
HAL Id: hal-02343597
https://hal.archives-ouvertes.fr/hal-02343597

Submitted on 2 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Real-Time Embedded Video Denoising
Algorithm

Andrea Petreto, Thomas Romera, Florian Lemaitre, Ian Masliah, Boris
Gaillard, Manuel Bouyer, Quentin Meunier, Lionel Lacassagne

To cite this version:
Andrea Petreto, Thomas Romera, Florian Lemaitre, Ian Masliah, Boris Gaillard, et al.. A New
Real-Time Embedded Video Denoising Algorithm. DASIP 2019 - The Conference on Design and
Architectures for Signal and Image Processing, Oct 2019, Montréal, Canada. �hal-02343597�

https://hal.archives-ouvertes.fr/hal-02343597
https://hal.archives-ouvertes.fr


A New Real-Time Embedded Video Denoising
Algorithm

Andrea Petreto∗†, Thomas Romera∗†, Florian Lemaitre∗, Ian Masliah∗, Boris Gaillard†, Manuel Bouyer∗,
Quentin L. Meunier∗ and Lionel Lacassagne∗

∗ Sorbonne University, CNRS, LIP6, F-75005 Paris, France. Email: firstname.lastname@lip6.fr
†Lhéritier - Alcen, F-95862, Cergy-Pontoise, France. Email: bgaillard@lheritier-alcen.com

Abstract—Many embedded applications rely on video pro-
cessing or on video visualization. Noisy video is thus a major
issue for such applications. However, video denoising requires
a lot of computational effort and most of the state-of-the-art
algorithms cannot be run in real-time at camera framerate. This
article introduces a new real-time video denoising algorithm
for embedded platforms called RTE-VD. We first compare its
denoising capabilities with other online and offline algorithms.
We show that RTE-VD can achieve real-time performance (25
frames per second) for qHD video (960×540 pixels) on embedded
CPUs and the output image quality is comparable to state-of-the-
art algorithms. In order to reach real-time denoising, we applied
several high-level transforms and optimizations (SIMDization,
multi-core parallelization, operator fusion and pipelining). We
study the relation between computation time and power con-
sumption on several embedded CPUs and show that it is possible
to determine different frequency and core configurations in order
to minimize either the computation time or the energy.

Index Terms—Embedded system, Video denoising, Real-time,
Image processing, night-vision, SIMD.

I. INTRODUCTION

Image denoising is a major research area for computer vi-
sion. It can be based on methods such as pixel-wise filters [1]–
[3], patch-based methods [4], [5] or Convolutional Neural
Networks (CNN) [6]–[8]. Video denoising can take advantage
of the temporal dimension to reduce the noise more efficiently.

Denoising algorithms can be classified according to two
criteria: the processing time and the denoising efficiency.
In this work, we focus on video with heavy noise and we
target real-time processing at 25 frames per second (fps) on
embedded systems. Concerning the image quality, we focus
on details enhancement rather than aesthetic rendering.

Some video denoising algorithms are able to deal with
heavy noise [9]–[14]. However, all these algorithms are slow
and cannot be used for real-time denoising. Moreover, they
have a high latency as they need future frames to process the
current one (typically 5 to 7).

There are algorithms designed for real-time denoising [15]
on embedded architectures [16], but only for light noise like
compression artifacts, which give poor results on heavy noise.

As far as we know, there is no real-time algorithm able to
handle heavily noisy video as in this work.

In this paper, we introduce a new Real-Time Embedded
Video Denoising (RTE-VD) algorithm targeting very noisy
video in section II, which has been implemented for general
purpose processors. We then compare our algorithm to the

state-of-the-art in terms of denoising efficiency in section III.
We then present the main optimizations applied to achieve
real-time performance in section IV. Finally in section V, we
compare the execution time of RTE-VD to other state-of-the-
art algorithms and study its speed and power consumption
depending on various embedded CPUs and frequencies.

II. DENOISING ALGORITHM

Most state-of-the-art video denoising algorithms rely on
patch based filtering methods [10], [13], [14] which tend to
be effective to reduce noise but are very time consuming.
In addition, their memory access patterns generate many
cache misses, making it difficult to speed the computation up.
Therefore, we did not consider this technique for real-time
denoising.

