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ARTICLE

Tunneling time probed by quantum shot noise
Pierre Février1 & Julien Gabelli 1

In typical metallic tunnel junctions, the tunneling events occur on a femtosecond timescale.

An estimation of this time requires current measurements at optical frequencies and remains

challenging. However, it has been known for more than 40 years that as soon as the bias

voltage exceeds one volt, the junction emits infrared radiation as an electrically driven optical

antenna. We demonstrate here that the photon emission results from the fluctuations of the

current inside the tunneling barrier. Photon detection is then equivalent to a measurement of

the current fluctuations at optical frequencies, allowing to probe the tunneling time. Based on

this idea, we perform optical spectroscopy and electronic current fluctuation measurements

in the far from equilibrium regime. Our experimental data are in very good agreement with

theoretical predictions based on the Landauer Büttiker scattering formalism. By combining

the optics and the electronics, we directly estimate the so-called traversal time.
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Among the most intriguing questions in quantum
mechanics, the traversal time τT that a particle takes to
tunnel through a barrier has been the subject of a long-

standing debate. Although several theoretical expressions have
been proposed1, the approach using a physical clock such as a
Larmor’s clock is now well accepted2 and yields τT ¼R
F dz½m=ð�hκðzÞÞ� where κ(z) is the magnitude of the imaginary

wave vector in the classically forbidden region F . Experimentally,
this question has mainly been addressed in attosecond physics.
Taking advantage of strong laser-field techniques, fundamental
questions related to tunneling time in atom ionization have been
clearly addressed3–5. As an alternative, electronic transport
measurements through a tunnel junction allow for experimental
control of the tunneling parameters and seem to be a natural way
to investigate τT. However, the experiments so far focused on the
I(V) characteristics which mainly probe the tunneling rate related
to the transmission of the barrier T . The traversal time thus only
appears as a correction to the tunneling current due to the
dynamical feedback of the electromagnetic environment6,7.

An alternative way to estimate the traversal time by measuring
the current–current correlations on a timescale comparable to the
duration of the tunneling process. This is equivalent to measuring
the current noise spectral density Sii at frequencies ν ~ 1/τT. For a
typical aluminum oxide barrier, τT is of the order of femtoseconds
and necessarily implies a measurement of Sii at optical fre-
quencies. Note that for a rectangular barrier, the time for an
electron to cross the barrier is given by τT = d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= 2ðU � eVÞð Þ

p
where U is the barrier height, d its thickness, m the effective mass
of electron and V the bias voltage. For a common aluminum
oxide barrier U ~ 2.5 eV, d ~ 2 nm and m ~ 3.5 × 10−31 kg which
gives τT ~ 2 × 10−15 s at 1 V. In the following, we probe the tra-
versal time by studying the infrared radiation emitted from a
macroscopic planar junction8,9. This emitted light is broadband
with a high-frequency cut-off determined by the applied voltage
hν < e|V| and was first detected in 1976 by Lambe and McCar-
thy10. It was immediately attributed to the inelastic excitation of
surface plasmon polariton (SPP) junction modes which coupled
to photons due to the roughness of the metal electrodes. The
tunneling current flowing through the junction is indeed
accompanied by the generation of light which originates from the
high-frequency component of current shot noise in the tunnel
barrier8,9. At such voltage (~1 eV), the junction is in the far from
equilibrium regime (FFER). Even if light has been observed from
biased junctions prepared by electromigration11 and from those
formed between a biased scanning tunneling microscope (STM)
tip and metallic sample12–14, heating of electron gas in such
nanoscopic junctions make the quantitative study of the transport
properties of the junction difficult. From a theoretical point of
view, the work of Lesovik and Loosen15 could explain the
reduction in light emission observed in such STM experiments as
a reduction of the quantum shot noise.

