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Abstract 

Elastic fields due to single dislocations and dislocation pile-ups are computed in heterogeneous 

media like bi-materials, half-spaces and tri-materials thanks to the Leknitskii-Eshelby-Stroh 

formalism for two-dimensional anisotropic elasticity. The tri-material configuration allows to 

consider grain boundary regions with finite thickness and specific stiffness. The effects of these 

parameters are first studied in the case of a single dislocation in a Ni bicrystal. Image forces 

may arise because of both dissimilar grain orientations and the presence of a finite grain 

boundary region. In particular, it is shown that the Peach-Koehler force projected along the 

dislocation glide direction can exhibit a change of sign with the dislocation position. Therefore, 

an equilibrium position in the absence of applied stress can be found by coupling an attractive 

compliant grain boundary region with a repulsive orientation of the adjacent crystal, or a 

repulsive stiff grain boundary region with an attractive orientation. Regarding dislocation 

pile-ups, it is shown that the resolved shear stress scales approximately with the inverse of the 

square root distance from the leading dislocation in the pile-up. This scaling law remains valid 

in anisotropic elasticity for the chosen heterogeneous media. Both the grain boundary stiffness 

and grains misorientation influence pile-up length and resolved shear stress, but the effect of 

misorientation is clearly seen to be predominant. In the case where the leading dislocation is 

unlocked, the resolved shear stress at a given position in the neighboring grain is reduced 

when the grain boundary stiffness is increased due to the pushing back of dislocations from 

the grain boundary. 
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1. Introduction  

The mechanical properties of polycrystals are greatly dependent on the interaction mechanisms 

between dislocations and grain boundaries (dislocation transmission or absorption at grain 

boundary, formation of a dislocation pile-up, etc). Beyond the specific details of these 

mechanisms, dislocations always interact with grain boundaries through their elastic fields. In 

heterogeneous media like bi-crystals containing grains with different orientations, image 

stresses are indeed appended to the self dislocation stress field (i.e. the one for an infinite 

homogeneous medium) in order to satisfy the boundary conditions at interfaces. The image 

forces can either attract the dislocation towards the grain boundary or conversely push the 

dislocation away. In case of a dislocation pile-up, image forces can especially influence the 

positions of the dislocations and the stress field caused in the adjacent crystal. Such forces can 

be considered as configurational forces (Asaro and Lubarda, 2006; Maugin, 2011). Moreover, 

real grain boundaries have finite width and their specific elastic properties may then constitute 

an additional source of image forces. 

Elastic fields due to the presence of singularities like dislocation and line force in anisotropic 

infinite homogeneous elastic medium were originally developed by Eshelby et al. (1953), Stroh 

(1958) and Leknitskii (1963). The so-called Leknitskii-Eshelby-Stroh (LES) analytical 

formalism (or sextic equation formalism) involves solving a six-dimensional equation and 

considers complex variable techniques. It is very efficient but cannot handle the case of a 

completely isotropic crystal since the problem becomes singular due to repeated eigenvalues 

(see e.g. Ting, 1996). To circumvent this issue, an integral formalism was also developed, 
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which is based on Green’s function technique and does not require to find eigenvalues and 

eigenvectors (Barnett and Lothe, 1973; Bacon et al., 1979). 

The general problem of anisotropic bi-materials and half-spaces with singularities was firstly 

solved by Gemperlova, Tucker and co-workers (Tucker and Crocker, 1968; Gemperlová and 

Saxl, 1968; Gemperlová, 1968, Tucker, 1969), then by Tewary et al. (1989) followed by Suo 

(1990) who used analytic continuation arguments. Ting (1992), Ting and Barnett (1993), Chu 

and Pan (2014) used Green’s function technique for anisotropic media (Ting, 1996). 

Considering perfectly bonded interfaces, all these methods provide identical solutions and 

results. It is also noteworthy that many other authors considered the particular case of an 

interfacial dislocation in a bi-material with many applications to micromechanics problems 

including interfacial elasticity and interfacial cracks (e.g., Nakahara and Willis, 1973; Barnett 

and Lothe, 1974; Chou et al., 1975; Hirth et al., 1979; Bonnet and Dupeux, 1980; Qu and 

Bassani, 1989; Qu and Li, 1991; Wu et al., 2003; Sigaeva and Schiavone, 2014; Juan and 

Dingreville, 2017a,b). Besides, it can be underlined that the case of imperfect interfaces was 

already addressed by Tucker (1969) who obtained elastic field solutions for both perfectly 

bonded and freely slipping interfaces. Most recently, elastic Green’s functions were derived in 

anisotropic bi-materials by Pan (2003) in three dimensions while considering different kinds of 

imperfect interface models and by Juan and Dingreville, (2017b) while accounting for 

interfacial elasticity. Furthermore, it must be noticed also that elastic field solutions due to 

three-dimensional dislocation loops in anisotropic bi-materials exist (e.g., Han and Ghoniem 

(2005), Chu et al. (2012)). 

