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Abstract 

In the Lee Model code for radiative plasma focus computation, both the density 

profile and the temperature profile (versus anode radius) of the pinch column 

are approximated by step functions with uniform values across the column 

radius. This means that the computed density and temperatures will be lower 

than the physical situation where the density and temperature profiles will 

certainly have peak values higher than the uniform (with radius) values of the 

step function. It has been shown that the density profile is side-peaked 

(somewhat shell-shaped or like the shape of a volcanic crater) with the 

assumption of no reflected shock wave; whereas the temperature profile is 

centre-peaked somewhat like a Gaussian shape. The aim of this paper is to 

investigate the use of higher degree mathematical function, where the crater-

shaped profile can be well represented, to approximate the plasma focus density 

profile. Two different approximated functions will be discussed: namely 

Gaussian distribution function and Bézier function. From these profiles we 

obtain the likely ratio of the profiled peak temperature to the step function 

uniform temperature and the peak density to the step function uniform density. 

In this manner we are able to suggest correction factors to the temperature and 

density computed by the Lee Model code. 
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1.  Introduction 

The Lee model code [1, 2] is useful for estimating key plasma experimental 

results, such as axial and radial dynamics, energy distributions and neutron yield 

and soft X-ray yields. Generating well estimated results is very important, which 
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certainly provides better insight to manipulate the values of key parameters (e.g., 

pressure, voltage, etc.) when carrying out physical plasma experiment.  

The radial phase of the plasma focus culminates in the formation of a column 

of hot dense plasma commonly described as a pinch column. The two quantities 

of importance in characterising the plasma are the temperature and density. The 

profiles of the temperature and density (with radius) depend on the process of 

pinch formation and also on the stage of the formation whether we are 

considering the early or late stage. Potter has shown that towards the end stage of 

pinch formation the temperature profile is centre-peaked whereas the density 

profile is shaped like a shell [3-5]. We prefer to liken the Potter density profile to 

that of the profile of a volcanic crater; hence we use the word crater-profile. The 

Potter profiles are considered without, or before, the reflected shock. Still it is 

instructive to consider the effect of the profile on the estimate of temperature and 

density compared to the case when the profile is taken simply as constant or 

uniform across the pinching column.  

First we consider the density profile. For the purpose of comparing profiles we 

may write the line density as 
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We find the ratio of (peak value of f(r))/m for each specified shape. The ratio 

found for the crater-profile is the correction factor we could apply to the density 

computed from the Lee Model code. Likewise the ratio found for the Gaussian 

profile is the correction factor for the temperature computed from the Lee code.  

Although in finding the correction ratio for density we could call the integral a 

line density, we note that the method is a general one to find the ratio of (peak 

f(r)/uniform f(r)) for the case of a profiled f(r) versus the case of uniform f(r) 

whilst keeping the integral of the profile with respect to r a constant for both the 

cases of profiled f(r) and uniform f(r). Thus for both the cases of temperature and 

density we call the quantity πrp
2
m the line density. 

The aim of this paper is to replace the step function by higher degree 

mathematical function to approximate the plasma density profile so that we may 

estimate the ratio of the profile-peaked density to the uniform density of the step-

function; and hence obtain some information on the peak density. 

We next find the functions that we can use to represent f(r) for the temperature 

(Gaussian) and the density (crater-shape). Therefore, Gaussian distribution and 

Bézier functions [6] are considered in this paper. It is noted that both Gaussian 

distribution and Bézier functions are non-linear functions, so an iterative 

procedure may be required for approximating plasma density profile. 

The remaining sections of this paper are organized as follows. Section 2 

introduces the algorithm of approximating density profile which involves iterative 

process. Section 3 discusses the use of Gaussian distribution to approximate 
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temperature profile, which mainly explains how the parameters of Gaussian 

distribution function relate to the shape change of temperature profile.  Section 4 

discusses the use of Bézier function to approximate density profile, which mainly 

highlights the constraint of Bézier function parameters for approximation of density 

profile. Section 5 presents the graphical results of density profile, and highlights the 

significance of the results. Section 6 summarize the overall achievement of the 

research and reviews critically the performance of the approximation method.  

