possible values of these two parameters.

It is also straightforward to see that q and a are invariant with

respect to the substitution f p f+  . This enables us to only

consider values of f in the interval [−π/2, π/2].

Figure 3. Stability diagram for solutions to Mathieu’s equation (left panel). Solutions are stable/unstable for (q, a) in the white/hatched region. The curves a=aj(q)
and a=bj(q) are shown by solid and dotted lines, respectively. The blue, green, and red straight lines correspond to K≈4, K≈−0.2, and K=−2, respectively. In
the right panel, the real part of μ is plotted for q>0.
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We now wish to study the behavior of solutions to
Equation (10) for arbitrary κ. We begin by noting that, when
f is fixed and κ varies from 0 to¥, we obtain a straight line in
the qa-plane. Using Equations (11), the equation of this line
may be written as

a Kq K
M

M
,

4
2. 16A

A

0
2

2
= = - ( )

From Equations (13) and (16), we note that K 2> - for any

0q ¹ and any values of the other parameters. Considering the

asymptotic behaviors of the characteristic curves, it follows that

the line a=Kq always intersects all curves a=aj(q) and

a b qj 1= + ( ), for j 0, 1,= ¼ Hence, there always exist some

values of κ and f for which perturbations are unstable,

regardless of the values of the other parameters. This implies

that the tangential discontinuity separating oscillating flows is

unstable for any value of MA, which is qualitatively different

from the discontinuity separating steady flows considered in

Section 3.1. In the case of no magnetic shearing, when θ=0,
perturbations with f=0 and any κ are unstable since the line

a=Kq will always be under the curve a q0 ( ). This is illustrated

by the red line in Figure 3(a). The straight lines in Figure 3(a)

are further discussed in Section 4.1.

3.3. The Initial Value Problem

We now consider the initial value problem for Equation (10).
We fix f and study how the properties of the initial value
problem depend on MA. First, we consider M MA A0 f> ( ),
which implies that K 2< owing to Equation (16), and we
prove that, in this case, the instability growth rate is
unbounded. Let us introduce the scaled variables a a2k= -˜ ,
q q2k= -˜ , and t kt=˜ and rewrite Equation (10) as

d

d
a q2 cos 2 0. 17

2

2

h
t

t k h+ - =
˜

[ ˜ ˜ ( ˜ )] ( )

It is important to note that ã and q̃ are independent of κ and

a Kq=˜ ˜. We consider this equation on the interval 0, 0t tÎ˜ [ ˜ ],

where harcsin0t k=˜ and h K1 2
1

2
= - . Since K 2> - , it

follows that

q a h q2 cos 2 4 182t k -˜ ( ˜ ) ˜ ˜ ( )

for 0, 0t tÎ˜ [ ˜ ].
We now consider equation

d

d
h q4 0, 19

2

2
2h

t
h- =

˜
˜ ( )

and a solution to this equation

hq q Kexp 2 exp 1 2 , 201 0
1 2

0h h t h t= = -( ˜ ˜ ) ( ( ) ) ( )

where 0h is an arbitrary constant. This solution satisfies the

initial conditions

d

d
h q, 2 at 0. 211 0

1
0

1 2h h
h
t

h t= = =
˜

˜ ˜ ( )

We also consider a solution η2 to Equation (17) satisfying the

same initial conditions. Then, it follows from Equation (18) and

the comparison theorem (e.g., Coddington & Levinson 1955)

that 2 1h h for 0, 0t tÎ˜ [ ˜ ]. The initial condition for η2 can be

rewritten as

d

d
h q, 2 at 0. 222 0

2
0

1 1 2h h
h
t

h k t= = =- ˜ ˜ ( )