A crucial aspect of video denoising is to keep temporal
coherence between frames. While we cannot ensure this co-
herence using patch search, it is possible to do so with an
optical flow estimation [11], [17].

Optical flow algorithms are also time consuming but are
sensitive to code transformations and can be highly accel-
erated [18]–[22]. We thus decided to use an optical flow
algorithm in our real-time denoising chain.

While there exists many optical flow algorithms [23], optical
flow estimation for video denoising should be dense, robust
to noise and handle flow discontinuities [17]. Therefore, we
decided to use the TV-L1 algorithm to compute the optical
flow, since it satisfies all these constraints [24].

Fig. 1. Principle components of the denoising application.

Our complete denoising application is composed of three
steps (Figure 1). First, the video stream is stabilized using
a global one-pass Lucas-Kanade approach [25] in order to
compensate camera motion. Then, the dense optical flow is
computed using the TV-L1 algorithm. The flow enables to
extrapolate denoised past frames at the current frame, and
match the two together. Finally, a 3D spatio-temporal bilateral
filter is applied [26].



Input Noisy STMKF RTE-VD VBM3D VBM4D

Fig. 2. Visual comparison on pedestrians sequence with a standard deviation noise of 40 (PSNR in Table I).

TABLE I
PSNR RESULTS FOR SEVEN SEQUENCES OF THE Derf’s Test Media Collection ON STATE-OF-THE-ART ALGORITHMS AND OUR METHOD (RTE-VD).

Noise Method crowd park joy pedestrians station sunflower touchdown tractor overall

σ = 20

STMKF [15] 26.25 25.59 28.34 26.66 26.97 28.87 25.37 26.70
RTE-VD 26.38 25.65 30.58 30.98 32.51 30.17 29.38 28.73

VBM3D [12] 28.75 27.89 35.49 34.19 35.48 32.85 31.44 31.34
VBM4D [13] 28.43 27.11 35.91 35.00 35.97 32.73 31.65 31.11

σ = 40

STMKF [15] 20.80 20.75 20.70 20.41 20.70 20.86 19.80 20.56
RTE-VD 22.55 21.64 25.72 27.76 27.87 27.05 25.99 24.85

VBM3D [12] 24.81 23.78 30.65 30.62 30.88 30.21 27.82 27.43
VBM4D [13] 24.65 23.22 31.32 31.53 31.39 30.09 28.09 27.35

III. DENOISING EFFICIENCY COMPARISON

In order to evaluate the denoising efficiency of RTE-VD,
we reproduced the conditions of the comparison made in [27].
We ran our algorithm on seven sequences from the Derf’s Test
Media Collection [28]. The sequences are originally colored
1080p video. We down-scaled them to 960×540 pixels in gray-
scale by keeping only brightness. A Gaussian noise is added
to each pixel with a standard deviation of 20 and 40. Then,
the algorithms are ran on the first hundred frames of each
sequence.

However, we were not able to reproduce the same results
as in [27]: all the PSNR values that we have obtained are
significantly lower for a given method.

We compare RTE-VD to VBM3D [12], VBM4D [13] and
STMFK [15]. VBM3D is one of the most popular video
denoising method. It is also one of the fastest high perfor-
mance denoising algorithm even if its computation time is still
over a second for a 960×540 pixel frame on a Xeon server.
VBM4D has a more powerful filtering than VBM3D but at a
higher computational cost. STMKF is a state-of-the-art real-
time video denoising method. For each algorithm, the source
code provided on the authors website is used with the default
parameters depending on the noise intensity.

The quantitative results for the test sequences are presented
in Table I. Our real-time constraint limits the denoising effi-
ciency of RTE-VD compared to VBM3D and VBM4D; how-
ever, RTE-VD outperforms STMKF. RTE-VD and STMKF
are able to perform real-time denoising while VBM3D and

VMB4D require offline computation. Processing times are
studied in more details further in this article.