In this article, we first discuss the validity of the theory given by
the out-of-equilibrium generalized fluctuation dissipation relation
(FDR). We show that it provides information about temporal
correlations between electrons but fails to describe the dynamics
of the tunneling process on the femtosecond timescale in the
FFER. We then generalize the existing theoretical expression of
the shot noise spectral density Sii to optical frequencies by using a
Landauer–Büttiker (LB) scattering approach. By using electronic
and optical measurements, we use the universal expression for
shot noise in the radio frequency range (ν � 1=τT) to experi-
mentally prove the validity of the tunneling limit at high bias
voltage in the FFER. Finally, we demonstrate that the FDR breaks
down at optical frequencies. We show that our experimental
results are in very good agreement with the generalized expres-
sion of Sii and that they give a very good estimation of τT, the

one-dimensional (ID; longitudinal) traversal time. This defines
the unique characteristic time for the tunnel junction16 which can
thus be seen as a promising electrically driven source of SPP for
future plasmonic circuits.

Results
Fluctuation dissipation relation. In the tunneling limit, the noise
spectral density at a finite frequency ν usually reads17–20:

SðFDRÞii eV ; hνð Þ ¼ e 1þ N eV � hνð Þð ÞI V � hν=eð Þf
þN eV þ hνð ÞI V þ hν=eð Þg;

ð1Þ

where I(V) is the dc characteristic of the voltage-biased tunnel
junction, NðϵÞ= 1= exp ϵ=kBTð Þ � 1ð Þ the Bose–Einstein dis-
tribution and e denotes the elementary charge of electron. It is
referred to as the FDR and is generally valid as shown in
refs. 19,20. The FDR is indeed in quantitative agreement with
numerous experiments in the microwave regime. These experi-
ments range from simple linear tunnel junctions21 to tunnel
junctions showing nonlinear characteristics due to super-
conducting electrodes22 or to dynamical Coulomb blockade
effect23. According to Eq. (1), the noise spectral density Sii van-
ishes for frequencies ν > e|V|/h as long as thermal fluctuations are
negligible hν � kBTð Þ. This has a simple interpretation: in the
wave-packet picture24,25, the electrons are emitted from a con-
stant voltage source with an average time separation τQ= h/e|V|.
It is thus impossible to measure current–current correlations on a
timescale smaller than τQ (Fig. 1). τQ characterizes the temporal
correlations between successive attempts of the electrons to cross
the junction. However, if τQ is a characteristic time of the FDR,
the traversal time τT is not. This means that the FDR does not
provide a complete picture of the tunneling process. The reason
arises from the fact that tunneling events are actually supposed to
be instantaneous in the FDR (see Methods). We thus expect a
breakdown of the FDR at frequency 1/τT ~ ν≲ 1/τQ proving the
existence of the traversal time τT. The central result of this article
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�Q= h /eV
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e
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Sii= 〈ÎT(–�) ÎT(�)〉 Δf
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Fig. 1 Tunnel barrier connected to a constant voltage source. According to
the wave-packet picture, the voltage source acts as a regular single electron
source with the average time between electrons emitted per channel per
spin from the macroscopic contact is τQ= h/e|V|. The electrons can be
either transmitted through the barrier with a probability T or reflected back
by the barrier with a probability 1� T giving rise to quantum partition
noise. The corresponding noise spectral density SiiðνÞ∝ ÎTð�νÞ̂ITðνÞ

D E
of

the tunnel current IT then provides information about the time τT that an
electron spends in the barrier as long as the measurement frequency ν
satisfies 1/τT≲ ν < 1/τQ. The noise spectral density also highlights the
charge accumulation which occurs in the barrier at high frequencies
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is the observation of this breakdown by comparing the measured
noise spectral density Sii(eV, hν) to the FDR deduced from the
measured characteristics I(V). This result constitutes direct evi-
dence of the existence of a characteristic time associated with
tunneling.

Nonlinear tunneling transport. The FFER is reached when the
applied bias voltage is of the order of the tunnel barrier height U.
In this regime, the tunneling barrier is modified by the bias
voltage which leads to an intrinsic nonlinear conductance.
Without a careful study of the Coulomb interactions in the tunnel
barrier, gauge invariance (invariance of the current under a global
voltage shift applied on both electrodes) is not systematically
satisfied26,27. It is indeed necessary to determine the electrical
potential which depends on the applied bias voltage and the
possible charge accumulation in the conductor. Instead of the
transfer Hamiltonian formalism, here we use the LB description
to properly describe the ballistic transport through the barrier
(Supplementary Note 3). Its transmission T is thus necessarily
both energy and voltage dependent and its I(V) characteristic
reads:

