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Abstract 

In this study, the microstructure, texture, and mechanical properties evolution of Ni-14W (wt. 

%) alloy processed up to four cycles of accumulative roll-bonding (ARB) were investigated 

using electron backscatter diffraction, microhardness measurements, and tensile tests. The 

initial equiaxed grains, with an average size of 10 μm, underwent a strong refinement after 

ARB processing. The elongated ultrafine grains were parallel to the rolling direction, with a 

grain thickness of 0.2 µm. The texture after ARB processing was characterized by the typical 

rolling components (Copper, S and Brass), which showed a tendency toward stabilization 

after four cycles. The microhardness increased substantially (+86%) and seemed to saturate 

after three cycles. The tensile tests demonstrated that Ni-14W samples subjected to ARB 

processing exhibited high strength (> 1200 MPa after three ARB cycles) and very poor 

ductility. 
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1. Introduction 

In the past decades, Ni-W alloy has been chosen as a suitable substrate material due to its 

excellent physical property and easy formation of a Cube texture following heavy straining by 

rolling and subsequent annealing [1–3]. The fraction of Cube-oriented grains depends 

strongly on the texture components resulting from prior hot or cold rolling (CR), as well as 
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the stacking fault energy. Microstructural heterogeneities, such as lamella, Cube, and shear 

bands also play a decisive role in the Cube-texture germination and growth [4]. 

Ultrafine-grain microstructures have been shown to improve the strength and toughness of the 

material. Severe plastic deformation is one of the most effective methods for producing ultra 

fine-grain structures. This process can lead to significant changes in the crystallographic 

texture and microstructure compared with conventional processing techniques, such as 

compression, extrusion, or rolling. Accumulative roll bonding (ARB), a well-known 

technique, consists of rolling two sheets together (resulting in up to 50 % thickness 

reduction), cutting, and stacking them to achieve the initial thickness. Repeating the whole 

process allows the material to accumulate very large strains without changing the initial 

dimensions of the original sheet [5]. 

Microstructure, texture, stored energy and mechanical properties evolution of pure Ni after 

ARB processing and annealing have been studied by many authors [6–12]. Comparison of the 

ARB and cold rolled (CR) pure Ni samples deformed to equivalent strain revealed that their 

microstructures were morphologically similar. However, the ARB microstructure was more 

refined and contained more high angle boundaries than the CR sample [8].  

Some authors have evaluated the effect of W addition in Ni matrix on the texture, 

microstructure, surface morphology, and hardness of the substrates for YBCO-coated 

conductor applications [13–15]. They evidenced that the Ni–W alloy substrates had stronger 

cube texture, smaller grain size, less thermal grooving, and higher hardness, compared to 

those of the pure Ni substrates. This improvement was imparted to the presence of W in Ni, 

which effectively strengthens grain boundary and then restricts grain growth and enhances the 

thermal stability of the substrates [14, 15]. 

Moreover, in a substrate that may be employed for the epitaxial growth of superconducting 

thin films, elongated grains in the rolling direction are desirable [16]. This results in the 

presence of elongated grains in the direction of the current flow in the superconducting layer, 

which is desirable for the brick wall model proposed by Bulaevskii et al. [17]. Eickemeyer et 

al. [18] obtained microstructures with elongated grains by micro-alloying nickel with silver 

(250–500 ppm), while cold rolling the Ni-W samples up to 95 % (ε ~ 3), resulting in moderate 

grain refinement (down to 2–4 μm) [19]. 

ARB processing has been shown to produce elongated ultrafine-grain microstructures with a 

comparable strain [20]. These alloys can retain the sharpness of the Cube texture and have 

sufficient mechanical strength, caused by their ultrafine-grain microstructure [2, 15].  



In fact, Bhattacharjee et al. [6] have proposed to use ARB processing for improvement in the 

quality of cube texture in Ni based alloys for further coated superconductor applications. 

However, this approach seems to be technically impossible since industrially produced Ni 

substrate tapes obey special dimensions (70-100 µm thickness and hundreds of meters long). 

