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We present a wave-memory-driven system that exhibits intermittent switching between two propulsion modes
in free space. The model is based on a pointlike particle emitting periodically cylindrical standing waves.
Submitted to a force related to the local wave-field gradient, the particle is propelled, while the wave field stores
positional information on the particle trajectory. For long memory, the linear motion is unstable and we observe
erratic switches between two propulsive modes: linear motion and diffusive motion. We show that the bimodal
propulsion and the stochastic aspect of the dynamics at long time are generated by a Shil’nikov chaos. The
memory of the system controls the fraction of time spent in each phase. The resulting bimodal dynamics shows
analogies with intermittent search strategies usually observed in living systems of much higher complexity.

DOI: 10.1103/PhysRevE.100.032201

I. INTRODUCTION

At the individual level, random switches between straight-
line motion and erratic changes in direction has been observed
in many living systems such as microscopic bacteria [1], flies
[2,3], or macroscopic animal foraging [4]. The theoretical
description of animal foraging based on bimodal exploration
of space cannot be separated from a fine analysis of the spatial
heterogeneities of their environment [5,6]. However, in some
specific cases, the origin of bimodal motions may be justified
using optimal search strategies in the absence of cues [7].
Indeed, without any cues about the target location, bimodal
motions can be encountered when exploration and exploita-
tion tasks are not performed simultaneously, for instance,
in fishes looking for prey of various sizes [8]. In contrast,
when the searcher can perform both tasks simultaneously,
Levy flights strategies [9,10] with exponents depending on
the target properties are optimal even if their observations and
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relevances in the context of animal motions has been raised
[11–13].

The theoretical description of these individual trajectories
usually involves a pinch of stochasticity as can be seen from
the pioneering work of Pearson [14] up to the numerous recent
theoretical analysis using persistent random walks [15,16].
Individual trajectories of erratic aspects can also be obtained
from purely deterministic rules, in which stochasticity be-
comes an emergent behavior [17,18]. Emergent complexity
from simple deterministic model rules would provide a robust
artificial implementation of bimodal explorations in which the
statistics of both phases of motion would not be preset in an
arbitrary manner. Ideally, few tunable parameters would con-
trol the proportion of time spent in each phase. To achieve this
goal, in this article, we focus on the interconnected dynamics
of a particle and a scalar field. The model we propose uses
the concepts of both chaos theory and time-delayed systems.
Indeed, the particle is coupled in a deterministic and nonlinear
way to the scalar field while the scalar field stores informa-
tions about the particle position, acting as a readable memory.

The design of our model finds its origin in the dynamics
of walking droplets on a vertically vibrated bath [19,20]. A
silicone droplet compelled to bounce on a vertically vibrated
liquid surface generates monochromatic cylindrical standing
waves by its successive impacts, thanks to the immediate
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vicinity of the Faraday instability [21]. In return, the waves
propel the droplet along the surface. The waves are slowly
damped in time, with the temporal decay controlled by the
bath acceleration [22]. Besides this particular experimental
implementation, it is an example of physical trajectory en-
coding information in a surrounding wave medium [22,23].
The center of each circular wave pattern is located at the
exact previous position of the walker, such that a positional
information is periodically stored in an oscillating wave field
[22,24,25]. Deposition of information along a path is also
encountered in living systems such as ants [26] and may
lead to bioinspired algorithmic principles [27]. Here the wave
persistence defines a memory time during which the positional
information is stored and can be read or erased, similarly to a
Turing machine [23]. Besides wave-particle-inspired dynam-
ics [19,20,24,25,28–42], walking droplets exhibit cascades of
bifurcation to chaos in Coriolis and Coulomb force field [43]
as well as intermittency in harmonic potential [36,43–48].
Nonsteady propulsions have been reported in asynchronous
bouncing modes [49,50] and speed limit cycle and chaotic
behavior for the free particle [51] have been investigated for
synchronous bouncing modes. In short, we have in our hand a
particle (the droplet) coupled nonlinearly to a scalar field (the
height of the interface) where the memory drives and tunes
the dynamics of both subsystems.