The elastic fields of dislocations in anisotropic layered media were studied by using the Stroh 

formalism in conjunction with the Fourier integral transform, e.g. Alshits and Kirchner (1995), 

Han and Ghoniem (2005), or in conjunction with the image decomposition method using 

singular Cauchy integral equations, e.g. Wang et al. (2007). An alternative interesting method is 

to implement the analytical solutions based on recurrence formulas as derived by Choi and 

Earmme in anisotropic (Choi and Earmme, 2002a) and isotropic (Choi and Earmme, 2002b) 

tri-materials. To perform their derivations, Choi and Earmme (2002a) considered an alternating 
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technique to satisfy boundary conditions at both interfaces in combination with the analytic 

continuation method (Suo, 1990; Hwu, 2010). In particular, Choi and Earmme (2002a) applied 

their recurrence formulas to find the elastic fields due to the presence of a dislocation in a finite 

epitaxial layer lying on an infinite substrate, the third (top) material being a free space. 

Dislocation pile-up at grain boundaries is an important inelastic deformation mechanism in 

polycrystalline materials that has been observed in metals using Transmission Electron 

Microscopy (TEM) (e.g., Lee et al., 1990) or using stage-I fatigue crack experiment (e.g., 

Schäfer et al., 2016). The grain size dependence of the flow stress of polycrystals, which is well 

known as the Hall-Petch relationship, can be explained by the stresses caused by dislocation 

pile-ups at grain boundaries (Eshelby et al., 1951; Li and Liu, 1967). Stress concentration built 

up at the head of dislocation pile-ups may be the driving force for slip transfer and activation of 

new dislocation sources in the neighboring grain. In order to compute the elastic fields of 

dislocation pile-ups at grain boundaries, two-dimensional elasticity is generally considered and 

dislocations are represented as a set of identical parallel straight infinite dislocations lying in the 

same slip plane. Both discrete and continuous-based theories of pile-ups have been developed 

(e.g., Chou and Li, 1969; Voskoboinikov et al., 2007). The calculation of equilibrium positions 

of discrete dislocations in a pile-up was firstly performed by Eshelby et al. (1951) in an 

isotropic homogeneous elastic crystal. The equilibrium position solutions were described as the 

roots of a generalized Laguerre polynomial. On the other hand, Leibfried (1951) studied 

continuous pile-ups where discrete dislocations were replaced by a continuously distributed 

dislocation density. From Eshelby’s work, Mitchell et al. (1965) computed dislocation 

equilibrium positions for discrete pile-up in anisotropic homogeneous crystals. 

Regarding dislocation pile-ups in heterogeneous media, many works dealt with planar or 

circular bimetallic interfaces but mostly in isotropic elasticity (Chou, 1966; Barnett, 1967; 

Kuang and Mura, 1968; Kuan and Hirth, 1976; Öveçoğlu et al., 1987; Lubarda, 2017). In 

particular, Lubarda (2017) recently studied the effect of the number dislocations, the applied 

shear stress, the size of the inhomogeneity and the degree of mechanical contrast on the 

equilibrium positions of edge dislocation pile-up against a circular inhomogeneity or a 
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bimetallic interface. He also evaluated the configurational force on a circular inhomogeneity 

and the stress concentration caused by the pile-up against different interfaces, which is of 

importance for the study of interface cracking. A few works about pile-ups are however 

concerned with heterogeneous anisotropic elasticity, as the ones of Vagera (1971) for 

continuous pile-ups and Wagoner for discrete pile-ups (Wagoner, 1981). Wagoner (1981) 

found dislocation positions of an equilibrated pile-up in an anisotropic bicrystal using a 

numerical iterative relaxation scheme with a first locked dislocation at small distance from 

grain boundary. The iterative relaxation scheme minimizes the Peach-Koehler force acting on 

each dislocation along the slip direction. Up to now, a few discrete dislocation dynamics studies 

incorporate elastic anisotropy framework to integrate image forces in bi- and tri-materials (see 

e.g. Shishvan et al., 2011). 