This result implies that η2 and d d2h t are bounded at τ=0 for

0,k Î ¥( ). Then, it follows from the inequality 2 1h h and

Equation (20) that, for any h0, arcsin0t Î ( ), there is such a

solution to Equation (17) that it is bounded together with its

first derivative at τ=0 for any value of κ, but it is unbounded

at τ=τ0 as k  ¥. Hence, the instability growth rate is

unbounded. This result implies that the initial value problem

describing the evolution of the perturbed discontinuity is ill-

posed when M MminA A0> { }.
Now, we assume that M MA A0 f< ( ), so that, in accordance

with Equation (16), K 2> and a q2> . We calculate the
instability increment for 1k  . Let h t¯ ( ) be the solution to
Equation (10), satisfying the initial conditions

d

d
1, 0 at 0. 23h

h
t

t= = =¯
¯

( )

Then, the characteristic exponent is defined by the equation

(Abramowitz & Stegun 1965)

cosh . 24pm h p=( ) ¯ ( ) ( )

We use the WKB method and look for a solution to

Equation (10) in the form eh = k
+

Q. Substituting this

expression into Equation (10), we obtain

d

d

d

d
a q2 cos 2 0. 251

2

2

2

k
t t

t
Q
+

Q
+ - =- ⎜ ⎟

⎛

⎝

⎞

⎠
˜ ˜ ( ) ( )

We impose the condition Θ=0 at τ=0. Then, we look for

the solution to this equation in the form of expansion

261
1

2kQ = Q + Q + ¼- ( )

Substituting this expansion into Equation (25) and collecting

terms of the order of unity, we obtain

d

d
q a2 cos 2 . 27

1
2

t
t

Q
= -⎜ ⎟

⎛

⎝

⎞

⎠
˜ ( ) ˜ ( )

The solution to this equation satisfying the condition Θ1=0 at

τ=0 is

i a q d2 cos 2 , 281
0
ò t tQ = - ¢ ¢
t

˜ ˜ ( ) ( )

where we chose the plus sign at the square root.
In the next-order approximation we collect terms of the order

of κ−1 in Equation (25) to obtain

d

d

d

d

d

d
0. 29

2
1

2

1 2

t t t
Q
+

Q Q
= ( )

Using Equation (28), we find that the solution to this equation

satisfying the condition Θ2=0 at τ=0 is

a q

a q

1

2
ln

2 cos 2

2
. 302

t
Q = -

-
-

˜ ˜ ( )

˜ ˜
( )

Recall that h t h t= -- +( ) ( ) is also a solution to Equation (10).

Then, since 1 tQ ( ) is an odd function and 2 tQ ( ) is an even
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function, it follows that

e
2

cos . 311
12 h

h h
k k=

+
= Q ++ - Q -¯ ( ) ( ) ( )

Introducing the notation χ=Θ1(π) and γ=Θ2(π), we

transform Equation (10) to

ecosh cos . 32pm kc= g( ) ( ) ( )

When the absolute value of the right-hand side of this equation

does not exceed unity, the two values of μ satisfying this

equation are purely imaginary and the corresponding wave

mode is neutrally stable. When the absolute value of the right-

hand side is larger than unity, one of the two values of μ

satisfying this equation has positive real part and the

corresponding wave mode grows exponentially. However, we

can observe that the right-hand side of Equation (32) is

bounded for any κ. This implies that the real part of μ is also

bounded, and the same is true for the growth rate. We made this

conclusion for a particular value of f and M MA A0 f< ( ). If we

now assume that M MminA A0< { }, then the growth rate of any

wave mode is bounded. This means that the initial value

problem describing the evolution of the discontinuity is well

posed when M MminA A0< { }. From Equation (15) we see that

this condition may be written in the approximate form as

M
v r

rv2

1

1
, 33A

A

A
2

q
<

+
+

¯

¯
( )

since, typically, θ=1.

4. Application to Transverse Coronal Loop Oscillations

The aim of this section is twofold. First, we further elaborate
the analysis of Section 3 by considering the σ-stability of
Equation (10). Afterward, we apply some of the results
obtained in Sections 3.2 and 3.3 to the stability of coronal
loop oscillations.

