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Abstract. In this talk | present the results of two calculations thakenase of Non-Relativistic
QCD and the newly developed Soft-Collinear Effective Tlyedihe first process considered is
inclusive radiativey"decay. The second process considered is the leading ctiletremntribution to
ete = J/P+X.

Bound states of heavy quarks and antiquarks have been dfigteeest since the
discovery of thel/y [1, 2]. In particular the decay and production of quarkonisran
interesting probe of both perturbative and nonperturkatispects of QCD dynamics.
A systematic theoretical framework for handling the difietrscales characterizing both
the decay and production of quarkonium is Non-Relatividiiantum Chromodynamics
(NRQCD) [3, 4]. NRQCD solves important conceptual as welphsnomenological
problems in quarkonium theory. For instance, perturbataleulations of the inclusive
decay rates fox. mesons in the color-singlet model suffer from nonfactdrieanfrared
divergences [5, 6, 7]. NRQCD provides a generalized fazation theorem so that
infrared safe calculations of inclusive decay rates aresiptes[8]. In addition, color-
octet production mechanisms are critical for understamdire production ofl/y at
large transverse momentump, , at the Fermilab Tevatron [9, 10, 11]. There are still
many challenging problems in quarkonium physics that rart@abe solved [12]. One
important problem is the polarization df ¢ at the Tevatron. NRQCD predicts thgy
should become transversely polarized asgheof the J/¢ becomes much larger than
2m¢ [13, 14, 15, 16]. The theoretical prediction is consisteithwhe experimental data
at intermediate | , but at the largest measured valueofthe discrepancies are at the
3o level [17]. In this talk | present two additional puzzles wprogress has been made
lately: radiativeY decay, an&™e™ — J/¢+ X.

Inclusive decays of quarkonium are understood in the fraonlewof the operator
product expansion (OPE), with power-counting rules givgNIRQCD. The OPE for
the direct photon spectrum dfdecay is [3]

=3 M. (YIonY), @

wherez = 2E,/M, with M = 2my,. TheG; are short-distance coefficients, and tare
NRQCD operators . At leading order wonly one term in the sum must be kept, the so
called color-singlet contribution.

The Resummed Photon Spectrum in Radiative Upsilon Decayd fAore)  November 18,2018 1


http://arxiv.org/abs/hep-ph/0309007v1

1500

1000

500 | |\‘

FIGURE 1. The inclusive radiativé” photon spectrum, compared with data from CLEO [28].

This simple picture of the photon spectrum in inclusidecays is only valid in the
intermediate range of the photon energy spectru® @z < 0.7). In the lower range,
z2 0.3, photon-fragmentation contributions are important [19. At large values of

the photon energy,?v 0.7, both the perturbative expansion [19] and the OPE [20]kbrea
down.

The breakdown at the endpoint is a consequence of NRQCD maaioting the
correct low energy degrees of freedom. The effective thedrigh correctly describes
this kinematic regime is a combination of NRQCD for the hedegrees of freedom,
and the soft-collinear effective theory (SCET) [21, 22, 28] for the light degrees of
freedom. In Refs. [25, 26, 27] SCET was applied to radiatieecay. A comparison of
the calculation to CLEO [28] data is shown in Fig. 1.

The error bars on the data are statistical only. The dasheddithe direct tree-level
and fragmentation result, and the solid curve is the sumefriterpolated resummed
result and the fragmentation result. For these two curvesusesl the value ob
extracted by CLEO from these data(My) = 0.163, which corresponds tms(Mz) =
0.110 [28]. We also show in this plot the interpolated resumraed fragmentation
result, using the PDG value ofs(Mz), including theoretical uncertainties, denoted by
the shaded region. The lighter band also includes the i@miawithin the errors, of the
parameters for the quark to photon fragmentation functidraeted by ALEPH [29].

New problems have arisen as a result of recent measurenfethis spectra ol /
produced at ther(4S) resonance irete~ collisions by the BaBar and Belle experi-
ments [30, 31]. Leading order NRQCD calculations prediat flor most of the range
of allowed energies promgt/ ¢y production should be dominated by color-singlet pro-
duction mechanisms, while color-octet contributions dwate when thd/( energy is
within a few hundred MeV of the maximum allowed. Furthermase pointed out in
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Ref. [32], color-octet processes predict a dramaticalifedént angular distribution for
thed/y.

Experimental results do not agree with these expectattbesdata does not exhibit
any enhancement in the bins closest to the endpoint. How#hetotal cross section
measured by the two experiments exceeds predictions base color-singlet model
alone. The total prompd/y cross section, which includes feeddown fraph and
Xc States but not fronB decays, is measured to lamgy = 2.52+0.21+ 0.21 pb by
BaBar, while Belle measuregit = 1.47+ 0.10+ 0.13 pb. Estimates of the color-
singlet contribution range from.9— 0.9 pb [33, 34, 35, 36]. Furthermore, the angular
distribution disagrees with color-singlet result. Thespexts of the data suggest that
there is a substantial color-octet contribution which iseganfined to the very endpoint.

In Ref. [37] the endpoint region is treated within the franoekvof NRQCD and
SCET. The calculation depends on a nonperturbative fumctind thus is not predic-
tive. However, moments of the shape function are NRQCD dpeyavhose size is con-
strained by the velocity scaling rules of NRQCD. Choosingrg¢e ansatz for the shape
function whose moments are consistent with velocity sgatiries, one finds that the
combined perturbative and nonperturbative effects leadibstantial broadening of the
color-octet spectrum in a manner that is consistent with.dat

In Fig. 2 | show the sum of the color-octet and color-singlentcibutions as the
upper line, and the color-singlet contribution only as toedr line. The color-octet
matrix elements set the normalization. In the graph on tlftethey are chosen to
be (07 (1S)) = (6 (3Ry)) /M = 1.3 x 101 Ge\R. This is plotted against the BaBar
data [31]. In the graph on the right they are chosen toBE(1Sy)) = (6 (3Ry)) /mé =
6.6 x 1072 Ge\?, and is plotted against the Belle data [30].

While the calculations of Ref. [37] show that the leadingocailctet contribution is
broad enough to be compatible with the obserpgddistributions, other features of
the e"e~ data remain puzzling. In particular, Belle reports a larggorof J/¢ + cC
over inclusivel /Y [38]. The predicted ratio from leading order color-singiedduction
mechanisms alone is at least a factor of three too small [Bj3a13d a large color-octet
contribution makes this ratio even smaller.
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FIGURE 2. The sum of the color-octet and color-singlet contributians plotted as the upper line.
The lower line is the color-singlet contribution only. Theagh on the left shows data from the BaBar
collaboration [31]. The graph on the right shows data armfitee Belle collaboration [30].
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