IðVÞ ¼ 2e
h

Z
dϵT ðϵ; eVÞ f ðϵÞ � f ðϵþ eVÞ½ �; ð2Þ

where f ðϵÞ= 1= 1þ exp ϵ� ϵFð Þ=kBTð Þð Þ is the Fermi–Dirac
distribution with ϵF the Fermi energy. In the tunneling limit, the
voltage dependence of T can be deduced by using the free-
electron density of states and the Wentzel–Kramers–Brillouin
(WKB) transmission coefficient28 and by considering a total
potential including the potential barrier U(z) and the biasing
energy Ubias(z, V)=−eV(1− z/d) as depicted in Fig. 2. Note that
the effects of image charge could be considered in the potential
barrier U: in that case, these effects would only re-normalize the
barrier height. They will be taken into account only to estimate
the tunneling current. It is worth emphasizing that the biasing
energy is essential to explain the non-symmetric I(V) character-
istics depicted in Fig. 2 (Supplementary Fig. 4). We now consider
the current fluctuations characterized by the non-symmetrized
shot noise spectral density Sα;β = Îαð�νÞÎβðνÞ

D E
Δf where ÎαðνÞ is

the Fourier component of the current operator measured in the
electrode α, β= L, R and Δf the measurement bandwidth. For ν >
0, this quantity refers to the emission quantum noise which is
measured in a passive detection scheme such as the photon
detector used here15,27. Using the scattering LB approach for a

single quantum channel of conduction in the tunneling limit (
T � 1), we get for α ≠ β27

Sαα eV ; hνð Þ ¼ 2e2
h

R
dϵ T ðϵ� hν; eVÞfαðϵÞ 1� fβðϵ� hνÞ

h in
þT ðϵ; eVÞfβðϵÞ 1� fαðϵ� hνÞ½ �

o
;

ð3aÞ

Sαβ eV ; hνð Þ ¼ � 2e2
h

R
dϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðϵ; eVÞT ðϵ� hν; eVÞ

p
fαðϵÞ 1� fβðϵ� hνÞ

h i
þ fβðϵÞ 1� fαðϵ� hνÞ½ �

n o
:

ð3bÞ

where fLðϵÞ= f ðϵþ eVÞ and fRðϵÞ= f ðϵÞ. In the zero frequency
limit and using the expression f ϵþ ϵ0ð Þ 1� f ðϵÞð Þ=
N ϵ0ð Þ f ðϵÞ � f ϵþ ϵ0ð Þð Þ, the above expressions simplify to SLL=
SRR=−SLR= SðFDRÞii and the FDR holds even in the nonlinear
regime. However, at finite frequency, the energy and voltage
dependence of the transmission T leads to charge accumulation
in the barrier and the noise spectral density depends on the
electrode where it is evaluated (SLL ≠ SRR ≠−SLR)27,29. A key
question then arises: which noise spectral density is measured at
optical frequencies? Following Nyquist30, the noise spectral
density Sii related to the radiated spectral power Pν emitted by the
tunnel junction is given by:

Pν ¼ RðνÞSii; ð4Þ

where the radiation impedance RðνÞ stands for the coupling
between the current in the conductor and the far-field-radiating
electromagnetic modes. This radiation impedance takes into
account the time-scales related to the plasmonic in the metallic
contacts and the stemming from the optical setup. It clearly does
not depend on the dc voltage and is therefore not relevant to the
assessment of the traversal time. At optical frequencies, this
coupling takes place in the insulating barrier because of the
screening of the electromagnetic field in the metallic electrodes
(Supplementary Fig. 10). An estimation of this coupling requires
a microscopic description of the charge transfer. Even though it
should be necessary to solve the coupled system of Schrödinger
and Poisson equations to calculate the tunneling current ÎT, the
screening in the metallic electrodes permits a simple description
of ÎT. The bare electron inside the tunneling barrier induces a
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polarization charge e(1− z/d) and ez/d in the left and right
electrodes respectively (Fig. 3c). We can thus assume that the
charge accumulation on the surface of the electrodes is equal on
average during the tunneling event: Q̂L ¼ Q̂R ¼ Q̂ with
Q̂
� �

¼ e=2. The continuity equation dQ̂=dt = ÎL � ÎT = ÎT þ ÎR
then implies ÎT = ÎL � ÎR