In the present paper which focuses only on perfectly bonded interfaces, a numerical method 

similar to Wagoner’s one is used to calculate equilibrium positions and stress fields of 

dislocation pile-ups in anisotropic heterogeneous medium like bi-materials, half-spaces and 

tri-materials. In the latter case, the recurrence formulas of Choi and Earmme (2002a) are used 

while the finite medium stands for the grain boundary region. The paper is organized as 

follows. Notation conventions are settled in section 2 and the LES formalism for 

two-dimensional anisotropic elasticity is recalled in section 3. Section 4 deals with the issue of 

a single straight dislocation in anisotropic homogeneous medium and anisotropic 

heterogeneous medium like bi-materials and half-spaces (Suo, 1990; Hwu, 2010). Section 5 

recalls the alternating technique method of Choi and Earmme (2002a) to find the solutions for a 

single straight dislocation in an anisotropic tri-material. Moreover, two new criteria for the 

convergence of the solutions are proposed. Section 6 is dedicated to the discrete dislocation 

pile-up theory. In particular, the theory of Eshelby et al. (1951) on the stress concentration 

caused by a pile-up is briefly recalled. Then, Wagoner’s method is used to study discrete 

pile-ups in anisotropic homogeneous media, bi-materials, half-spaces and it is extended to 

tri-materials. In section 7, results and discussions are reported. First of all, computation 

configurations are explained, then a new convergence study for tri-material configurations is 

proposed. The effects of grain boundary modelling characteristics as well as image forces are 
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studied for single dislocation configurations. Secondly, the results about dislocation pile-ups in 

anisotropic bi-crystals, using bi- and tri-material models, are reported and discussed when the 

leading dislocation is arbitrarily locked and when it is unlocked and equilibrated thanks to a 

repulsive image force. Finally, concluding remarks are provided in section 8. 

 

2. Notations 

A bold lowercase letter like   denotes a vector and a bold uppercase letter like   denotes a 

    matrix. So    denotes the action of the matrix   on the vector  , producing a 

vector. The symbol   represents the cross product. The superscript   denotes the transpose 

of a matrix. The Einstein convention over repeated indices is used when indices are 

underlined, e.g.:                                         but               

              and                         is a vector function, while the    are 

arbitrary functions of their arguments. Besides, the notation           is used for the 

conjugate of a complex function. 

  is the second-order Cauchy stress tensor with        ,   is the displacement vector, and 

  is the second-order strain tensor defined by     
 

 
           , where the spatial 

derivative with respect to a Cartesian coordinate is indicated by a comma followed by the 

component index.   denotes the elastic stiffness tensor, which is a fourth-order tensor with 

classic symmetries: Cijkl=Cjikl=Cijlk=Cklij. 

 

3. Leknitskii-Eshelby-Stroh (LES) formalism for two-dimensional anisotropic elasticity  

Details about the LES formalism can be found in many textbooks, e.g., Ting (1996) or Hwu 

(2010). Below, the main equations are given in order to introduce clearly the variables used 

later. A Cartesian reference frame            such that          is considered 

throughout the paper. Assuming that    depends on         only, the balance of linear 

momentum in the absence of body forces coupled with the Hooke’s law in linear anisotropic 



7 

 

elasticity (            ) leads to: 

                                            ( 1 ) 

Without loss of generality, it has been shown that the solution of Eq. ( 1 ) can be expressed as 

(Eshelby et al., 1953; Stroh, 1958):  

           with          ( 2 ) 

where   is an arbitrary scalar function of   and    and   are constants to be determined. 