4.1. The σ-stability

We now use the concept of σ-stability, first introduced by
Goedbloed & Sakanaka (1974) and Sakanaka & Goedbloed
(1974). This concept is used in studies of thermonuclear plasma
confinement, where it is necessary that perturbation amplitudes
remain sufficiently small on some relevant timescale. An
equilibrium is σ-stable if the amplitudes of unstable perturba-
tions grow at most like texp s( ).

We apply the concept of σ-stability to the analysis of the KH
instability induced by transverse oscillations of solar coronal
loops. We say that a transverse coronal loop oscillation is
σ-stable if the growth time of the KH instability exceeds the
damping time owing to resonant absorption. It is important to
note that, in this paper, we only consider the KH instability due
to the transverse oscillation of coronal loops without a
transitional layer. If a transitional layer is present, the KH
instability may still occur in coronal loops after the transverse
oscillation is damped (Terradas et al. 2018) as a result of
increased shearing motions due to resonant absorption
(Heyvaerts & Priest 1983; Browning & Priest 1984).

Let tD=αP be the damping time, where P=2π/Ω is the
oscillation period and α varies from 1 to 5 (see, e.g.,

Goddard & Nakariakov 2016). It follows from our definition
that σ=1/ΩtD, or

1

2
. 34s

pa
= ( )

When α varies from 1 to 5, σ decreases from approximately

0.16 to 0.03. We see that, in any case, the interface cannot be

σ-stable if the maximum growth rate exceeds 0.16, which

implies that if the interface is σ-stable, then the increment is

much less than unity. It is shown in the Appendix that, in this

case, the maximum growth rate for fixed f is approximately

equal to K1 2 . Then, the maximum growth rate for all values

of f is K1 2 m, where K Kminm = f . Hence, the σ-stability

condition reads

K K
M

M

1

2
,

4min
2. 35m m

A

A

0
2

2

s

= -
{ }

( )

To estimate Km, we take as typical values r=1/3 and v 3A
2 =¯ .

Then, using Equations (15) and (35), and taking into account

the fact that, typically, θ=1, we reduce the σ-stability

criterion to

M

2
4

1
. 36

Aq
s

+ ( )

The typical displacement of a kink-oscillating coronal loop is
of the order of the loop radius. Then, the ratio of the velocity to
vAi is of the order of the loop radius and length. Hence, the
typical value is MA=0.01. It follows from Equation (36) that
the interface is σ-stable if 1q  for α=1 and σ-stable if

2q  for α=5. Similar to Terradas et al. (2018), we define
the number of turns of a magnetic field as

N
LB

RB2
,tw

zp
= f

where Bf and Bz are the azimuthal and axial components,

respectively, of the magnetic field in cylindrical coordinates,

with the z-axis coinciding with the loop axis, and R is the radius

of the loop cross section. Now we use the relation Bf/Bz=θ
valid for small θ and R/L=100 as a typical value for coronal

loops. We obtain that even the maximum value θ=2°
corresponds to only about a half-turn of magnetic field lines

from one loop footpoint to the other. Hence, the loop boundary

is σ-stable even for a very moderate magnetic twist.
In Figure 4, we present the values of μ associated with the

three straight lines in Figure 3. We assumed that r=1/3,
v 3A
2 =¯ , MA=0.01, and f=f0 so that K=Km. For θ=0, μ
is a monotonically increasing function of κ, and perturbations
with any q are unstable. The green curve corresponds to
θ=0°.5 and is unbounded as k  ¥ since Mmin A0 »

M0.0062 A< . Finally, the blue curve, which corresponds
to θ=1°, is bounded for 0,k Î ¥( ) since Mmin A0 »

M0.0123 A> . The equation of the dashed line is μ=0.16,
and we see that the loop with θ=1° is σ-stable for σ defined in
Equation (34) with α=1.
We note that if a magnetic loop is σ-stable, then the initial

value problem describing the evolution of its boundary
perturbation is well posed. However, the converse is not
always true. The initial value problem is well posed if the
growth rate is bounded, but it may still be very large. On the
other hand, a magnetic loop is σ-stable when the maximum
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growth rate is below a definite and, usually, sufficiently small
number.