� �
=2 with the conventional direction of

the current (Fig. 2). The current noise spectral density Sii =
ÎTð�νÞ̂ITðνÞ
� �

Δf in Eq. (4) is then given by:

Sii eV ; hνð Þ ¼ 1
4

SLL þ SRR � 2SLRð Þ: ð5Þ

Although this expression is similar to that written in refs.14,31,
it should be noted that the authors describe the charge
conservation in a central dot (molecular junction) using a
transfer Hamiltonian model. They are mainly interested in
transfer rate and not in tunneling time. In our case, we are
interested in the tunneling region described by the scattering
formalism. Our formalism takes into consideration not only the
effect of the Coulomb interactions in the barrier but also the time
delay of the electron crossing the barrier. This is hidden in the
strong energy dependence of the tunneling transmission. Under
these conditions, the FDR cannot be satisfied when ν ~ 1/τT
(Methods).

Experimental setup. Our experimental setup is shown in Fig. 3c.
Electronic and optical measurements are performed in a cryo-
genic environment at T ~ 100 K to prevent junction breakdown
and to reduce the thermal noise in the infrared photon detector.
The sample is a 100 × 100 μm2 planar Al/AlOx/Al tunnel junction
deposited on a sapphire substrate (Fig. 3a and Supplementary
Note 1). Because of the layered structure of the junction, the
electromagnetic modes known as SPPs in the junction should not
radiate to the free space. However, the total thickness of the
junction a ~ 10 nm is smaller than the penetration depth of the
SPP in the metal: δp= c/ωp≃ 13 nm with ωp= 14.7 eV the
plasma frequency of aluminum. This enables the coupling
between the SPP mode localized at the interface electrode/
vacuum (Fig. 3c) and the propagating mode in the substrate
(Supplementary Figs. 8–11). This corresponds to the

Kretschmann configuration where the coupling appears at a
specific angle θp≃ arcsin(1/n)≃ 35° where n stands for the
refractive index of sapphire32. We use total internal reflection in a
conical prism to collect the emitted photons (Fig. 3b, c). The
current noise Sii(eV, hν) at an optical frequency ν is measured at
two different frequencies corresponding to the wavelengths λ= c/
ν= 0.9 ± 0.02 μm and 1.3 ± 0.015 μm. The current noise at zero
frequency Sii(eV, hν= 0) is measured at radio frequencies with a
standard cross-correlation technique (Supplementary Note 2 and
Supplementary Figs. 1–3).

Noise measurement in the radio frequency range of 20 to 100
kHz. At high voltage, the I(V) characteristic shown in Fig. 2
exhibits a strong nonlinearity: the differential resistance varies by
more than one order of magnitude ranging from 6 kΩ at low bias
to 150Ω at high bias. From the theoretical expectation of Eq. (2)
and using the WKB approximation assuming an homogenous
trapezoidal barrier33 to evaluate the transmission of the tunnel
junction, we estimate the mean barrier height U ~ 2.7 eV, its
asymmetry ΔU ~ 2.9 eV and its thickness d ~ 2 nm (lower inset of
Fig. 2 and Supplementary Figs. 5 and 7). Although the junction is
symmetrical (identical electrodes), the strong asymmetry of the
barrier can be explained by the roughness of the thin electrodes as
has already been reported in the literature34. The thickness d is in
agreement with the capacitance of the junction ~0.5 nF.

In the FFER, the bias voltage is of the order of the tunnel
barrier height and it is legitimate to wonder if the tunneling limit
is still valid and if the traversal time still has a meaning. As
previously discussed, the FDR is universal at zero frequency and
may be used to test the tunneling regime35. Current fluctuations
Sii(eV, hν= 0) are measured in the radio frequency range with
low noise voltage amplifiers giving access to voltage fluctuations
Svv= g(|Zsetup(eV)|2Sii+ Svv,setup(eV)) where g is the global gain of
the amplifier chain, Zsetup is the transimpedance of the
measurement setup and Svv,setup its excess noise. Because of the
large variation of the tunneling resistance, a careful calibration is
required to extract the current noise Sii. The voltage-dependent
transimpedance Zsetup and the excess noise Svv,setup are deter-
mined by using an external noise source while g is deduced from
the measurement of the shot noise in the linear regime
(Supplementary Note 2). Figure 4 shows the current noise Sii in
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the FFER. Although the tunnel resistance is strongly nonlinear, Sii
clearly satisfies the FDR at zero frequency,