It should be quite problematic to process Ni-based alloys via ARB since this technique is 

cyclic and requires wire-brushing, stacking and rolling. In other hand, a second paradox that 

may discredit the use of this technique is the fact that, subsequent recrystallization annealing 

at high temperatures (≥ 1000°C) to obtain a strong cube texture will lower the high strength 

achieved during ARB processing. 

According to the author’s knowledge, ARB processing and annealing of Ni-W alloys in order 

to achieve elongated ultrafine-grain Cube-oriented microstructures and suitable mechanical 

properties has seldom been reported in the literature. Therefore, in spite of the antagonistic 

points raised above, this study is an attempt to highlight the effect of severe plastic 

deformation processing to produce submicron grains and understand the microstructure and 

texture evolution, as well as the mechanical properties, of Ni-W strips produced by ARB up to 

four cycles (ε = 3.2). 

 

2. Experimental procedure  

The material investigated in the present work was a commercial Ni-14W (wt. %) alloy (kindly 

provided by APERAM alloys society, France) in the form of strips of 1 mm in thickness. The 

chemical composition of the Ni-14W alloy is presented in Table 1.  

The strips were cut into 15 ×50 mm rectangular pieces, degreased in acetone, and wire 

brushed to remove the surface oxide film and achieve a good bonding. The strips were 

stacked and preheated at 450 °C for 10 min; they were then processed using the ARB 

technique with a two-high mill of 2.2kW of power, with rolls of 67 mm in diameter and a 

rotating speed of 0.14 m/s. This process was repeated up to four ARB cycles.  

The microstructure and texture were investigated using electron backscatter diffraction 

(EBSD) in 100 × 100 μm2 zones in the rolling direction (RD)–normal direction (ND) cross-

section of the sample after mechanical and electro-polishing using A2 Struers electrolyte at 25 

V. The observation was carried out using a scanning electron microscope FEG-SEM SUPRA 

55 VP operating at 20 kV. The EBSD step size was 50 nm. EBSD data acquisition and 

analysis were conducted using the Orientation Imaging Microscopy (OIMTM) software 

program. The grain size data were obtained using a grain tolerance angle of 5°, and the 

minimum grain size was chosen to be 5 pixels. All data points with a confidence index (CI) 



lower than 0.05 were excluded from the analysis as dubious. (The CI quantifies the reliability 

of the indexed patterns). In the EBSD maps, boundaries with more than 15° misorientations 

were defined as high-angle grain boundaries (HAGBs) and those with 2–15° misorientations 

as low-angle grain boundaries (LAGBs). The quantitative texture analysis was carried out by 

calculating the orientation distribution function (ODF) using MTex software [21]. 

The dislocation density was estimated using the Kernel Average Misorientation (KAM) 

method implemented in OIM software. In this method, the misorientation θKAM around the 

central point of a grain in relation to a defined set of nearest neighboring points is quantified. 

The dislocation density is then calculated using the following equation [22]:  

𝜌 =
𝛼𝜃𝐾𝐴𝑀

𝑋𝑏
                                                               (1) 

where α is a parameter that depends on the grain boundary type and is chosen to be 3, b is the 

Burgers vector (0.24 nm for Ni alloys), X = nd, n = 3 for nearest neighbors, and d =50 nm is 

the EBSD scan step. 

The microhardness of the material was measured after each ARB cycle using a Shimadzu G21 

series facility with a diamond pyramid indenter under loading charge of 2.94 N and 

indentation time of 10 seconds. An average of 20 readings was taken near the middle of the 

sample’s RD-TD plane to obtain the average microhardness value.  

Fig. 1 shows a sketch of different analyzed zones of the NiW alloy sample. The EBSD maps 

were collected on the RD-ND plane while microhardeness was measured in the RD-TD plane. 

The room temperature tensile tests were conducted at a strain rate of 10–2 s–1 on an MTS 

CriterionTM facility; model C45 105, with 100kN as the maximum force. The ARB strips 

were machined to tensile specimen with dimensions of 4 mm in gauge width and 15 mm in 

gauge length. The tensile direction of the specimens was parallel to the RD of the deformed 

sheets. 