In this article we leverage this concept of wave memory
to implement three modes of motion at the single-particle
level in the same model: ballistic, diffusive, and intermittent
motions. The article is organized as follows. In Sec. II, we
describe the model and its implementation. In Sec. III, we ana-
lyze the evolution of the trajectories as the memory parameter
of the system is increased. We show that above a critical mem-
ory parameter the system exhibits a transition from ballistic
path to a bimodal mode of motion, namely an intermittent
succession of ballistic and erratic motion. Then we rationalize
in Sec. IV the chaotic nature of the intermittency and show
that a Shil’nikov mechanism triggers the switch between the
two modes of motion. Finally, in Section V, we analyze the
statistical properties of the long-term dynamics in the light of
the local intermittent behavior.

II. MODEL

The experiment-inspired numerical model is implemented
as follow. The iterative dynamics consists in the equation
of motion of a particle at the position �rk at the kth bounce
and its associated self-built wave field ζ (�r, t ). The motion is
decomposed in two phases of respective duration t1 and t2 such
that t1 + t2 = T is the wave period, which will be used as the
unit of time. Phase 1 corresponds to a free flight motion, in
which the particle follows a planar motion above the wave
field at constant horizontal velocity. Phase 2 corresponds to
the contact with the surface, which yields both the interaction
with the waves and the energy dissipation. The particle slides
on the surface for a duration t2 with an exponentially decaying
speed before taking off again. At the peculiar instant between
phase 1 and phase 2, the particle gets a kick of momentum
proportional to the local slope of the wave field. The wave
field is updated simultaneously. A new standing cylindrical
wave is added, centered at the current position of the particle.

(a)

(b)

(c)

(d)

(  ) (  )

(   )

FIG. 1. Evolution of the wave-memory-driven particle dynamics
with increasing memory. (a) Particle trajectories obtained for in-
creasing values of Me = 50, 150, 250, 500, 1250. They correspond
to the same simulation time. [(i)–(iii)] Zoom into one trajectory
shows evidence of a bimodal dynamics. Straight lines alternate with
erratic motion. [(b)–(d)] Particle speed as a function of time for
increasing memory parameters (b) Me = 50, (c) Me = 250, and
(d) Me = 1250. Above Me = 150, the dynamics is unstable. The
duration of the laminar phases decrease with Me.

The total wave field ζ (�r, t ) after the N th bounce at time tN is
written as

ζ (�r, tN ) = ζ0

N∑
n=1

J0

(
2π

λ
|�r − �rn|

)
e− |�r−�rn |

δ e− N−n
Me , (1)

where ζ0 accounts for the amplitude of one standing cylin-
drical Bessel wave J0 and λ is the wavelength. In the inspiring
experiments λ � 5 mm, we chose here the wavelength λ as the
unit of length. The memory parameter Me sets the effective
number of active wave sources, and δ = 2.5λ accounts for
the spatial attenuation of viscous dissipation [22] (see the
Appendix for the numerical values and for a detailed descrip-
tion of the algorithm). The control parameter Me is expected
to play a key role in the dynamics.

III. TRAJECTORIES FOR INCREASING MEMORY

The particle trajectories for increasing memory parame-
ter Me are shown in Fig. 1(a) (see also the supplemental
movies SM1 and SM2 [52]). They are obtained from the
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FIG. 2. Description of the bimodal dynamics. (a) Zoom on the
trajectory during one erratic phase. Inset: Histogram of θ2 − θ1

showing a uniform distribution. (b) Particle speed as a function
of time. The gray zone is an eye guide which corresponds to the
laminar phase shown in Fig. 2(a). Erratic motion corresponds to
erratic fluctuation of speed (chaotic phase) while linear motions
correspond to slow diverging oscillation of speed (laminar phase).
(c) [respectively, (d)] Probability distribution (lin-log) of the time
spent in linear (respectively, erratic) phase for Me = 250.

same initial conditions and a simulation time of �Tsimu =
2.5 × 105T . For Me = 50, the particle moves along a straight
line, as described in previous works [24]. This linear motion
results from a stable balance between propulsion from the
wave field and dissipation by waves emission and viscous
friction [28]. Starting from Me � 150, straight-line motions
are interspersed by sudden changes of direction. Successive
zooms in Fig. 1(a) reveal erratic changes of direction on a
scale equal or shorter than the wavelength, alternating with
periods of linear motion. For larger Me the length of lin-
ear trajectories shorten on average. The memory parameter

affects the switching rates between the two modes of space
exploration. The switch between linear and erratic phases
finds a signature in the particle speed. Figures 1(b)–1(d)
present the temporal evolution of the velocity modulus V for
increasing memory corresponding to the trajectories shown in
Fig. 1(a). For Me = 50 [Fig. 1(b)], transient speed oscillations
decrease exponentially in time, and the dynamics converges
toward an uniform linear motion. Note that a similar behavior
has been observed both experimentally and numerically by
Bacot et al. [51]. For Me = 250 [Fig. 1(c)], the temporal
signal of the particle speed is a succession of oscillations of
slowly increasing amplitude and more complex excursions of
short duration. On a longer timescale, we observe intermittent
switches between slow diverging speed oscillations (laminar
phase) followed by erratic motion (chaotic phase). For longer
memory parameter, the laminar phases shorten while chaotic
phases become predominant [Fig. 1(d)].