4.2. The σ-stability in Numerical Models

We compare our results with those of Howson et al. (2017b)
and Terradas et al. (2018), who studied numerical models of
the TWIKH instability in twisted magnetic flux tubes. Both
models consider flux tubes with a finite-width transitional layer,
where the density decreases from a high value in the core
region of the flux tube to a low value in the surrounding
plasma. The presence of the transitional layer results in
damping of kink oscillations due to resonant absorption, such
that the concept of σ-stability is applicable. Since we do not
consider the effects of resonant absorption in the present work,
we may only make a qualitative comparison between results.

Howson et al. (2017b) considered both twisted and
untwisted tubes, subject to a transverse oscillation with a
period of the fundamental mode of 280 s. Both the oscillation
period and damping time were practically unaffected by the
magnetic twist. Using the dependence of the oscillation
amplitude on time presented in Howson et al. (2017b), we
estimate that the damping time of the transverse oscillation was
approximately 1000 s. We also estimate that the instability
growth time increases from approximately 600 s in the case of
the untwisted tube to approximately 700 s when the twist is
maximal, which signals a relatively weak dependence of
damping time on the degree of twist. The increase in growth
time with increase in twist qualitatively agrees with the results
obtained in the present work.

We have shown in the previous subsections that, in a tube
with a sharp boundary (i.e., no transitional layer), the instability
growth time is zero. Therefore, it is clear that the presence of a
transitional layer strongly reduces the instability growth rate,
and, in the model studied by Howson et al. (2017b), the effect
of the transitional layer on the instability increment is stronger
than the effect of twist. Since the damping time was larger than

the instability growth time, the oscillations studied by Howson
et al. (2017b) were σ-unstable for all values of twist.
Terradas et al. (2018) also studied kink oscillations of

twisted tubes with a transitional layer of thickness l. They
considered three values of the transitional layer thickness,
l/R=0.3, 1, and 2, where R is the tube radius. They also
considered several values of the magnetic twist, with the turn of
magnetic lines varying from 0 (no twist) to 1.65 turns.
Similarly to Howson et al. (2017b), Terradas et al. (2018)

obtained that the damping time is practically independent of the
twist. It was approximately equal to 4P for l/R=0.3, where P
is the oscillation period. They did not give the value of
damping time for other values of the transitional layer
thickness. However, since Terradas et al. (2018) obtained that
the numerically calculated values of damping time agree very
well with those given by the analytical expression, we can use
the fact that the damping time is inversely proportional to l/R.
We obtain the estimates that the damping time is about 1.2P for
l/R=1 and 0.6P for l/R=2. Even if we underestimated the
damping time, then the first time is definitely less than 2P, and
the second one is less than P.
The authors also estimated the instability growth time. They

obtained that it strongly depends on the degree of twist. For
l/R=0.3 it increases from about 1.5P to about 3P when the
turn of magnetic field lines varies from 0 to 1.65. Hence, it is
always smaller than the damping time, meaning that the
oscillations are σ-unstable. When l/R=1, the instability
growth time increases from about 2.5P to about 7.5P. Finally,
when l/R=2, the instability growth time is about 5P when
there is no twist, and it quickly becomes larger than 10P when
the twist increases. Hence, the oscillations are always σ-stable
when l/R=1 and l/R=2. Since they are σ-stable even when
there is no twist, it is obvious that there is a substantial
contribution of the transitional layer in the reduction of the
instability increment. However, it is also obvious that the twist
substantially contributes in this reduction.