 

3. Results and discussion 

3.1. Microstructure and texture of the initial state  

The orientation imaging micrographs (OIM) in the inverse pole figure (IPF map) and different 

boundary types obtained from the as-received Ni-14W alloys are presented in Fig. 2a and b, 

respectively. The initial microstructure is characterized by equiaxed grains with a relatively 

small average grain size (d ~ 10 µm). The LAGBs are presented in red, and the HAGBs are in 

blue; as shown in Fig. 2b, most of the grain boundaries are of the HAGB type (70 %).  



Fig. 3 shows the ODF sections ( 2 = 0, 45, and 65°) of the as-received Ni-14W alloy. The 

main ideal texture component positions of the FCC alloys are also presented, and their 

descriptions are given in Table 2. The texture before ARB processing was characterized as 

relatively weak, with the presence of Cube 001 <100>, Brass 011 <211>, and S 

123 <634> orientations. Their overall intensity was less than about 3 mrd. These 

microstructures and textures resulted from the industrial thermo mechanical processing of the 

commercial Ni-14W alloys. 

 

3.2. Evolution of the microstructure and texture after ARB processing 

Fig. 4a–d present the microstructure evolution of the Ni-14W alloy after one, two, three, and 

four cycles of ARB processing, respectively. The grains gradually became flattened and 

elongated parallel to the rolling direction. The initial equiaxed grains evolved into a lamellar-

type morphology, and the transverse boundary spacing along the ND (grain thickness) 

decreased drastically. Similar microstructure observations have been reported in pure Ni 

processed by ARB at room temperature [6, 8]. As shown in Fig.4 bonding during the ARB 

process was mostly good, but regions of incomplete bonding were found during the last cycle. 

Fig. 5 presents the evolution of the HAGB volume fraction and average transverse spacing as 

a function of the ARB cycle number. The grain thickness significantly decreased, from 10 to 

0.2 µm, after four ARB cycles. It is worth noting that the grain spacing along the RD (not 

shown) evolved only slightly (±10%). 

Zhang et al. [8] found that ARB processing of pure Ni led to decrease in grain thickness from 

40 μm to 0.6 μm after four ARB cycles. It was shown that the grain thickness values were 

slightly heterogenic over the sample thickness. Bhattacharjee et al. [6] showed that the grain 

thickness after 8 ARB cycles of pure Ni at room temperature reached a value of 0.21 μm near 

to the sample surface and decreased to 0.15 μm close to the center of the sample. Interesting 

finding in the present study was that it is possible to reach a smaller grain thickness (0.2 µm) 

with less ARB cycles (only four ARB cycles) compared to the reported literature (eight ARB 

cycles) [6, 8]. Such difference could be attributed to the initial microstructure prior to the 

deformation, ARB processing temperature condition and the effect of W element. 

Following Duan et al. [7], it is well known that there was a limit to structural refinement at 

some strain, whereby additional deformation did not further reduce the smallest dimension of 

the deformation features generated by a given SPD process. However, deformation at 

cryogenic temperatures (e.g., cryo-rolling) yields further structural refinement. 



As shown in Fig. 5, the HAGB volume fraction decreased drastically to 23% after the first 

ARB cycle; it then increased and seemed to saturate around 57% after the fourth cycle. 

Similar trends have been already reported in the literature for Armco Iron and Fe-36Ni (wt.%) 

deformed by ARB (at 500 and 550°C, respectively) [20, 23], as well as AA1050 alloy 

deformed by ECAP at room temperature [24].  