 

2.  Algorithm of Approximating Density  

This section presents an algorithm for approximating density profile as shown in 

Fig. 1. The input of the algorithm is the line density and the specified 

mathematical function. Whereas, the final output is the density profile defined by 

the specified function. 

 
Fig. 1. Algorithm of Approximating Profile. 

Initially, the desired line density (which is arbitrary but just needs to be fixed 

to enable shape comparison) and the mathematical function are specified, where 

the function can be either Gaussian distribution function (for temperature) or 

Bézier function (for density). It is noted that there are certain parameters that 

govern the shape change of the curve defined by Gaussian distribution/Bézier 

function, and how the parameters relate to shape change will be detailed in 

Section 3 and Section 4 respectively.   

Subsequently, the parameter values are estimated and then the configuration 

of the curve defined by specified function can then be generated. To determine 

the line density (already arbitrarily fixed), the area under the curve is then 

calculated by trapezoidal rule. If the resulting line density (i.e., area under the 

curve) is close to the desired line density within an acceptable tolerance, then the 

curve is considered as the desired profile. Otherwise, the change of parameter 

values is carried out iteratively until the curve (profile) matches the desired line 

density within an acceptable tolerance.  

 

3.  Approximation Method with Gaussian Distribution Function  

This section discusses the use of Gaussian distribution function to approximate 

the temperature profile. The Gaussian distribution is defined as follow: 
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where    f (r) is plasma column density at r,    

     r      is the anode radius, where 0 ≤ x ≤ rp, 

   µ  and σ    are shape change parameters. 

By specifying the values of µ  and σ, and tabulating a set of values x, where xє 

[0, R], the density profile can be obtained, as shown in Fig. 2. 

 

Fig. 2. Density Profile Defined by Gaussian Distribution Function. 
 

The shape change parameter µ is symmetrical axis, which purely controls the 

position r of peak density without changing the peak density value f(r). For 

instance, the peak density is at r = µ as shown in Fig. 2, by changing the value of 

µ toµ +∆µ , the peak density will be shifted to x = µ +∆µ . Whereas, the shape 

change parameter σ  controls the width and peak density value of the curve as 

shown in Fig. 2. For instance, by increasing the value of σ to σ +∆σ, the curve 

will become flatter, then the peak density value will be decreased accordingly.  

The resulting curve generated by using Gaussian distribution function is 

symmetrical in nature. Therefore the peak value of the resulting curve is always at 

the center regardless of the values of µ and σ. However, the density profile as 

pointed out by potter could be somewhat side-peak rather than center-peak. 

Therefore, it is not suitable to use Gaussian distribution function.  

In addition, there are only two shape change parameters µ andσ. The parameter 

µ only controls the location of the curve with respect to center peak. The parameter 

σ controls the width of the curve, which can change the curve shape entirely. In this 

sense, the shape change of the curve is mainly governed by parameter σ.  

Here we estimate what the Gaussian curve estimates the correction factor for 

Gaussian profiled temperature should be compared to uniformed (across the 

column) temperature in a similar fashion as for section 5; where we estimate the 

correction factor for density. 

Whilst the curve shape is suitable to simulate the temperature profile, there 

seems to be insufficient degree of freedom to manipulate the curve shape to fit the 

crater shape required for Potter’s density profile. Consequently, Bézier function is 

implemented, which allows more degrees of freedom for shape manipulation. The 

approximation method with Bézier function will be detailed in Section 4.  
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4.  Approximation Method with Bézier Function  

This section discusses the use of Bézier function to approximate the density 

profile of plasma column. The Bézier function is defined by vector function of 

single variable u, such that ))(),(()( uyuxu =R , where 0 ≤ u ≤ 1. The general 

form of Bézier function is given as follow: 
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where  n is a degree of the polynomial  

           Vi are control points with the components of (xi , yi)            