4.3. Coronal Loop Parameters

The model that we outlined in the previous sections can only
be applied for the local analysis of the stability of the boundary
of an oscillating magnetic tube. In this analysis, we can
consider oscillations with the characteristic scale in the
azimuthal direction that is much smaller than the tube radius
R and the characteristic scale in the axial direction that is much
smaller than the tube length L. Hence, we take

k
m

R
k

n

L
, , 37x z

p
= = ( )

where m and n are sufficiently large integer numbers. Using

Equations (8) and (37), we obtain

k
m

R

n

L

nR

mL
, tan . 382

2

2

2 2

2

p
f

p
= + = ( )

We assume that n m ∣ ∣. Since in coronal magnetic loops

R L , it follows that we may use the approximate

expressions

k
m

R

nR

mL
, . 39f

p
» »

∣ ∣
( )

Throughout this section we assume that v rA
2 1= -¯ . This

assumption holds if the magnitudes of the interior and exterior

Figure 4. Growth rate of the instability, μ, plotted with respect to q. The red,
green, and blue lines correspond to the lines in Figure 3(a).
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magnetic fields are equal, which is typically true for coronal

loops. We also assume that θ=1. Then, we obtain the

approximate expressions

M
r

r

nR

mL

n R

m L

1

4
, 40A0

2
2 2 2 2

2 2
q

p p
=

+
+ +⎜ ⎟

⎡

⎣
⎢
⎛

⎝

⎞

⎠

⎤

⎦
⎥ ( )

M
r

r
min

1

8
. 41A0

2
2q

=
+

{ }
( )

( )

The condition M MminA A
2

0
2< { } gives

M
r

r

8

1
. 42Aq >

+
( )

If we take r=1/3, the right-hand side of this inequality is

approximately equal to MA, that is, it is of the order of 0.01.

Hence, the inequality(42) can be satisfied even for quite

moderated twist. If the inequality is satisfied, then the IVP

describing the evolution of the tube boundary is well posed and

the growth rate of perturbations is bounded.
In Figure 5, we show the dependence of the growth rate on m

for n=1 (left) and n=4 (right), MA=0.01, r=1/3,
v 3A
2 =¯ , R L 200= , and θ=0° (red), θ=0°.5 (green), and
θ=1° (blue). We note that, obviously, n=1 does not satisfy
the condition that n is large, so we considered n=1 only for
comparison. Whereas for n=1 the points in the qa-plane
corresponding to θ=0° are virtually unchanged as compared
to the line in Figure 3, for n=4 they are shifted upward
considerably. This is also the case for θ=0°.5. We see that for
n=1 there are some modes that are unstable in the range
selected, and for n=4 there are no such modes. There may be
unstable modes for θ=0°.5 and n=4, but only for very large
m. In terms of the IVP, for θ=1°, corresponding to a well-
posed solution, no value of m corresponds to an unstable
solution in the qa-plane. In general, well-posed solutions seem
to be unstable only for very large m. These results are

significant since they suggest that very localized longitudinal
perturbations of the flux tube are generally more stable.

5. Summary and Discussion

In this work, we performed the first local stability analysis of
the TWIKH instability of twisted solar coronal loops. We
modeled the region on the loop boundary where the shear flows
are the greatest as a tangential discontinuity separating time-
periodic counterstreaming flows. To model the magnetic twist
in coronal loops, we assumed that the equilibrium magnetic
fields on either side of the discontinuity are not parallel. The
flow velocities at the two sides of the discontinuity have
opposite directions and equal magnitudes oscillating harmoni-
cally. For the sake of mathematical simplicity, we assumed that
the plasma on both sides of the interface is incompressible.
Using the linearized set of ideal MHD equations, we derived
the governing equation describing the evolution of the shape of
the tangential discontinuity, known as Mathieu’s equation.
We employed Mathieu’s equation to study the stability of the

discontinuity. For comparison, we first presented the results of
the stability analysis in the case of steady flows, which we
obtained by setting the flow oscillation frequency to zero. In
this case, the stability of the discontinuity is determined by the
Alfvén Mach number, which is defined as the ratio of the
background velocity magnitude to the Alfvén speed at one side
of the interface. The discontinuity is unstable when the Alfvén
Mach number exceeds a critical value, and the instability
growth rate is proportional to the wavenumber and thus
unbounded. This implies that the initial value problem
describing the evolution of the perturbed discontinuity is ill-
posed. We note that the critical Alfvén number is zero when
there is no magnetic shear.
In contrast to the interface separating steady flows, the tilted

magnetic field cannot stabilize the discontinuity if the flows
oscillate. A similar result was obtained by Roberts (1973) in the
case of MHD tangential discontinuity, with the magnetic field

Figure 5. Dependence of the growth rate on m for MA=0.01, r=1/3, v 3A
2 =¯ , n=1 (left) and n=4 (right). The red, green, and blue circles correspond to

increasing degrees of twist.
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having the same direction at both sides and the flow velocity
parallel to the magnetic field.