Duan et al. [10] observed a close evolution in pure commercial nickel processed at room 

temperature by ARB. However, their achieved saturated HAGB values were somewhat higher 

(~ 77 %) than those in the present study. The lower value obtained for the present Ni-14W 

alloy should mainly be associated with the processing temperature and/or solute content. It 

may be assumed that intermediate annealing at such a warm homologous temperature (T/Tm ~ 

0.31) should not be in favor of an HAGBs increase at the expense of LAGBs. Indeed, ARB 

processing of the Fe-36Ni alloy at 550 °C [20] exhibited a close asymptotic value of HAGBs 

(~ 68 %) after four cycles. The homologous temperature of this system (T/Tm ~ 0.35) is close 

to that of the Ni-14W alloy. It has been found that solute elements, such as W (in a Ni 

matrix), have the effect of promoting the generation of HAGBs at the expense of LAGBs 

[25]. However, this effect did not seem to hold in the present case. Meanwhile, no saturation 

in the fraction of HAGB was reported in pure Ni processed by ARB up to eight cycles [8] 

which showed a continuous increase from 20% after 3 ARB cycles to 60% after 8 ARB 

cycles. Indeed, it was demonstrated that the fraction of HAGB strongly depended on the 

initial grain prior to the deformation [6]. For example, when the initial grain size of pure Ni 

was 28 μm the fraction of HAGB was about 60% after eight ARB cycles, while in case of 

starting grain size around 650 μm the fraction decreased to 36% after the same number of 

cycles [6]. 

It was demonstrated that the bonding interfaces have great influence on the heterogeneity of 

the deformed microstructure because of the redundant shear deformation or/and wire-

brushing. Indeed, Zhang et al. [8] showed that ARB processing could produce more refined 

microstructure and high fraction of HAGB compared the cold rolling due to the presence of 

great number of subsurface layers in the ARB sample. 

Fig. 6 illustrates the ODF sections ( 2 = 0, 45, and 65°) of the Ni-14W alloy after ARB 

processing up to four cycles. The presence of only FCC rolling texture components (Copper, 

S, and Brass) for all ARB cycles can be observed. Similar deformation texture has been 

observed in pure Ni processed by ARB at room temperature [6, 7, 9]. The evolution of their 

volume fraction as a function of the number of ARB cycles is demonstrated in Fig. 7. It can 

be observed that the Brass component increased slightly during the first cycle in a comparable 



manner to the initial state, and then it continuously decreased. In contrast, Copper and S 

components increased with increasing ARB cycles, leading to the development of a Copper-

type texture. The Cube and Brass orientations underwent a weak continuous decrease, while 

the Goss component remained relatively constant throughout all the cycles. Sarma et al. [15] 

also reported a clear texture transition from a Copper-type to Brass-type texture in cold rolled 

FCC Ni 1−x W x alloys at W contents > 5at.%W (14wt.%W). These authors demonstrated 

that, with increasing alloying addition (Ni 1−x W x, with x = 0, 5.0, 7.5, and 9.0 at. % 

corresponding to x= 0, 14.15, 20.25, and 23.65 wt. %, respectively), the stacking fault energy 

of the alloys decreased, and finally, the deformation texture changed from a pure metal or 

Copper-type texture to a predominantly Brass-type texture. Indeed, Duan et al. [10] reported 

that the deformation texture components of pure commercial nickel processed by ARB at 

room temperature increase with the increase in ARB cycles, saturating after six cycles; the 

exception was the Copper component, which was further strengthened up to eight cycles. 

Moreover, Zhang et al. [9] investigated the heterogeneity of the texture through the thickness 

of the deformed Ni samples. Strong rolling texture was found in the intermediate and center 

layers of the deformed sample, whereas shear texture are observed near the surface [9]. The 

rolling texture near to the interface bounding was found to be weak because of the presence of 

additional shear deformation [12]. Such heterogeneity of the texture in the ARB sample will 

affect the final recrystallization texture, i.e. the amount of Cube component. Mishin et al. [12] 

reported that near the interface bounding the cube texture is consistently lower than in the 

core of the pure Ni deformed by ARB and annealed in air at 220 °C.  The small fraction of the 

cube texture in the interface bounding subsurface was attributed to low nucleation density of 

cube-oriented grains because of the presence of the shear texture [12]. 