Then, by substitution, a sextic equation for   is obtained: 

                                    ( 3 ) 

since a nontrivial solution of    exists only if the determinant of Eq. ( 3 ) is zero. The six 

roots (defined hereafter as the material eigenvalues) actually consist of three pairs of complex 

conjugate roots due to the positive definiteness of the strain energy (Eshelby et al., 1953). If 

   and             denote the eigenvalues and the associated eigenvector components, 

it is hereafter considered that: 

                                with         ( 4 ) 

Assuming generally that the roots    are distinct, the displacement vector is then obtained by 

the superposition of the six solutions: 

                   ( 5 ) 

where   is a 3 3 matrix containing the eigenvector components               and 

          . Finally, the stresses can be derived from a stress function vector    obtained 

as: 

                   ( 6 ) 

where   is a 3 3 matrix defined as: 

                        ( 7 ) 

such that the   -independent stresses are: 
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             ,             ( 8 ) 

If needed, component     can be computed from the generalized Hooke’s law and under 

plane strain assumption. It is noteworthy that   , as well as the matrices   and  , are 

complex quantities, which depend only on the anisotropic elastic stiffness tensor  . Matrices 

  and   are non-singular when the six complex roots    are all distinct or for specific 

non-degenerate cases (Ting and Chyanbin, 1988). Properties of   and   (normalization, 

orthogonality) were discussed by Stroh (1958, 1962), Barnett and Lothe (1974) and Chadwick 

and Smith (1977). 

 

4. Single straight dislocation in anisotropic elasticity 

In the following, an infinite straight dislocation with Burgers vector   and whose line t is 

parallel to the    direction (i.e. the    axis in Figure 1) is considered at the position        . 

Through the paper, the so-called FS/RH (Finish Start/Right Hand) convention (Hirth and 

Lothe, 1982) is used to define the direction of the dislocation line (see Figure 1). 

 

4.1 Homogeneous medium 

For a homogeneous anisotropic medium, the function vector   is denoted   . It is derived 

by considering the boundary condition associated to the presence of the dislocation with 

Burgers vector   in the absence of remotely applied force (Eshelby et al., 1953; Stroh, 1958): 

    
 

   ( 9 ) 

where   is any closed curve (Burgers circuit) enclosing the position        . Following 

Suo (1990), the general form of   
      is given by: 

   
        

           ( 10 ) 

where                       and    is a complex vector expressed as: 
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       ( 11 ) 

 

4.2 Heterogeneous medium: bi-material 

Let us now consider an anisotropic bi-material (or bi-crystal) with a perfectly bonded 

interface whose normal is along the    direction (i.e. the    axis in Figure 1). The 

dislocation line is supposed to be located in the upper material I (      (Figure 1). In 

addition to Eq. ( 9 ), the function vector   should also satisfy the continuity conditions at the 

perfect interface, i.e. the continuity of displacements and forces across the interface (Suo, 

1990). 

  

 

Figure 1. A single straight edge dislocation in a bi-material. 

 

Following the Suo’s method (Suo, 1990), the function vector        to be used in Eqs. ( 5 ) 

and ( 6 ) is expressed as: 

         
  

        
                         

  
                                          

  (12 ) 

where   
      is the function of the homogeneous problem calculated from Eq. ( 10 ) 

considering the elastic stiffness tensor    of the upper material I and      
       

   . 
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Moreover, it must be noticed that if     ,      
       

    and if      ,      
   

     
     where   

  and   
   are components of the vectors containing the roots with 

positive imaginary parts of the sextic equation (Eq. ( 3 )) solved in crystals I and II, 

respectively. The functions   
      and   

       are determined from continuity conditions at 

the interface and analytical continuation arguments. The reader is referred to (Suo, 1990) and 

(Hwu, 2010) to find details about these derivations. As a result, the following expressions of 

  
      and   

       are obtained: 

  
  

         
      

                  

  
          

      
                 

  ( 13 ) 

where: 

  
               

      
  

            
   

             
        

  

       
      

  ( 14 ) 

Displacement and stress fields are then deduced from Eqs. ( 5 ), ( 6 ), (12 ), ( 13 ) and ( 14 ). It 

is noteworthy that when      ,   
        

    
      

      
     

   with   
       

    

since    is associated to material I (just as   ). In the case where the dislocation is assumed 

to be located in the lower material II, the solution is obtained by a similar procedure yielding: 

         
  

                         

  
        

                   
  ( 15 ) 

  
  

    
      

      
                

  
     

       
      

                  
  ( 16 ) 

where   
      is still calculated from Eq. ( 10 ) but now considering the stiffness tensor     

of the lower material II and      
        

    . 
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4.3 Half-space with rigid or free surface 

The problem of a singularity in a half-space I with a surface at      can be solved in a 

similar manner as the bi-material problem (Suo, 1990; Hwu, 2010). If the surface is assumed 

to be rigid, the displacement boundary condition is   
         . Displacement and stress 

fields are then obtained by considering Eqs. ( 5 ), ( 6 ), along with          
        

      

where: 