Sii eV ; hν ¼ 0ð Þ ¼ eIðVÞ
tanh eV=2kBTð Þ : ð6Þ

In the high bias limit eV � kBT , the current noise is linearly
proportional to the dc current. The Fano factor F= Sii(eV, hν=
0)/(e|I|) is then equal to one and confirms that electronic
transport through the junction operates in the tunneling limit
even at high bias voltage. This rules out the presence of pinholes
in the barrier since it would imply a significant reduction of the
shot noise with F < 1. Let us assume that the static resistance
decreases from R= 6 kΩ to R= 0.85 kΩ because of the
appearance of N pinholes with an average transmission T p � 1.
This would imply NT p ≃ 13 at high bias voltage. The Fano factor
related to the parallel association of tunneling channels and
pinholes would then be F = 1� 2R

RK
NT 2

p, with RK= h/e2≃ 25.8 kΩ
the quantum of resistance. Finally, F ’ 1� 0:85T p ~ 0.15, this is
not what we observe. We notice systematic errors at high positive
bias. They cannot be attributed to Joule heating since they should
also be observed for negative bias. The fact that the calibration is
off by ~10% is attributed to parasitic capacitances of the
measurement setup which are not included in Zsetup.

Noise and traversal time estimation at optical frequencies.
Figure 3d shows an image of the light emission pattern from the
tunnel junction when the camera is focused on the conical prism.
In the center, a small amount of light comes directly from the
tunnel junction (zoom in Fig. 3d). This is due to the surface
roughness of the electrodes allowing SPP scattering at the surface
of the upper electrode36. The homogenous light intensity indi-
cates that the electron-to-photon conversion in the tunnel junc-
tion is also homogenous over the surface of the junction
confirming the absence of pinholes in the barrier. However, the
bright ring in Fig. 3d reveals that more than 98% of the light is
emitted at the specific angle θp as expected in the Kretschmann
configuration (Supplementary Note 6). The light power PνΔν is
plotted as a function of the bias voltage for two different wave-
lengths in Fig. 5a. The inset of Fig. 5a displays the relationship
between the light power for the two wavelengths on a log-log
plot37. Data points do not fit the black-body radiation law (solid

line in inset) and, as previously mentioned, the Joule heating
cannot be responsible for the observed photon emission. As
already observed by Lamb and McCarthy10, the light power
exhibits a sharp voltage cross-over at e|V|= hc/λ: electrons
crossing the tunnel junction relax their energy by emitting pho-
tons at a frequency ν ≤ e|V|/h. This cross-over is predicted by
both the FDR and the LB theories. However, our data clearly
disagree with the FDR (dashed line in Fig. 5a) and are in very
good agreement with the LB relation of Eq. (5) (solid line in
Fig. 5a). This proves the existence of the traversal time. The LB
approach explains the bias-polarity dependence of the light
emission which has previously been observed but not justi-
fied36,38,39. It also allows one to extract the radiation impedance
according to Eq. (4). This gives R(λ= 0.9 μm)= 2.5 ± 0.1 mΩ
and R(λ= 1.3 μm)= 2.3 ± 0.1 mΩ, about a factor of four higher
than our rough estimation in the limit ν=νp � 19. Unlike the low
frequency noise which is bonded by the RC frequency cut-off (1/
(2RC) ~ 100 kHz), the spectral power density at optical fre-
quencies involves the radiation impedance RðνÞ which does not
exhibit any high-frequency cut-off (Supplementary Note 6)40:

RðνÞ ¼ 1
βn5
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where β= tanh(a/δp)≃ 0.69, νp= ωp/2, n= 1.75 is the refractive
index of sapphire and the alumina dielectric barrier, d≃ 2 nm is
the thickness of the barrier and Zvac≃ 376Ω is the vacuum
impedance. This under-estimation can not only be attributed to
the approximative values of the thickness and the refractive index
of the dielectric barrier but also to the interband transition at
λinter= 0.825 μm in aluminum. The 0.1 mΩ uncertainty on
radiative resistance RðνÞ comes from the fit of the data but one
has to keep in mind that an error on the detection efficiency could
induce a systematic error of about 20%. We assume here that the
coupling between the current fluctuations and the electric field
takes place in the insulating barrier. This is justified by the
screening of the electric field in the metal. If we only consider the
coupling in the electrodes, we should expect a radiation impe-
dance in the μΩ range, three orders of magnitude smaller than
the observed one (Supplementary Note 6).