Even though the interface is always unstable, the critical
Alfvén Mach number still plays an important role in the
stability properties. We showed that the growth rate of the
instability is unbounded when the Alfvén Mach number
exceeds the instability threshold, and thus the initial value
problem is ill-posed. Hence, in this case the stability properties
are qualitatively the same as in the case of steady flows. On the
other hand, when the Alfvén Mach number is below its critical
value, the instability increment is bounded, and the initial value
problem is well posed.

In Section 4.1, we introduced the definition of σ-stability for
kink-oscillating coronal loops, which states that the loop is
σ-stable if the growth time of the instability exceeds the
resonant damping time of the transverse oscillation. We
obtained the criterion for the σ-stability and showed that, for
parameters typical for transverse coronal loop oscillations, even
moderate magnetic twist makes the loop boundary σ-stable.
These results are compared to the numerical models of Howson
et al. (2017b) and Terradas et al. (2018) in Section 4.2.

In Section 4.3, we used our model to perform a local stability
analysis of the sections of the loop boundary where the
amplitudes of the shear flows are the greatest (see Figures 1
and 2). The local analysis is only valid for perturbations with
the azimuthal wavelength much smaller than the radius of the
loop cross section R and the axial wavelength much smaller
than the loop length L. In accordance with the latter
assumptions, we took kx=m/R and kz=πn/L, where kx is
the component of the wavevector in the azimuthal direction, kz
is the component of the wavevector in the axial direction, and
m∣ ∣ and n are positive integer numbers. We note that while n is
positive, m can be either positive or negative. We found that the
nature of solutions is changed by this new definition of the
parameters. While, previously, all solutions were unstable
regardless of the background parameters, the discretization of
the parameter space has introduced the possibility that unstable
solutions exist only for sufficiently large values of m∣ ∣.

It is worth noting that our study does not include the effects
of strong shear induced by resonant absorption, which may be
significant in the generation of the KHI, as suggested by
Antolin et al. (2014). The numerical studies by Howson et al.
(2017b) and Terradas et al. (2018) showed that the presence of
the transitional layer leads to an increase in the instability
growth time. This suggests that the main driver of the KH
instability is the shear motion at the magnetic tube boundary
due to the transverse oscillation, as opposed to the shearing
caused by resonant absorption.

Our model may be expanded such that more accurate
quantitative results about transverse loop oscillations are
obtained. A transitional layer, where the oscillating velocity
continuously varies from one side to the other, may be
included. A further extension may consider a continuous
variation of density from one side to the other, such that the
effects of resonant absorption are also considered. Both of
these generalizations are likely to be mathematically
complicated.

A different possible application of the present model relates
to prominence oscillations (Arregui et al. 2012). Assuming that
the magnetic field has the same magnitude inside and outside
the structure, for a typical density contrast of r=100,
Equation (16) yields that K=1, for 0q ¹ . This suggests

that, unless the magnetic fields inside and outside the
prominence are perfectly aligned, the growth time of perturba-
tions is very small.
Finally, we make the following comment. Usually it is

written in papers dealing with the numerical study of the KH
instability of oscillating coronal magnetic loops that this
instability occurs in the nonlinear regime. However, in our
paper the background state is given by the linear solution
describing the kink oscillation. The stability analysis is also
based on the use of the linear MHD. This clearly shows that the
KH instability of oscillating coronal loops is not related to the
nonlinearity at all.
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Appendix
The Maximum Growth Rate

As we have already stated before, the characteristic
exponent, μ, is determined by the equation

cosh , 43pm h p=( ) ¯ ( ) ( )

where h t¯ ( ) is the solution to the initial value problem to

Equation (10) with

d

dt
1, 0 at 0 44h

h
t= = =¯

¯
( )

(Abramowitz & Stegun 1965). When a perturbation is unstable,

its growth rate is given by g m= ( )R . In the context of the

σ-stability analysis, we assume that the growth time of the

instability is much larger than the oscillation period. In terms of

dimensionless quantities, this condition is written as 1g  .