Some visual results are presented in Figure 2: we can see
that RTE-VD is a clear improvement compared to the noisy
input. In most cases, VBM3D and VBM4D are visually better.
Also STMKF is much less effective than the other considered
methods.

For the two noise deviation tested, the RTE-VD PSNR
is overall less than 3 dB below the ones from VBM3D and
VBM4D. RTE-VD PSNR is overall 2 dB above STMKF for
a noise deviation of 20 and more than 4 dB above for a noise
deviation of 40. It confirms that RTE-VD handles heavy noisy
situations better than STMKF, as can be seen in Figure 2.

RTE-VD tends to trade noise reduction off for information
keeping. Figure 2 shows that RTE-VD is able to produce
more detailed results than STMKF on moving objects but
encounters difficulties on still objects. The loss of sharpness
in static scenes can be explained by a bad optical flow esti-
mation on non-moving objects. Error estimations are indeed
proportionally more important on small movements and bad
compensations may generate a little blur effect on non moving
objects. Filtering the estimated optical flow may reduce this
effect and will be considered in our futur works.

IV. ALGORITHM OPTIMIZATIONS

In order to run RTE-VD in real-time on an embedded
system, several optimizations and tradeoffs have to be done.



We apply the following high-level transformations (described
in [29]) to each part of the chain:
• SIMDization (handcrafted Neon instructions as the com-

piler vectorization is inefficient),
• Multi-thread parallelization (with OpenMP),
• Operator fusion to reduce memory accesses,
• Operator pipeline to increase memory access locality,
• Modular memory allocation (for cache blocking) to re-

duce the memory footprint and enforce memory access
locality.

A. Global Lucas-Kanade stabilization

To stabilize the video stream, we use a modified version
of the Lucas-Kanade method [25] with a global approach. the
input image is convolved with a gate function, (a function
that is 0 outside a specified interval and 1 inside it) in order
to compute its average over a neighborhood. As the gate size
depends on the largest movement to compensate, the convo-
lution kernels can be very large. To speed the convolution
up, integral images (also known as summed area table [30])
are used. The convolution is computed by multiple threads,
each one processing a strip. Consequently, each thread only
computes the partial integral image it needs. We then apply
the Lucas-Kanade flow estimation to a neighborhood of the
same size as the input images.

B. TV-L1 Dense Optical Flow Estimation

The TV-L1 optical flow algorithm is the main step to
optimize as it takes more than 80% of the total time. The
key transformations of TV-L1 are presented in [18] and result
in a processing 5× faster and 6× less power consuming on
an embedded ARM Cortex A57 architecture.

With n scales and a zoom factor of 1: 2, the largest move-
ment between two images that the algorithm can handle is
equal to 2n − 1. Therefore we fixed the scale number to 3 to
be able to estimate displacements as large as 7 pixels.

Instead of using a convergence criteria to stop the iterations,
a fixed number of iterations per scale has been chosen. In
most situations, three iterations per scale are enough. However,
more complex situations, like large displacements or disconti-
nuities, require more iterations. Therefore, we set 10 iterations
per scale as the standard configuration. This provides a more
robust estimation than with only three iterations per scale,
while keeping a rather low computation time.

However, as the most important movements to compensate
are the largest ones, it is interesting to do more iterations on
the most zoomed-out scales (the smallest ones). Therefore, we
compare the computation of 10 iterations per scale on 3 scales
(10-10-10) with the computation of 3 iterations at the largest
scale, 20 iterations at the medium scale and 80 iterations at
the smallest one (3-20-80). While the two have roughly the
same number of operations, the (3-20-80) version is actually
faster as it spends more time on the smallest scale which is
cache friendlier. The denoising quality is similar.

Another critical step of TV-L1 to ensure stability is the
warping, which is in our case a motion compensation using

bicubic interpolation. Several warps can be applied at each
scale. They take a long time to compute, but gives better
results. This leads to important design choices, in particular
regarding the number of warps at each scale. Thus, we
compared the (10-10-10) single warp per scale configuration
with a configuration comprising 3 iterations with 1 warp at
the largest scale, 20 iterations with 2 warps at the medium
scale and 80 iterations with 4 warps at the smallest scale.
This latter configuration is the one used in the remaining
experiments, as it significantly achieves better results with a
similar computation time for 960×540 pixel images.