            R(u) are resulting points of (x(u), y(u)) for 0 ≤ u ≤ 1 

For density profile approximation, it is crucial to have sufficient degree of 

freedom in shape control, which is dependent on the degree of polynomial n. It 

should be noted that the curve shape characterization is governed by
2

2 )(

du

ud R
, 

which is essentially the rate of change of tangent vector. Consequently, 5
th

 Degree 

(n = 5) of Bézier function is used, which is the lowest degree of Bézier function 

that allows the control of 
2

2 )(

du

ud R
. The expression of 5

th
 degree Bézier function 

is given as follow:    
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By specifying the values of control points Vi (i = 0,1,…,5), and tabulating a 

set of values u є [0 ,1], the curve and the respective control points can be 

generated as shown in Fig. 3. 

 

Fig. 3. Density Profile Defined by Bézier Function. 

To approximate the density profile, the first step is to fix the points V0 and V5, 

which coincide with the end points of the curve. Once the end points are fixed, 

which is essentially to incorporate the curve with the respective anode radius. In 

order to obtain a trend that approach to somewhat crater-shape with side peak, the 

y 

x 

V0 
V1 

V2 

V3 

V4 

V5 



32       P. L. Chong et al.                           

 

 
 
Journal of Engineering Science and Technology          February 2013, Vol. 8(1) 

 

end tangent vectors are specified, which are mainly control by V1 and V4.  

Subsequently, the V2 and V3 are adjusted in a way that a side-peak can be 

generated as shown in Fig. 3 (showing one side of the crater profile, the other side 

is assumed to be symmetrical). It is noted that V2 and V3 controls the second 

derivatives of the end points, which provides four degree of freedom (2 control 

points have 2 sets of (x, y) components in total) in manipulating the curve shape.  

Comparing to Gaussian distribution function, 5th degree Bézier function has 

more degree of freedom for curve shape modification. Therefore, it is 

implemented for the approximation of density profile of plasma column. The 

result of the approximation will be discussed in Section 5.          

 

5.  Results and Discussion 

This section presents the result of a set of density profiles in similar pattern that 

approximated by Bézier function. As an example, a line density with 200 is 

specified (which is defined by area under the curve), the respective set of density 

profiles are shown in Fig. 4. 

Referring to Fig. 4, it can be seen that lowest peak density value is 87 units/ unit 

length and the highest peak density value is 112 numbers of particles/unit length. 

Comparing to the use of step function, where the density value is at 40 units/unit 

length (line density = 40 × 5 =200), the ratio of peak density values between the 

Bézier function and step function is ranging from 2.175 to 2.8. In this sense, the use 

of step function likely estimates a density value up to 2.8 times less than actual peak 

value. It is also noted that if the crater rim is sharper the underestimation would be 

more severe. This is because the decrease of width has to be compensated by the 

increase of peak value in order to maintain the same area under the curve. So the 

underestimation of density can even be more than a factor of 3. In addition, it can 

also be observed that the higher the peak value, the sharper the bend of the peak 

region. In this sense, the Bézier function has a characteristic of maintaining a 

smooth transition, where there is no unnecessary oscillation.  

 

Fig. 4. Density Profiles for Different Peak Values. 
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6.  Conclusions 

In this paper, we suggest using Gaussian profile to represent the temperature 

profile of the pinch column. To simulate the Potter density profile for the plasma 

focus pinch we suggest the Bézier function which we demonstrate to be able to 

generate the desired crater-shape profile. 

We conclude that for moderately shaped Gaussian profile as compared with 

Potter’s results [4] the Lee Model code underestimates the peak temperature by a 

factor of 3.125. For moderately shaped crater-like profile the Lee Model code 

underestimates the peak density by a factor up to 2.8. In both case the correction 

factors to peak values could be much greater if the profiles are more peaked than 

the moderate curves considered. 

To go further along these lines it is necessary to use Potter’s methods to 

evaluate more precisely the profiles of density and temperature across the pinch 

columns. Alternatively laboratory measurements may be made for density and 

temperature profile across the pinch column. In those manners either directly the 

peak values of density and temperatures are obtained or if only relative profiles 

are obtained then Bézier functions may be suitable, to provide the correction 

factors to models using uniform density and temperature. 
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