The numerical investigation shows that this condition is only

satisfied for all values of q when K 1 . In accordance with

this, we introduce the small parameter K1 = . Figure 3

shows that a is close to j2 on parts of the line a=Kq
corresponding to unstable perturbations when K 1 , where

j=1, 2, K. We obtain a j2= taking q j2= , which implies

that q = ( ).
First, we study the case with j=1. Using the expansion

valid for small q (Abramowitz & Stegun 1965),

a q q q b q q q1 , 1 , 451
2

1
2 = + + = - +( ) ( ) ( ) ( ) ( )

we obtain that the line a=Kq in Figure 3 intersects the curves

a b q1= ( ) and a=a1(q) at q 2 » - ( ) and q » +
2( ), respectively. Then, q q 2 = + ¯ on the part of the

curve a=Kq between the intersection points, where q̄ is a free

parameter varying from approximately −1 to approximately 1.

It follows that q q 2 = + ¯ on the line a=Kq between the

intersection points, where q̄ is a free parameter. The equation of

the curve a=Kq is now rewritten as a q1 = + ¯ , and
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Equation (10) becomes

d

d
q q1 2 cos 2 0. 46

2

2
2  h

t
t h+ + - + =[ ¯ ( ¯ )( ( )] ( )

To calculate the increment, we need to find the solution h t¯ ( ) to

this equation satisfying the initial conditions of Equation (44).

To do this, we use the regular perturbation method with

. 470 1 2h h h h= + + + ¼¯ ¯ ¯ ¯ ( )( ) ( ) ( )

Substituting Equation (47) into Equations (44) and (46) and

collecting the terms of the order of unity, we obtain

d

d
0 48

2 0

2
0h

t
h+ =¯
¯ ( )

( )
( )

and the associated initial conditions

d

d
1, 0 at 0. 490

0

h
h
t

t= = =¯
¯

( )( )
( )

The solution to this initial value problem is

cos . 500h t=¯ ( )( )

Collecting terms of the order of ò yields

d

d
q2 cos 2 cos , 51

2 1

2
1h

t
h t t+ = -¯
¯ [ ( ) ¯] ( )

( )
( )

d

d
0, 0 at 0. 521

1

h
h
t

t= = =¯
¯

( )( )
( )

After straightforward calculation we obtain

q1

2
sin

1

8
cos 3

1

8
cos . 531h t t t t=

-
- +¯

¯
( ) ( )( )

Finally, we collect terms of the order of 2 to obtain

d

d
q q2 cos 2 2 cos 2 cos ,

54

2 2

2
2

1
1h

t
h t h t t+ = - +¯
¯ [ ( ) ¯] ¯ ( )

( )

( )
( ) ( )

d

d
0, 0 at 0. 552

2

h
h
t

t= = =¯
¯

( )( )
( )

The solution to this initial value problem is given by

q q q

q

q q

1

8
cos

2 7 2

16
sin

1

16
sin 3

cos 5

192

2 3

32
cos 3

11 18

192
cos . 56

2
2

2
2

h t t t t

t t
t

t t

=
-

+
+ -

-
-

+

-
+

+
+

¯
¯ ¯ ¯

¯
( )

( )

¯
( )

¯
( )

( )

Using Equations (50), (53), and (56), we obtain

q
1

1

8
. 57

2
2 2 3 h p p= - -

-
+¯ ( )

¯
( ) ( )

It follows from this equation that

i q
2

1 . 582 2 m =  - +¯ ( ) ( )