C. Spatio-temporal filter

To actually filter out the noise, we compose a spatial bilat-
eral filter [26] with a unilateral filter to handle the temporal
dimension and speed the processing up. Thus, we are able to
decorrelate the strength of the filter in the spatial domain from
the temporal domain. The filter is defined by the equations
1, 2 and 3, where If is the filtered image, Ip the previous
compensated and filtered image, I the current image and x the
coordinates of the current pixel. Ω is the filter kernel domain.
σi, σd and σt are the smoothing parameters of the filter
respectively of the spatial intensity difference, the distance and
the temporal intensity difference between pixels.

If (x) =
1

Wp

∑
xi∈Ω

It(xi)e
−[It(xi)−It(x)]

2

2 σ2
i × e

−[xi−x]
2

2 σ2
d (1)

Where:

Wp =
∑
xi∈Ω

e
−[It(xi)−It(x)]

2

2 σ2
i × e

−[xi−x]
2

2 σ2
d (2)

and:

It(x) = Ip(x)e
−[Ip(x)−I(x)]2

2 σ2t + I(x)

(
1 − e

−[Ip(x)−I(x)]2

2 σ2t

)
(3)

While the bilateral filter is not separable, we approximate
it by a separable filter [31] which is faster than the exact one.
We also used a fast approximation of the exponential function
which manipulates the bit representation of floats as defined
in the IEEE-754 standard. Such an approximation is described
in [32] and is accurate enough.

V. PROCESSING TIME AND ENERGY CONSUMPTION

In this section we first compare the execution time of RTE-
VD to the algorithms previously introduced. We then briefly
study the impact of our optimizations on computation speed.
Finally, we evaluate the performances of RTE-VD on various
embedded CPUs and frequencies.

We consider 4 different platforms. The first one is an Intel
Xeon Silver 4114 2×10C/20T@2.20GHz. The 3 others are the
latest Nvidia Jetson embedded platforms; for those platforms,
we only consider the ARM CPUs and not the GPUs. Their
names and specifications are given in Table II.



TABLE II
TECHNICAL SPECIFICATIONS OF THE TARGET EMBEDDED BOARDS.

Board Process CPU Fmax
(GHz)

Idle Power
(W)

TX2 16 nm 4×A57 + 2×Denver2 2.00 2.0
AGX 12 nm 8×Carmel 2.27 6.3

NANO 12 nm 4×A57 1.43 1.2

TABLE III
DENOISING TIME DEPENDING ON THE USED METHOD AND THE TESTED

PLATFORM FOR 960×540 PIXELS IMAGES.

Algorithm Time (s) Platform

STMKF [15] 0.004 5 Xeon
RTE-VD (this work) 0.009 7 Xeon
VBM3D [12] 2.0 Xeon
VBM4D [13] 45 Xeon

STMKF [15] 0.015 AGX
RTE-VD (this work) 0.037 AGX

A. Processing time analysis

We measured the computation time for the different methods
considered in section III. We ran RTE-VD, STMKF, VBM3D
and VBM4D on the Xeon platform. We also tested RTE-VD
and STMKF on the AGX platform. The results for 960×540
pixel images are presented in Table III. On the same platform,
RTE-VD is more than 200× faster than VBM3D and more
than 4600× faster than VBM4D. On the AGX platform, RTE-
VD is only 2.5× slower than STMKF but still achieves real-
time processing with 26.7 frames per second.

To exhibit the efficiency of our optimizations we also com-
pare our Fast optimized implementation to a Slow straightfor-
ward implementation. The integral image is hard to parallelize
without using major transformations. Those transformations
have only been applied to the Fast version. Thus, in order to
be fair, we compare the Fast and Slow versions in mono-thread
and then analyze only the Fast version in multi-thread. The
images used for the experiments are square images, with a
width varying from 200 to 1500 pixels. The size of the image
has negligible impact on the speed of the processing chain.
Thus, 1000×1000 images are considered for the following
experiments.