It has been reported that the typical Copper-type texture can give rise to an extremely strong 

Cube orientation {001}<100> following optimized recrystallization annealing [26]. In a 

previous work, the stored energy of the texture components in invar alloy processed by ARB 

varied in the order of ECopper>ES>EBrass>ECube [27]. The amount of stored energy will 

favor Cube growth during recrystallization by providing the suitable driving force for a Cube 

grain boundary migration that invades the neighboring matrix [22, 27]. The correlation 

between the orientation dependency of the stored energy and the microstructure and texture 

on annealing was studied by Azzeddine et al. [27]; they demonstrated that the annealed 

sample showed a rapid decrease in Copper and S deformed grains and a slow decrease rate for 

Brass deformed grains during the annealing treatment. The present results show that the 

volume fraction of the S component was close to 25 %. This component is essential for the 



development of a sharp Cube recrystallization texture because of the high mobility of the 

40°<111> grain boundary between these two orientations [19]. 

The increase in the Copper and S components during deformation could be strongly affected 

by the deformation conditions. On the one hand, extensive simulations of texture evolution 

during cold rolling have predicted that deviation from the plane-strain state near the surface 

leads to the introduction of friction-induced shear components [28]. When these components 

were considered in the relaxed constraint model (which allows all types of shear to take place 

in the sheet plane), strong Copper and S components developed [28, 29]. On the other hand, 

during ARB processing, the shear components present in the surface regions of the samples 

rotated toward rolling components as soon as they moved to the quarter-thickness regions; at 

this point, they were subjected to plane strain deformation [20].  

 

3.3. Microstructure and texture after intermediate annealing 

Fig. 8a and b demonstrate the Ni-14W microstructure after ARB processing up to one and two 

ARB cycles, respectively, and annealing at 450 °C for 10 min. The HAGB volume fraction 

and grain thickness (l) are shown in Table 3. Fig. 8 illustrates that the microstructure was 

extremely similar to that of the deformed one after intermediate annealing (Fig. 4), which 

exhibited lamellar-type morphology. However, the HAGB volume fraction and grain 

thickness increased slightly compared with those after one and two ARB cycles (Fig. 5), 

which may have been due to the occurrence of recrystallization during the intermediate 

annealing. The results reported by Liu et al. [30] suggested that intermediate annealing of Ni-

9.3W (at. %) substrates could optimize the homogeneity of the deformation microstructure. 

Fig. 9 presents the ODF sections at 2 = 0, 45, and 65° of the Ni-14W alloy after ARB 

processing and annealing at 450 °C for 10 min. Interesting features are depicted in this figure, 

which are associated with the cyclic attenuation of the main rolling components (S, Copper 

and Brass) and their reappearance, especially in terms of the S and Copper components. 

During the intermediate annealing, the Cube component developed at the expense of S, 

Copper, and Brass. The Cube orientation is less sharp in the second cycle. The behavior of the 

principal rolling components may explain why only the S and Copper components notably 

increased with increasing ARB cycles, while the Brass component increased much less and 

stabilized soon after the second ARB cycle. Such observations are in good agreement with 

those of Liu et al. [30], who found that high intermediate annealing temperatures (without 

undergoing recrystallization during intermediate annealing) will sharpen the Copper-type 

components of the deformation texture. 



 

3.4. Evolution of the mechanical properties after ARB processing 

Fig. 10a presents the evolution of the Vickers microhardness of the Ni-14W alloy after ARB 

processing up to four cycles. The improvement of the microhardness was as high as 86 % (Hv 

~ 220 of as-received alloy and Hv ~ 410 after four ARB cycles). The hardnening of this alloy 

is manifestly higher than in pure Ni processed by ARB at room temperature (Hv ≈ 232 after 

three cycles) [8]. The net increase of the microhardness could be attributed to the increase in 

dislocation density and concomitant grain refinement [20, 23]. The evolution of dislocation 

density as a function of the number of ARB cycles measured by KAM approach is shown in 