The relation between the trajectories and the speed is de-
scribed in Fig. 2. Figure 2(a) zooms on a erratic phase between
two linear parts of the dynamics at Me = 250. Figure 2(b)
shows the associated speed oscillations. Linear motion coin-
cides with speed oscillations, while erratic trajectories coin-
cides with chaotic speed fluctuations. We use a local radius
of curvature of the trajectory greater than λ for at least 100
bounces as a criterion for defining a straight line. Statistical
results presented on this manuscript do not depend on the
criterion choice. Starting the description from the beginning of
a laminar phase, the divergence of speed oscillations leads to
vanishing velocity [zero (Z) point in Figs. 2(a) and 2(b)]. This
specific moment corresponds to a sharp change of direction
in the particle trajectory. At Z, the particle hits the surface
wave field with a positive slope, which triggers a back motion
and initiates the transition from the linear phase to the erratic
phase. Then the particle navigates erratically in a confined
region of space during a period �Terratic. The complex tra-
jectory in the erratic phase is attributed to the dynamical
trap of the particle created by the wave-field structure (see
supplemental movie 2 [52]). After a certain period of time the
erratic phase ceases and the particle enters again in a phase
of linear motion of duration �Tline [E point in Figs. 2(a) and
2(b)]. The spatial extent of the trajectory in the erratic phase
is of the order of 10 wavelengths as emphasized in gray in
Fig. 2(a). The histogram inset of Fig. 2(a) reveals that the
erratic phases perform a statistically isotropic reorientation
of the trajectory. The duration of linear motions follows an
exponential distribution as evidenced in Fig. 2(c). As the
memory parameter is increased, the distribution of time in
the laminar phase remains exponential and the average time
decreases. Figure 2(d) gives the distribution of time spent
in the erratic phase for the same memory parameter as in
Fig. 2(c). An exponential distribution is also observed.

IV. CHARACTERIZATION OF THE CHAOTIC DYNAMICS

To analyze further the chaotic nature of the dynamics,
we decompose the wave field using Graf’s theorem into
the comoving Frenet basis centered at the position of the
particle. Graf’s addition theorem states that J0(2π |�r − �rn|/λ)
can be decomposed onto a sum of eigenmodes Jp(2π |�r|/λ)
and Jp(2π |�rn|/λ) considering the angular difference (θ − θn)
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between the two vectors [53]. The wave field then writes

ζ (�r, tN ) = ζ0

N∑
n=1

∞∑
p=−∞

Jp

(
2π

λ
|�r|

)

× Jp

(
2π

λ
|�rn|

)
eip(θ−θn )e− tN −tn

MeT , (2)

=
∞∑

p=−∞
ζ0

[
N∑

n=1

Jp

(
2π

λ
|�rn|

)
e−ipθn e− tN −tn

MeT

]
︸ ︷︷ ︸

Cp

Jp

(
2π

λ
|�r|

)
eipθ ,

(3)

where the factor Cp corresponds to the amplitude of each
eigenmode. The walker position in the Frenet frame is
given by |�r| = 0 and θ = 0. Using the asymptotic behav-
ior of the Bessel function for small argument Jp(kF |�r|) =

1
�(p+1) ( π |�r|

λ
)

p + O(rp+1), we obtain

∂ζ

∂r

∣∣∣
�r=�0

= π (C1 − C−1)

λ
, (4)

= 2πRe(C1)

λ
, (5)

1

|�r|
∂ζ

∂θ

∣∣∣
�r=�0

= iπ (C1 + C−1)

λ
, (6)

= −2π Im(C1)

λ
. (7)