The results for all algorithms involved in RTE-VD on the
AGX are presented in Table IV. It shows that in mono-thread,
we have an overall speedup of ×18, and in multi-thread, a
speedup of ×70 using the 8 cores of the AGX. We can also
observe that the major part of the speedup is obtained on the
filtering, mainly due to its approximation with a separable
filter. As a consequence, the optical flow estimation now takes
almost 98% of the total time of the Fast version, while filtering
was the most time consuming part of the processing chain
without the optimizations. Since the optical flow estimation
is, in the end, the most consuming step, we produced a more

detailed study in [18]. In this previous work the impact of each
optimisation is discussed. Both time and power consumption
are considered.

TABLE IV
EXECUTION TIME (MS) AND SPEEDUP OF RTE-VD ON AGX CPU

Algorithm Slow 1C Fast 1C Fast 8C speedup

LK 6.66 1.59 0.37 ×18
Flow 260.73 107.93 27.59 ×10
Filter 1 717.85 1.39 0.25 ×6 871

Total 1 985.24 110.90 28.21 ×70

B. Time and energy efficiency of RTE-VD

Since we target embedded systems, we have to consider not
only the computation speed but also the energy consumption.
Therefore, we have run RTE-VD at various frequencies on the
three Nvidia embedded systems. The frequencies have been
taken among the available frequencies of each board and the
external memory frequency has been set to its maximum. For
the AGX and NANO, we have used a multi-threaded version
on all the physical cores, respectively 8 and 4. For the TX2,
we have first used only the two Denver cores, then only the
four A57 cores and finally all 6 cores. The cooling system
of each target board has been set to the maximum and the
energy saving policies of the Operating System have been
deactivated. We have simultaneously measured time and power
consumption for various frequencies and image sizes.

In order to perform simple and reproducible power mea-
surements, the electrical consumption of the entire system has
been measured. A board was developed to this effect and
has been inserted between the power source and the target
system. The board samples both voltage and current at 5 kHz.
Measurements and code executions are synchronized using
GPIOs.

We can define four different metrics related to power
consumption:
• Static energy: the energy associated to the static power

when the system is idle (here, when the power consump-
tion comes from the leakage and running the operating
system)

• Dynamic energy: the energy associated to the dynamic
power: that is the extra energy consumed by the compu-
tation: the total energy minus the static energy.

• Compute energy: the energy consumed by the whole
system, that is the sum of static and dynamic energy.

• Period energy: the energy consumed by the whole system
between two execution starts, including the waiting time.

The period energy is more relevant if we consider a
complete system for which we know all of its applications
and behaviours. Since this is not yet the case here, we only
consider compute and dynamic energy in the following.

Our measurements show that considering the compute en-
ergy, the maximum frequency is always the most efficient
for all configurations, being both the fastest and the least



Fig. 3. Speed and energy efficiency of RTE-VD for embedded CPUs at different frequencies

energy consuming. Considering dynamic energy, results show
that there is a possible tradeoff between speed and energy
consumption by selecting different frequencies values.

Figure 3 represents the computation time in nanosecond per
pixel and the dynamic energy consumption in nanojoule per
pixel for all the boards and frequencies. The NANO is the
least energy consuming; however, it is possible to be 2.7×
faster while consuming almost as little energy using the AGX.
The AGX is the fastest since it is 2.3× faster than the fastest
configuration of the TX2 and 4.4× faster than the fastest
NANO configuration. Due to its etching process (16nm), the
TX2 is often less energy efficient and slower than the two
others (12nm). This is especially visible if we compare the
NANO to the TX2 using only its A57 quad core at equivalent
frequency. Since the NANO also possesses a quad core A57,
it is able to compute as fast as the TX2 while consuming
1.6× less. However the maximum frequency of the TX2 being
higher, it is able to be faster than the NANO even using only
the A57 cores.

The Table V synthesizes the best configurations minimizing
either energy consumption or computation time for each
platform. It gives for each configuration the largest image size
possibly processed at 25 frames per second.