Fig. 10b, which shows that the dislocation density increased from 1.08 1015 m–2in the as-

received alloy to 4.671015 m–2 after three ARB cycles. After three cycles, the microhardness 

tended to stabilize. This stabilization can mainly be attributed to the effect of the steady-state 

generation of the dislocations and their annihilation. As shown in Fig. 10b, the dislocation 

density seems to have reached a saturated value after three ARB cycles. This steady state of 

the dislocation generation and annihilation was also synergistically accompanied by a 

stabilization of the grain spacing, as shown in Figs. 3 and 4. The latter was due to grain 

fragmentation and subdivision hindrance with increasing strain. The grain boundary 

multiplication following from this fragmentation acted as dislocation barriers, limiting the 

free mean path.  

Fig. 11 illustrates the true stress-strain curves obtained from the tensile tests of the Ni-14W 

alloy after ARB processing up to four cycles. The data related to the tensile properties are 

summarized in Table 4. It is clear that the ultimate tensile strength (UTS) value improved. It 

increased from 800 to 1240 MPa after three ARB cycles, registering a 55 % improvement. 

The increase of the strengthening of NiW alloy with increasing ARB cycles could be 

attributed to the decrease of grain boundaries spacing [8]. However, the UTS decreased to 

1145 MPa after four ARB cycles. This lower tensile strength indicates some degree of flow 

softening. These results are explained by an insufficient strong bonding between the layers, 

especially at the interface formed during the last ARB cycle. It should be noted that during the 

tensile test, those weak interfaces, are suitable sites for crack nucleation and propagation [31].  

The yield strength of the as-received sheet was 400 MPa. It exhibited a slight increase after 

the first ARB cycle, and surprisingly, it reached 700MPa after three ARB cycles. It then 

dropped to a value of 640 MPa after four ARB cycles. The elongation decreased substantially, 

from 20.9 % to 7.25 %, after one ARB cycle. Then, it decreased slowly to a value near 2.94% 

after four ARB cycles. Similar trends have been reported in the literature [32, 33]. It is worth 



noting that the three mechanical parameters fell in the ranges of the tabulated data for Ni-W 

alloys fabricated using different techniques [34–36]. Zhang et al. [8] have shown a 

monotonous increase of the TYS up to eight ARB cycles in pure Ni after ARB at room 

temperature. Its value after four ARB cycles was around 600 MPa as found in the present 

study (Table 4). 

The uniform elongation parameter presented in Table 4 was deduced from the stress-strain 

curves (Fig. 10). Hasegawa et al [37] have clearly demonstrated a reasonable agreement 

between the estimated value (from a dislocation dynamics approach on the basis of a concept 

of plastic stability) and observed ones (deduced from stress-strain curves). From Table 4, it is 

evident that the uniform elongation decreases rapidly after one ARB cycle to slow down 

around ~ 4.4% after three ARB cycles and again a rapid drop was observed (2.9 %) after four 

ARB cycles. The uniform elongation reported by Zhang et al. [8] was quite lower, ~ 2%. 

A strong reduction in ductility of the ARB processed sheets was found, and this was also 

associated with the loss of their strain-hardening capacity. Indeed, it is well known that metals 

and alloys exhibit negligible strain-hardening behavior after SPD as a balance between the 

rates of dislocation generation and dislocations trapped at grain boundaries [17]. In the 

present study, it was clearly evidenced that the Ni-14W samples subjected to ARB processing 

at 450°C up to four ARB cycles exhibited ultrafine grains with high strength at the expense of 

ductility. 

Finally, the present results are in line with Saito et al. [4] in terms of the notion that, beyond 

rolling, which is the most appropriate process for producing bulk materials with suitable 

microstructures and textures, ARB processing may also be industrially important. After the 

promising deformation texture obtained via ARB processing, the recrystallization texture 

analysis is a challenging and on-going research activity for the present authors. 