The shot noise spectral density at optical frequencies gives
direct information about the current fluctuations on the
femtosecond timescale. By using the scattering LB approach for
the two-dimensional tunnel barrier, we obtain an estimation of
the one-dimensional traversal time given by the WKB approx-
imation (Methods):

τT � gð2hν; hνÞ
2πν

with

gðeV ; hνÞ ¼ log 1= 4~F � 1
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 4~F � 1
� �2�1

q� �
;

ð8Þ

where ~F = Sii(eV, hν)/(e|I(V)|) is a voltage and frequency-
dependent Fano-like factor. It then only involves measurable
quantities Sii(eV, hν) and I(V) where Sii is deduced from the light
power and the value of the radiation impedance previously
determined. Figure 5b shows g(eV, hν)/(2πν) as a function of the
bias voltage for the two different wavelengths. This expression is
only defined for sufficiently high voltage when 1=4<~F � 1=2.
However, the bias voltage has to be kept smaller than 2 V to avoid
damaging the junction. The estimation τT ~ g(2hν, hν)/(2πν) ~ 1.1
fs can thus only be deduced from the measurement at λ= 1.3 μm
with eV= 2hν= 1.9 V. This value is in very good agreement with
the theoretical one-dimensional traversal times calculated for a
trapezoidal barrier in the energy range ½ϵF; ϵF þ hν� (Methods).

Discussion
We have experimentally demonstrated that the quantum shot
noise spectral density cannot be simply expressed by the universal
FDR. If this discrepancy is formally due to both energy and
voltage dependence of the transmission T (Methods), the key
reason is that the charge inside the tunneling barrier fluctuates
and this reflects the fact that electrons spend a certain time inside
the barrier. To take into account this time spent in the barrier, we
have developed a theory using the formalism of LB which also
gives insights on the mechanism at the origin of the optical
radiation emitted by biased planar tunnel junction. The radiation
impedance in the mΩ range is indeed small and appears as a
central quantity in the understanding of the poor light emission
efficiency of tunnel junctions. This leads us to redefine the effi-
ciency with respect to the dissipated Joule power:
η ¼

Rþ1
0 Pνdν=ðV ´ IÞ ~ 4 × 10−8. According to this definition,

we can show that the efficiency is now directly related to the
radiation impedance: η � η0RðeV=hÞ=RK where RK= h/e2≃
25.8 kΩ is the quantum of resistance and η0≃ 0.047 is a constant
slightly dependent on the details of the barrier (Supplementary
Fig. 12). We emphasize that this definition contrasts with the
usual one which is given by the electron-to-photon conversion
rate. We find the former more appropriate since it reflects the fact
that, in metallic tunnel junctions, electrons with energy smaller

than bias voltage can contribute to the current. Unlike semi-
conductors, the lack of a band gap in metals indeed implies that
each electron crossing the barrier emits a bunch of photons in a
spectral range 0 < ν < e|V|/h with a radiated spectral power Pν
proportional to the current. The emitted light power is then
proportional to the Joule power V × I.

Regarding the mechanism of photon emission in metallic
tunnel junctions, it is usually attributed to the spontaneous
emission in the barrier due to inelastic electron tunneling.
Although it has recently been demonstrated in a Van der Waals
quantum tunnel junction41 that part of the emission processes is
due to direct photon emission, usually a two-step process is
assumed with tunneling: electrons inelastically excite SPP which
then couple to photons. The inelastic tunneling process is char-
acterized by an electron-to-plasmon conversion rate which
roughly describes the coupling to the electromagnetic environ-
ment16,42–44. In our case, we give a microscopic description of the
tunneling by using the LB scattering approach. It is worth noting
that the LB approach which is used here only considers elastic
tunneling processes. In this description, the energy relaxation
formally takes place in the electrodes and corresponds to
electron–hole pair recombination specified by SLL, SRR and SLR29.
Nevertheless, by considering the coupling to the electric field only
in the dielectric layer, we implicitly assume a relaxation in the
tunneling barrier associated with the noise spectral density Sii=
(SLL+ SRR− 2SLR)/4. Thus, our approach is not in contradiction
with the inelastic interpretation. More precisely, by only con-
sidering the elastic tunneling current to calculate the radiation
impedance, we just neglect the feedback of the electromagnetic
environment on the tunneling processes. This feedback, known as
dynamical Coulomb blockade, is responsible for a correction of
the current of the order of the ratio RðνÞ=RK