TABLE V
BEST CONFIGURATIONS FOR REAL-TIME DENOISING AT 25 FPS

Configuration Energy
(nJ/pix)

Time
(ns/pix)

Max size
(#pix)

Freq
(GHz)

NANO min energy
NANO min time 616 311 358 1.4

TX2 min energy 1046 242 406 1.2
TX2 min time 1209 165 492 2.0
AGX min energy 683 114 592 1.4
AGX min time 832 70 754 2.3

VI. CONCLUSION

In this article, we proposed a novel real-time embedded
video denoising chain called RTE-VD, which is able to
restore details on very noisy video while achieving high
performance on embedded systems.

In order to achieve real-time processing, we applied several
code transformations (like SIMDization, multi-threading,
operator fusion and pipelining) and were able to get an
implementation 70× faster than a naive one. The PSNR and
visual results from our experiments validates our approach.



We thus compared RTE-VD to other state-of-the-art
algorithms: VBM3D, VBM4D and STMKF. RTE-VD always
denoises better than STMKF while being less effective than
the more costly algorithms VBM3D and VBM4D. On heavy
noise situations (σ = 40), RTE-VD achieves an overall PSNR
more than 4 dB above STMKF. RTE-VD is also 200× faster
than VBM3D and 4600× faster than VBM4D.

While RTE-VD is 2.5× slower than STMKF, it is still able
to process 960×540 pixel video at 25 fps on a Nvidia Tegra
AGX. Given these results, we believe that RTE-VD is a denois-
ing algorithm particularly well positioned for speed/accuracy
tradeoff.

Since we are targeting embedded systems, we also studied
the link between time and energy consumption on various
embedded CPUs. Within the tested platforms, it appears that
the Nvidia Jetson Nano is the least power consuming platform
while the Nvidia Tegra AGX is the fastest. We were also able
to determine for each platform multiple efficient frequencies
minimizing either computation time or energy consumption.

As future work, we plan to increase the whole performance
by balancing the load on the CPU and the GPU and by
studying what parts of the algorithm can be hybridized with
32- and 16-bit computation.

ACKNOWLEDGMENT

The authors would like to thank the French Direction
Générale de l’Armement for supporting this work.

REFERENCES

[1] M. Zhang and B. K. Gunturk, “Multiresolution bilateral filtering for
image denoising,” IEEE Transactions on image processing, vol. 17,
no. 12, pp. 2324–2333, 2008.

[2] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for image
denoising,” IEEE Transactions on Image processing, vol. 8, no. 12, pp.
1834–1838, 1999.

[3] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4,
no. 2, pp. 490–530, 2005.

[4] ——, “A non-local algorithm for image denoising,” in 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 2. IEEE, 2005, pp. 60–65.

[5] M. Lebrun, A. Buades, and J.-M. Morel, “A nonlocal bayesian image
denoising algorithm,” SIAM Journal on Imaging Sciences, vol. 6, no. 3,
pp. 1665–1688, 2013.

[6] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with bm3d?” in 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 2012, pp. 2392–2399.

[7] V. Jain and S. Seung, “Natural image denoising with convolutional
networks,” in Advances in neural information processing systems, 2009,
pp. 769–776.

[8] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[9] C. Zuo, Y. Liu, X. Tan, W. Wang, and M. Zhang, “Video denoising based
on a spatiotemporal kalman-bilateral mixture model,” The Scientific
World Journal, vol. 2013, 2013.

[10] P. Arias, G. Facciolo, and J.-M. Morel, “A comparison of patch-based
models in video denoising,” in 2018 IEEE 13th Image, Video, and
Multidimensional Signal Processing Workshop (IVMSP). IEEE, 2018,
pp. 1–5.

[11] A. Buades and J.-L. Lisani, “Video denoising with optical flow estima-
tion,” Image Processing On Line, vol. 8, pp. 142–166, 2018.

[12] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3d
transform-domain collaborative filtering,” in 2007 15th European Signal
Processing Conference. IEEE, 2007, pp. 145–149.