This result implies that

q
2

1 ,
2
, 59m

2 2  
g g= - + =¯ ( ) ( )

where γm is the maximum value of the instability increment

when the point (a, q) is on the part of line a=Kq that is

between the curves a b q1= ( ) and a=a1(q).
Now we consider the part of line a=Kq that is between the

curves a=bj(q) and a=aj(q), j=2, 3, K. For q=1 we
have b q n q1

2 2= +( ) ( ) and a q n q1
2 2= +( ) ( ), where n is

a natural number (Abramowitz & Stegun 1965). Since K=
ò
−1, it follows that q n q12 2 = +( ¯ ) and a n q12 2= +( ¯ ),
where q̄ is again a free parameter. Substituting these
expressions in Equation (43), we transform it to

d

d
j q q1 2 cos 2 0. 60

2

2
2 2 3  h

t
t h+ + - + =[ ¯ ( ¯ )( ( )] ( )

Then, we again look for the solution in the form of the

expansion given by Equation (47). Substituting this expansion

in Equations (10) and (44) and collecting terms of the order of

unity, we obtain

d

d
j 0, 61

2 0

2
2 0h

t
h+ =¯
¯ ( )

( )
( )

d

d
1, 0 at 0. 620

0

h
h
t

t= = =¯
¯

( )( )
( )

The solution to this initial value problem is

jcos . 630h t=¯ ( ) ( )( )

Collecting terms of the order of ò yields

d

d
j j j2 cos 2 cos , 64

2 1

2
2 1 2h

t
h t t+ =¯
¯ ( ) ( ) ( )

( )
( )

d

d
0, 0 at 0. 651

1

h
h
t

t= = =¯
¯

( )( )
( )

After straightforward calculation we obtain

1
1

3
cos 4

2

3
cos 2 661h t t= - -¯ ( ) ( ) ( )( )

for j=2 and

j j

j

j j

j

n j

j

cos 2

4 1

cos 2

4 1

cos

2 1

67

1
2 2 2

2
h

t t t
=

-
-

-
+
+

-
-

¯
[( ) ]

( )

[( ) ]

( )

( )

( )

( )

( )

for j 2> . Collecting terms of the order of 2 , we obtain

d

d
j j q j2 cos 2 cos , 68

2 2

2
2 2 1 2h

t
h h t t+ = -¯
¯ ¯ ( ) ¯ ( ) ( )

( )
( ) ( )

d

d
0, 0 at 0. 692

2

h
h
t

t= = =¯
¯

( )( )
( )

The solution to this initial value problem is given by

q
5

3
sin 2

cos 6

24

2

9
cos 4

29

72
cos 2

2

3
70

2h t t
t

t t

= - +

+ + -

⎜ ⎟
⎛

⎝

⎞

⎠
¯ ¯ ( )

( )

( ) ( ) ( )

( )
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for j=2 and by

j j

j
j

j j

j j

j j

j j

j j j j

j j

j j

j j

j j

j j

4 1
sin

cos 4

32 1 2

cos 2

8 1 1

3 16 cos

16 1 4

cos 2

8 1 1

cos 4

32 1 2
71

2
2

2

4

4

2

4 4 2

2 2 2

4

2

4

h t t
t

t

t

t t

=
-

+
+

+ +

+
+

+ -

-
- +
- -

-
-

- -
+

+
- -

⎛

⎝
⎜

⎞

⎠
⎟¯ ( )

[( ) ]

( )( )

[( ) ]

( )( )

( ) ( )

( ) ( )

[( ) ]

( )( )

[( ) ]

( )( )
( )

( )

for j 2> . Using Equations (63), (66), (67), (70), and (71), we

obtain

1 . 72n 3h p = - +¯ ( ) ( ) ( ) ( )

It follows from this equation that 3m = ( ) for even j and

i 3m = + ( ) for odd j, and thus 3 2g = ( ), that is,

mg g . Hence, γm=1/2K is the maximum value of the

instability increment with respect to q when K=ò−1.
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