45–47. In our case,
this effect is negligible, which validates a posteriori our approach
using the elastic current.

In conclusion, we have measured the current fluctuations Sii in
a metallic tunnel junction in the optical domain and deduced an
estimation of the traversal time τT ~ 1.1 fs. In this regime, Sii may
no longer be described by the usual fluctuation dissipation rela-
tion because of the energy and voltage dependence of the tun-
neling transmission. We have shown how this dependence can be
incorporated into the LB formalism to ensure the gauge invar-
iance of the I(V) characteristics in the far-from-equilibrium
regime and thus describe the quantum fluctuations of the current
at optical frequencies. This theoretical description is in good
agreement with our experimental results, it allows us to give an
approximative value of the traversal time by a fitting-free model
and sheds light on the estimation of the quantum efficiency of
metallic tunnel junction as a light emitter. Our experimental
approach demonstrates that optical measurements are a powerful
tool to study the quantum electronic transport at high energy (~1
eV). Such measurements extend the range of applicability of
mesoscopic electronic transport. The traversal time, which is the
average time that the particle spends in the barrier48, could for
instance be compared to the average time given by the electric
waiting time distribution which has been recently calculated in
mesoscopic conductors49,50.

Methods
Planar tunnel junction. In the article, for the sake of simplicity, the LB formalism
(Eqs. (2), (3a) and (3b)) is only considered for a 1D single channel of conduction.
We demonstrate in the supplemental material that the three-dimensional (3D) case
can be deduced by summing over all the transversal modes, and the tunnel junction
is then equivalent to the parallel association of the M ¼ S=λ2F transversal modes of
conduction contained in the tunnel junction area S with a mean transmission:

T ðϵ; eVÞ ¼
Z ϵ

0
TWKB ϵ� ϵ?; eVð Þ dϵ?

ϵF
; ð9Þ
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where TWKB ϵjj ¼ ϵ� ϵ?; eV
	 


is the WKB transmission through a 1D homo-
geneous barrier and λF the Fermi wavelength. However, we will see in the following
that the 3D case can also be obtained by an integration over the longitudinal energy
ϵjj ¼ ϵ� ϵ? . Using this integration, we will shown that the Fano-like factor at
optical frequencies directly gives the 1D traversal time τT without any assumption
about the dimensionality of the junction.

Shot noise spectral density and the FDR. For a 1D tunneling barrier, the tun-
neling transmission is related to the traversal time τT according to (Supplementary
Note 4):

TWKB ϵ2; eVð Þ
TWKB ϵ1; eVð Þ ¼ exp

2
�h

Z ϵ2

ϵ1

τTðϵ′; eVÞdϵ′
( )

: ð10Þ

Using the scattering LB approach in the tunneling limit (T � 1), the integration
over the longitudinal energy ϵjj of the 2D versions of Eqs. (3a) and (3b) gives:

SiiðeV ; hνÞ ¼ 2e2
h ð1þ NðeV � hνÞÞ

R
dϵjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TWKB ϵjj ;eVð Þ

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TWKB ϵjjþhν;eVð Þ

p
2

� �2
(

~f ϵjj

	 

� ~f ϵjj þ e V � hν

e

� �	 
h i
þ NðeV þ hνÞ

R
dϵjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TWKB ϵjj ;eVð Þ

p
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TWKB ϵjj�hν;eVð Þ

p
2

� �2

~f ϵjj

	 

� ~f ϵjj þ e V þ hν

e

� �	 
h i
ð11Þ

where ~f ϵjj

	 