 

Conclusion 

In the present study, the microstructure, texture and mechanical proprieties of a Ni-14W alloy 

processed by ARB at 450 °C up to four cycles was investigated. The main conclusions were 

as follows: 

The initial equiaxed grains of the Ni-14W alloy, with an average size of 10 μm, underwent a 

strong refinement down to 0.2 μm of their grain thickness, showing a net elongated ultrafine 

grain parallel to the rolling direction after ARB processing. 

The texture after ARB processing was characterized by the typical rolling components 

(Copper, S, and Brass), which showed a tendency toward stabilization after four ARB cycles. 



The microhardness substantially increased (+ 86 %) and then seemed to saturate after three 

ARB cycles. 

The tensile tests showed that the Ni-14W samples subjected to ARB processing at 450 °C up 

to four ARB cycles exhibited high strength (>1200 MPa after three ARB cycles) and 

extremely poor ductility. However, marginal drops in the yield and tensile strength were 

observed after the third ARB cycle. 
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Figures captions: 

 

Fig. 1: Sketch of different analyzed zones of the NiW alloy sample. The EBSD maps were 

collected on the RD-ND plane while microhardeness was measured in the RD-TD plane. 

 

Fig. 2: OIM maps showing the microstructure of the as received Ni-14%W alloy as: a) 

inverse pole figure map and b) different boundary types map: LAGBs in red and HAGBs in 

blue. 

 

Fig. 3: ODF sections at 2 = 0, 45 and 65° of as received Ni-14W alloy. 



 

Fig. 4: IPF maps showing the microstructure evolution of Ni-14W alloy after ARB processing 

up : a) one cycle, b) two cycles, c) three cycles and d) four cycles.  

 

Fig. 5: Evolution of the HAGB volume fraction and average transverse spacing (along ND) of 

HAGBs versus the ARB cycle number. 



 

Fig. 6: ODF sections at 2 = 0, 45 and 65° of Ni-14W alloy after ARB processing: a) one 

cycle, b) two cycles, c) three cycles and d) four cycles. 

 

Fig. 7: Volume fraction of the texture components of the Ni-14W alloy after ARB processing. 

 

Fig. 8: IPF maps showing the microstructure evolution of Ni-14W alloy after ARB processing 

up : a) 1 cycle and annealed, b) 2 cycles and annealed at 450 °C for 10 min. 



 

Fig. 9: ODF sections at 2 = 0, 45 and 65° of Ni-14W alloy after ARB processing: a) one 

cycle and annealed, b) two cycles and annealed at 450 °C for 10 min. 

 

Fig. 10: a) Microhardness and b) dislocation density evolution of Ni-14W alloy after ARB 

processing up to four cycles.  

 

Fig. 11: True stress versus true strain of the Ni-14W alloy after ARB processing up to four 

cycles. 

 



 

 

 

 

 

 

Table caption 

Table 1: Chemical composition of the Ni-14W(wt. %) alloy. 

W C Mn Mg S Ti 

14 0.016 0.023 0.0017 <0.0005 <0.001 

 

Table 2: Main ideal rolling texture components of FCC alloys. 

Component {hkl}<uvw> Euler Angle 

1  2 

Brass {110}<112> 35° 35° 45° 

Goss {110}<001> 0° 45° 0° 

Cube {001}<100> 0° 0° 0° 

Copper {112}<111> 90° 35° 45° 

S {231}<346> 59° 29° 63° 

 

Table 3: HAGBs volume fraction and grain thickness (l) of Ni-14W alloy after intermediate 

annealing at 450 °C for 10 min.  

  l (μm) HAGB (%) 

1 ARB + annealing 1.57 26 

2 ARB + annealing  0.9 39 

 

Table 4: Tensile yield strength (TYS), ultimate tensile strength (UTS), uniform elongation 

and elongation to fracture (Ef) of the Ni-14W alloy after ARB processing up to four cycles. 

 

 TYS (MPa) UTS (MPa) Uniform elongation (%) Ef (%) 

As received 400 800  19.72 20.9 

1 cycle 500 840  4.91 7.25 

 

 



2  520 990  4.49 5.12 

3  700 1240  4.39 5.44 

4 640 1145  2.94 2.94 

 