As a conclusion, the knowledge of the wave force acting on
the walker can be completely reduced to the single complex-
valued scalar quantity C1, which is the amplitude of the first
Frenet eigenmode. A subset of the flow for Me = 250 is
plotted in Fig. 3(a), in the three-dimensional phase space
[V, Re(C1)/ζ0, Im(C1)/ζ0]. We observe a converging flow
along the axis Im(C1)/ζ0 followed by a diverging spiral in
the plane [V, Re(C1)/ζ0]. This type of trajectory in phase
space is encountered in Shil’nikov-type chaos in which the
flow converges toward a saddle point before diverging by
spiralling outward in the supplementary plane. To evidence
the nature of this chaos, we compute the saddle index ν =
tI/tD [54] which measures the ratio between the reinjection
timescale tI and the timescale tD of the diverging flow. They
are measured from the temporal evolution of Im(C1)/ζ0 and
its quadrature Re(C1 − 〈C1〉)/ζ0 in the vicinity of the saddle
[see Figs. 3(b) and 3(c)]. We find ν = 0.05, which is much
smaller than 1, a necessary condition for the existence of a
Shil’nikov chaos [54]. Shil’nikov chaos has been observed
in several contexts from the Belousov-Zhabotinsky reaction
[55], electrode dissolution [56,57], and Chua oscillator [58] to
CO2 laser [59,60]. It is encountered when a homoclinic cycle
interacts with a subcritical Hopf bifurcation [61]. Exponential
distribution of the laminar phase have been demonstrated
in the context of type-II intermittency [62]. We find that
Shil’nikov chaos exhibits here the same feature.

(a)

(b)

(c)

FIG. 3. Characterization of the instability. (a) Three-dimensional
representation in the [V, Re(C1)/ζ0, Im(C1)/ζ0] space for a trajectory
at Me = 250 [vicinity of the gray part Figs. 2(b) and 2(c)]. The
slow outward spiraling flow of the laminar phase alternates with fast
out-of-phase inward injection of the erratic phase, a signature of a
Shil’nikov-type chaos. [(b) and (c)] Time series of Im(C1)/ζ0 and
its centered quadrature Re(C1 − 〈C1〉)/ζ0 in lin-log scale. Dashed
lines: Evidence of exponential evolution and the convergence tI and
divergence tD time. The color code is as in Figs. 2(b) and 2(c).

V. STATISTICAL PROPERTIES OF
THE LONG-TERM DYNAMICS

Finally, we analyze the statistical properties of the long-
term dynamics by measuring the normalized mean-squared
displacement (MSD) of the particle 〈|r(t ) − r0|2〉, where 〈.〉
represents the ensemble average and t is the elapsed time since
the position r0. Figure 4(a) shows the MSD as a function of the
time t elapsed for increasing memory parameters. For Me =
100, the MSD scales as t2, as expected for a ballistic motion.
For larger memory, the dynamics exhibit three regimes. At
short time t/T < 10, a MSD typical of ballistic motion is
recovered. At intermediate timescale 10 < t/T < 103, we ob-
serve superdiffusive motion, in which the local MSD exponent
α defines as α = d (log(〈|r(t ) − r0|2〉)/dt lies in the range
between 1 and 2. In order to link the MSD with the distri-
bution of time spent in the laminar and chaotic phases, we
introduce the autocorrelation function in time of the particle
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(a)

(b)

FIG. 4. Statistical properties of long-time dynamics (a) MSD
for increasing values of the memory parameter Me (from blue to
yellow: 100, 200, 375, 500, 1000, 2000, 5000, 104) as a function
of the time t . Three regions can be distinguished: ballistic ( t

T < 10),
superdiffusive (10 < t

T < 103), and diffusive ( t
T > 103). Inset (top);

Fit of the MSD using Eq. (11) in the case Me = 500. Inset (bottom):
Evolution of α with Me in lin-log scale. (b) Measure of Perratic

(respectively, Pline) the proportion of time spent in the chaotic phase
(black circle) [respectively, in the laminar phase (red circle)]. Inset:
Perratic presents a scaling law Perratic ∼ (Me − Me�)0.44.

velocity v [63]:

C(t ) = 〈v(t )v(0)〉. (8)

The MSD 〈|r(t ) − r0|2〉 can then be written as:

d

dt
〈|r(t ) − r0|2〉 = 2

∫ t

0
C(u) du. (9)

The temporal correlation function C can be modelled using
the statistical description of the time spent in the linear and the
erratic phases. Considering two instants t1 and t2, we suppose
〈v(t1) · v(t2)〉 = 1 if the t1 and t2 instants occur during the
same linear phase and 〈v(t1) · v(t2)〉 = 0 otherwise. Using an
exponential distribution of time spent for linear motion [see
Fig. 2(c)] and no correlation between the direction of two
successive linear phases [see Fig. 2(a) insert], the correlation
function C is written as:

C(t ) = v2
0Plinee−t/Tc , (10)

where Tc is the typical time and v0 the averaged particle
velocity in the linear phase. Under these assumptions, the
MSD eventually reads

〈|r(t ) − r0|2〉 = 2v2
0PlinetTc(1 − e−t/Tc ), (11)

which already predicts a transition from ballistic to diffusive
motion for t = Tc. However, this approach does not explain
the existence of an intermediate timescale range as indicated
in Fig. 4(a). The discrepancy can be attributed to the existence
of finite-time correlation in the erratic phases which may not
be negligible and generate superdiffusive behavior at inter-
mediate timescale. For t greater than the averaged time spent
in the erratic phases, the velocity correlation within the same
erratic phase becomes negligible, and the MSD transits toward
purely diffusive motion. The evolution of α as a function of
the memory parameter Me is indicated in the inset of Fig. 4(a).
Its value is a direct consequence of the proportion of time
spent in both phases of motion and the finite-time velocity
correlation in the erratic phases.

We measure Pline and Perratic as the fraction of time spend
in the linear and the erratic phases, respectively. Figure 4(b)
shows the evolution of Pline and Perratic with Me. We iden-
tify a critical memory parameter Me� = 134.76 ± 0.73 cor-
responding to the onset of a bimodal dynamics, above which
a Shil’nikov chaos is triggered. For Me > Me�, Perratic in-
creases, following a scaling law Perratic ∼ (Me − Me�)β with
an exponent β = 0.441 ± 0.016. In contrast the transition
from the intermittent to the diffusive regime is progressive and
we observe no signature of a discontinuity.

In this article, we have studied the dynamics of a particle
propelled by a self-generated wave field in two dimensions.
The wave field creates a time-dependent erratic environment
with long temporal coherence coupled to the particle motion.
The temporal damping of the waves controls a transition from
a purely ballistic motion to erratic switches between ballistic
and local diffusive motions. The difference of the two type of
motion is found on the trajectories, on the speed variations,
and in the properties of the associated wave field. The three
dynamical features being correlated, a discriminant criterion
could therefore be defined from any of these three features.
The characteristics of this purely deterministic dynamics are
set by the properties of a Shil’nikov chaos occurring at the
vicinity of a saddle point interacting with a Hopf bifurcation.
It is interesting to note that the multiscale feature is encoded
by a simple deterministic wave memory. It is also worth notic-
ing that this numerical experiment does not involve external
noise or interactions with other particles, so the diffusive
behavior of the particle results solely from the interaction with
the wave memory.

As a final comment, it is worth noting that in other sys-
tems, the scalar field may be different from our wavelike
medium which arises from the hydrodynamic specificities of
the original experiment. Indeed, other bimodal dynamics of a
particle coupled to a field have been reported experimentally,
in which the field has no hydrodynamic nature. For example,
the motion of Escherichia coli in a nutriment-filled medium
is known to display the “run and tumble” dynamics [1,64].
In this case, the bacteria plays the role of the particle while
the concentration of nutriments c(�r, t ) plays the role of the
environment. Indeed, the bacteria consumes the nutriment and
locally depletes the field c(�r, t ). The particle (bacteria) moves
in new regions to find food, leaving in its trail regions depleted
of nutriments. Therefore we have a synergy between the par-
ticle and its environment: The bacteria depletes the fluid of its
nutriment (i.e., information is stored), and the bacteria avoids
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regions of low density through chemotactic dynamics (i.e., the
environment drives the particle dynamics). Interestingly, the
diffusion coefficient D of the nutriment within the surrounding
fluid can be related to the memory Me in our system since
diffusion tends to blur the inhomogeneities created by the
motion of the particle or bacteria. Yet, in contrast with this
example, our system rely on memory to drive the chaotic
dynamics instead of stochasticity. Another example can be
seen in the Lévy flight-based dynamics of microglia caused
by spreading depression [65], a pathology deeply affecting
the synaptic activity and neurons excitability in the brain. The
pathology is known to trigger a bimodal dynamics of this
cell which, in return, acts on the whole tissue. If the role of
microglia in the apparition of spreading depression and its
symptoms has yet to be described, then a particle-environment
model may shed a new light on the physical mechanisms at
play in such a biological system.
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APPENDIX

The numerical simulations of walking droplets are made in
C/C++ and the source code can be found in the Supplemental
Materials [52]. We provide here an exhaustive description of
the algorithm we used.