=�MkBT

ϵF
ln f �ϵjj

	 
	 

is a quasi-distribution and corresponds to the

integration of f ϵ? þ ϵjj

	 

over ϵjj. Note that no approximations have been used so

far and we have chosen here to integrate over ϵjj instead of ϵ? . TWKB ϵjj; eV
	 


corresponds here to the one dimensional WKB transmission. Then, the FDR reads:

SðFDRÞii eV ; hνð Þ ¼ 2e2
h ð1þ NðeV � hνÞÞ

R
dϵjjTWKB ϵjj; eV � hν

	 
n
~f ϵjj

	 

� ~f ϵjj þ e V � hν

e

� �	 
h i
þ NðeV þ hνÞR

dϵjjTWKB ϵjj; eV þ hν
	 


~f ϵjj

	 

� ~f ϵjj þ e V þ hν

e

� �	 
h io
:

ð12Þ

Equations (11) and (12) are equivalent only if TWKB ϵjj; eV
	 


+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TWKB ϵjj ± hν; eV

	 
r
= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TWKB ϵjj; eV � hν

	 
r
. The FDR thus holds at finite

frequency only if the transmission is of the form (Supplementary Note 5):

TWKB ϵjj; eV
	 


¼ T0 1þ
ϵjj � eV=2

ϵ0

� �2

: ð13Þ

This form is only a good approximation of the tunneling transmission at small bias
voltage eV � U with:

T0 ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mUd2

�h2

r !
and ϵ0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2�h2U
md2

s
: ð14Þ

In this limit, τT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md2=ð2UÞ

p
and hν ≲ eV � U implies ντT � �ðlnT 0Þ=8<1

which corresponds to a negligible traversal time.

Traversal time estimation. According to Eqs. (10) and (11) and assuming that τT
is rather constant on the energy scale ½ϵF; ϵF þ hν�, the zero temperature limit
kBT � eV ; hν gives (Supplementary Note 4 + Supplementary Fig. 6):

SiiðeV ; hνÞ ’ 2e2
h ΘðeV � hνÞ 1þe2ντT

2

� �2R
dϵjjTWKB ϵjj; eV

	 
n
~f ϵjj

	 

� ~f ϵjj þ e V � hν

e

� �	 
h i
� ΘðeV þ hνÞ 1þe�2ντT

2

� �2
R
dϵjjTWKB ϵjj; eV

	 

~f ϵjj

	 

� ~f ϵjj þ e V þ hν

e

� �	 
h io
;

ð15Þ

with Θ the Heaviside step function. Similarly, the LB formula Eqs. (2) and (10) give
at the special bias voltages V= ±2hν/e:

Ið± 2hν=eÞ ¼ 2e
h

R
dϵjj TWKB ϵjj; ± 2hν

	 

þ TWKB ϵjj

		
�hν; ± 2hνÞÞ ~f εjj

	 

� ~f ϵjj ± hν
	 
h i

’ 2e
h 1þ e ± 4ντTð Þ

R
dϵjjTWKB ϵjj;

	
± 2hνÞ ~f ϵjj

	 

� ~f ϵjj ± hν
	 
h i

:

ð16Þ

Figure 6 shows the product of the distribution function ~f ϵjj

	 

� ~f ϵjj ± hν
	 
h i

and

the transmission TWKBðϵ; ± 2hνÞ appearing in Eqs. (15) and (16). This distribution
function is a broad peak spanning from ϵF to ϵF þ hν. Thus, the generalized Fano
factor ~FðeV; hνÞ= Sii(eV, hν)/(e|I(V)|) evaluated at V= ±2hν/e can be expressed in
the zero temperature limit as a function of τTðϵ � hν=2; eV ¼ 2hνÞ:

~Fð± 2hν; hνÞ ¼ Siið± 2hν; hνÞ
e Ið± 2hν=eÞj j ’

1þ e± 2ντTð Þ2

4 1þ e± 4ντTð Þ :
ð17Þ

Finally, by inverting Eq. (17), we get:

τT ’ 1
2ν

ln 1=ð4~F � 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4~F � 1Þ2 � 1

q� �
: ð18Þ

Note that the estimated traversal time corresponds to the 1D motion through the
barrier.

Data availability
The data that support the findings of this study are available from the corre-
sponding author on reasonable request.
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