[13] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian, “Video denoising
using separable 4d nonlocal spatiotemporal transforms,” in Image Pro-
cessing: Algorithms and Systems IX, vol. 7870. International Society
for Optics and Photonics, 2011, p. 787003.

[14] P. Arias and J.-M. Morel, “Towards a bayesian video denoising method,”
in International Conference on Advanced Concepts for Intelligent Vision
Systems. Springer, 2015, pp. 107–117.

[15] S. G. Pfleger, P. D. Plentz, R. C. Rocha, A. D. Pereira, and M. Castro,
“Real-time video denoising on multicores and gpus with kalman-based
and bilateral filters fusion,” Journal of Real-Time Image Processing, pp.
1–14, 2017.

[16] J. Ehmann, L.-C. Chu, S.-F. Tsai, and C.-K. Liang, “Real-time video de-
noising on mobile phones,” in 2018 25th IEEE International Conference
on Image Processing (ICIP). IEEE, 2018, pp. 505–509.

[17] C. Liu and W. T. Freeman, “A high-quality video denoising algorithm
based on reliable motion estimation,” in European Conference on
Computer Vision. Springer, 2010, pp. 706–719.

[18] A. Petreto, A. Hennequin, T. Koehler, T. Romera, Y. Fargeix, B. Gaillard,
M. Bouyer, Q. L. Meunier, and L. Lacassagne, “Energy and execution
time comparison of optical flow algorithms on SIMD and GPU archi-
tectures,” in 2018 Conference on Design and Architectures for Signal
and Image Processing (DASIP). IEEE, 2018, pp. 25–30.

[19] T. Kroeger, R. Timofte, D. Dai, and L. V. Gool, “Fast optical flow using
dense inverse search,” in (ECCV), 2016.

[20] A. Plyer, G. L. Besnerais, and F. Champagnat, “Massively parallel lucas
kanade optical flow for real-time video processing applications,” Journal
of Real-Time Image Processing, vol. 11,4, pp. 713–730, 2016.

[21] M. Kunz, A. Ostrowski, and P. Zipf, “An FPGA-optimized architecture
of horn and schunck optical flow algorithm for real-time applications,”
in International Conference on Field Programmable Logic and Appli-
cations (FPL). IEEE, 2014, pp. 1–4.

[22] L. Bako, S. Hajdu, S.-T. Brassai, F. Morgan, and C. Enachescu,
“Embedded implementation of a real-time motion estimation method
in video sequences,” Procedia Technology, vol. 22, pp. 897–904, 2016.

[23] Middlebury, “Optical flow database http://vision.middlebury.edu/flow/.”
[24] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime

tv-l 1 optical flow,” in Joint Pattern Recognition Symposium. Springer,
2007, pp. 214–223.

[25] B. D. Lucas, T. Kanade et al., “An iterative image registration technique
with an application to stereo vision,” 1981.

[26] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in null. IEEE, 1998, p. 839.

[27] A. Davy, T. Ehret, G. Facciolo, J.-M. Morel, and P. Arias, “Non-local
video denoising by cnn,” arXiv preprint arXiv:1811.12758, 2018.

[28] Derf, “Derf’s test media collection https://media.xiph.org/video/derf/.”
[29] L. Lacassagne, D. Etiemble, A. Hassan-Zahraee, A. Dominguez, and

P. Vezolle, “High level transforms for SIMD and low-level computer
vision algorithms,” in ACM Workshop on Programming Models for
SIMD/Vector Processing (PPoPP), 2014, pp. 49–56.

[30] F. C. Crow, “Summed-area tables for texture mapping,” in ACM SIG-
GRAPH computer graphics, vol. 18, no. 3. ACM, 1984, pp. 207–212.

[31] T. Q. Pham and L. J. Van Vliet, “Separable bilateral filtering for
fast video preprocessing,” in 2005 IEEE International Conference on
Multimedia and Expo. IEEE, 2005, pp. 4–pp.

[32] N. N. Schraudolph, “A fast, compact approximation of the exponential
function,” Neural Computation, vol. 11, no. 4, pp. 853–862, 1999.

http://vision.middlebury.edu/flow/
https://media.xiph.org/video/derf/