Simulations are made using the assumption that the vertical
and the horizontal dynamics are not coupled to each other.
The vertical dynamics corresponds to the completely inelastic
bouncing ball. The horizontal dynamics is related to the
interaction between the droplet and its wave field.

1. Vertical dynamics

Since the dynamics of an inelastic bouncing ball is periodic
and does not show transient behavior, this part of the simula-
tion is solved only once. The results one obtains are used to
compute the horizontal dynamics. We assume that the surface
vertical elevation is given by

zs(t ) = A sin(ωst ). (A1)

Because the droplet impacts on the surface are assumed to be
inelastic, once the contact occurs, the droplet vertical speed
relative to the surface is equal to zero. In other words, the
droplet has the same vertical speed as the surface. As a
consequence, the droplet only leaves the surface when the
surface acceleration z̈s has a magnitude such as

z̈s = Aω2
s � g, (A2)

with A being the forcing amplitude and ωs the angular fre-
quency of oscillation. Indeed, in such case, the surface “falls
down” with an acceleration higher than the droplet one, i.e., g.
The take-off instant t� can be easily extracted, knowing that it
corresponds to the first instant z̈s matches g

t� = 1

ωs
arcsin

(
g

Aω2
s

)
. (A3)

Therefore, the take-off velocity and the take-off height can be
computed. Because the droplet vertical speed is always given
by the surface velocity when both are in contact, one has

ż(t�) = Aωs

√
1 −

(
g

Aω2
s

)2

(A4)

and

z(t�) = g

ω2
s

. (A5)

The droplet, when leaving the surface, is only submitted to its
weight, giving a trajectory and a vertical speed

z(t ) = z(t�) + ż(t�)(t − t�) − g

2
(t − t�)2, (A6)

ż(t ) = ż(t�) − g(t − t�). (A7)

The landing instant t+ is found by assuming z(t+) = zs(t+).
Numerically, the solution is obtained via the bisection method
with a relative precision of 10−6. Once t+ has been obtained,
the landing velocity ż(t+) can be computed.

The knowledge of both t� and t+ defines two distinct parts
of the motion. During �tfly = t+ − t� (t1 in the main text),
the droplet is assumed to have a parabolic trajectory. During
�tsurf = 4π/ωs − t+ + t� (t2 in the main text), the droplet is
in contact with the surface and interacts with its own wave
field. Knowing ż(t+) gives a measure of the amplitude of the
standing waves on the surface.

2. Horizontal dynamics

This part of the dynamics is solved by an event-driven
algorithm. Only the two instants t� and t+ are considered,
since one knows the dynamics of the droplet between each.

a. Parabolic trajectory

Between t+ and t�, the only forces acting on the droplet are
the external forces, since no contact with the surface occurs.
As a consequence, the motion along the x and y directions is
given by

�xfly = ẋ(t�)�tfly, (A8)

�yfly = ẏ(t�)�tfly, (A9)

where �xfly = x(t+) − x(t�) [respectively, �yfly = y(t+) −
y(t�)] is the distance travelled between the impact point and
the take-off point along the x direction (respectively, along
the y direction). The impact point (x(t+), y(t+)) is stored in
a memory array in order to compute the total wave field on
the surface. Note that trajectories presented in this article are
realized considering the impact points.
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b. Interaction with the surface

At impact, i.e., at t = t+, the droplet loses part of its
velocity because of the inelastic interaction with the interface.
The vector locally perpendicular to the wave field is computed
as follow. Knowing the position of all previous impact, the
wave-field gradient ∇ζ (�r)(t+) is computed. The wave field is
written as

ζ (�r, t+) = ζ0

5Me+1∑
n=1

J0

[
2π

|�r(t+) − �rn|
λ

]
exp

[
−|�r(t+) − �rn|

δ

]

× exp

(
− t+ − nτF

Me τF

)
. (A10)

The Bessel function J0 as well as the Bessel function J1

discussed below are computed thanks to the algorithm found
in the numerical recipes. In this equation, the sum over
the previous impacts is truncated for practical purpose. In-
deed, since the wave amplitude is multiplied by exp[−(t+ −
nτF )]/Me τF , the last sources are negligible compared to the
first ones. We choose to truncate the series at the 5Me + 1th
term since exp(−5) = 6.7 × 10−3 � 1. The wave amplitude
ζ0 is calibrated via energetic arguments. Assuming that the
droplet relative kinetic energy is converted into potential
energy for elevating the fluid to the height ζ0 leads to

ζ0 = ε[ż(t+) − Aωs cos(ωst
+)]2 cos(ωst

+)2. (A11)

The third factor in the right-hand side of this equation ac-
counts for a correction to the amplitude because of the phase
of the surface oscillation at impacts. The gradient of the field
is written

∇ζ (�r, t+)

ζ0
=

5Me+1∑
n=1

exp

[
− t+ − nτF

Me τF
− |�r(t+) − �rn|

δ

]

×
{

2π

λ
J1

[
2π

|�r(t+) − �rn|
λ

]

+ 1

δ
J0

[
2π

|�r(t+) − �rn|
λ

]} �r(t+) − �rn

|�r(t+) − �rn| . (A12)

Finally, the normal vector �n(�r, t+) writes as

�n(�r, t+) = ( − ∂xζ (�r, t+),−∂yζ (�r, t+), 1). (A13)

Since the amplitude ζ0 is small compared to the wavelength
λ, this expression verifies the condition |�n| = 1 + O(ζ0/λ).
We seek for the vector �p(�r, t+) = C1�n(�r, t+) + C2[�̇r(t+) −
żs(t+)�ez], perpendicular to �n(�r, t+) and unitary. This vector

lies in the plane formed by �n(�r, t+) and [�̇r(t+) − żs(t+)�ez].
Mathematically, those conditions write

�p(�r, t+) · �n(�r, t+) = 0, (A14)

�p(�r, t+) · �p(�r, t+) = 1. (A15)

TABLE I. List of the parameters used in the numerical simulations.

Parameter Value (Unit)

Forcing amplitude A 160 (μm)
Forcing frequency fs 80 (Hz)
Forcing angular frequency ωs 502.655 (rad/s)
Dimensionless acceleration � 4.12 (−)

Faraday wavelength λ 4.75 (mm)
Faraday frequency fF 40 (Hz)
Faraday angular frequency ωF 251.327 (rad/s)
Spatial damping δ 2.5 (λ)

Restitution coefficient ε 0.006 (−)
Damping time TV 45 (ms)
Time above surface �tfly 14.36 (ms)
Time on surface �tsurf 10.64 (ms)

Since the impact of the droplet with the surface is assumed to
be completely inelastic, the relative velocity along the normal
vector �n(�r, t+) is reduced to zero. As a consequence, the
relative speed of the droplet is

vsurf (t+) = [�̇r(t+) − żs(t
+)�ez] · �p(�r, t+), (A16)

and this velocity is oriented along �p(�r, t+).
Between the instant t+ and 4π/ωs + t� = t+ + �tsurf , i.e.,

the new take-off instant, the droplet is submitted to a lubrica-
tion force. This force is assumed to decrease exponentially the
speed with

vsurf (4π/ωs + t�) = vsurf (t+) exp

(
−�tsurf

TV

)
, (A17)

where Tv is the damping time. The distance travelled on
the surface between those two instants is obtained by time
integration of the previous equation

dsurf = vsurf (t+)TV

[
1 − exp

(
−�tsurf

TV

)]
. (A18)

Therefore, one has

�xsurf = dsurf [ �p(�r, t+) · �ex], (A19)

�ysurf = dsurf [ �p(�r, t+) · �ey], (A20)

ẋ(4π/ωs + t�) = vsurf (4π/ωs + t�)[ �p(�r, t+) · �ex], (A21)

ẏ(4π/ωs + t�) = vsurf (4π/ωs + t�)[ �p(�r, t+) · �ey], (A22)

where �xsurf = x(4π/ωs + t�) − x(t+) and �ysurf =
y(4π/ωs + t�) − y(t+). The new position (x(4π/ωs +
t�), y(4π/ωs + t�)) and the new velocity (ẋ(4π/ωs +
t�), ẏ(4π/ωs + t�)) are used for a new “parabolic trajectory”
phase. This algorithm is repeated until a given number of
iterations is realized. Values used for the algorithm can be
found in Table I.
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