   
          

   
   

    
      ( 17 ) 

If the surface is assumed to be traction-free, the continuity of the resultant traction force 

becomes   
          and the expression of   

      is: 

   
          

   
   

    
      ( 18 ) 

 

5. Heterogeneous medium: tri-material 

5.1 Configuration of tri-material 

In section 4.2, the bi-material was regarded as the combination of two materials perfectly 

bonded to each other through an interface without thickness. In the case where the considered 

interface is a grain boundary (GB), the real thickness is finite. At a suitable resolution scale, it 

may be thus interesting to investigate the effects of the GB thickness and stiffness on the 

elastic fields in a bi-crystal considered as a tri-material. As discussed in the introduction, 

several studies were concerned with multilayered anisotropic elastic media. In the present 

paper, the method of Choi and Earmme (2002a) is followed. 

Figure 2 shows the considered tri-material configuration. There are two planar interfaces    

and    whose normals are directed along the    axis. These interfaces are located, 

respectively, at      and at      . The interphase (or grain boundary) thickness is thus 

     . Material I corresponds to     , material II to         and material III 

to      . All the materials are assumed to be perfectly bonded to each other. 
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Figure 2. A single straight edge dislocation in a tri-material with three different stiffness 

tensors and two perfectly bonded interfaces. The grain boundary region is supposed to be 

material II. 

 

5.2 A coordinate translation 

In contrast with section 4.2, it is noteworthy that the interfaces are no more located at     . 

Hence, a coordinate translation should be performed first in order to be able to use correctly 

the bi-material expressions of elastic fields. Let us then consider a bi-material configuration 

where the dislocation is located in the upper crystal I and where the interface is located at 

      . In this case, the change of coordinates         and         must be 

performed in order to retrieve the same bi-material configuration as the one of section 4.2, i.e. 

such that the interface would be at      within the new coordinate system. Hence,   and 

  must be modified as          
   and           

 , which leads to the following 

change of coordinates for   
      (Choi and Earmme, 2002a):  
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 ( 19 ) 

It can be observed that the expression of   
    

   remains unchanged since it corresponds to 

the case of a dislocation in a homogeneous anisotropic material (no interface). However, the 

two other terms have been modified because they depend on the position of the interface. The 

solutions for a bi-material with the interface located at        are then deduced from 

Eqs. ( 5 ), ( 6 ), (12 ) and ( 13 ) along with: 

  
  

    
      

       
    

    
     

   

  
     

       
      

    
     

      
   

  ( 20 ) 

Thanks to a similar procedure, the solutions for the different cases displayed in Table 1 are 

also derived, i.e. when the dislocation is located in the lower crystal II or when the interface is 

located at        . 

 

 Interface        Interface         

Dislocation 

in upper 

crystal   

  
         

       
       

     
    

  
          

      
       

      
    

  
         

       
       

     
    

  
          

      
       

      
    

Dislocation 

in lower 

crystal    

  
         

      
       

     
     

  
          

       
       

      
     

  
         

      
       

     
     

  
          

       
       

      
     

Table 1 Bi-material solution functions for different locations of the interface and dislocation. 
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5.3 Alternating technique with standard analytic continuation arguments 

In the tri-material configuration, there are two interfaces and the difficulty is thus to satisfy 

the continuity of displacements and forces across the two interfaces at the same time. Choi 

and Earmme (2002a) overcame this difficulty by applying the alternating technique, which 

consists in satisfying alternatively the continuity conditions across each interface until a 

convergence is obtained. That means that both materials which are on the same side of the 

considered interface are regarded as a homogeneous material. The latter corresponds to the 

material adjacent to the interface. At each step  , the function which is used as a 

homogeneous solution to perform the computation is updated (see details in (Choi and 

Earmme, 2002a)). 

Still considering the case of a dislocation located in the crystal I and by using the same 

procedure as the one of Choi and Earmme (2002a), the following series solution is obtained: 

        

 
 

   
        

          
      

 
                     

   
     

 
       

       
 
                     

   
        

 
                                                    

  ( 21 ) 

where: 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

  
        

           

  
          

       
       

     
   

  
          

       
         

 
      

     
          

    

  
           

        
 

      
      

    

  
            

        
 

      
       

    

  
       

   
      

       
      

                                                    

   
       

        
   

      
      

          
            

 

  ( 22 ) 

In the above equations,   
      is associated to crystal I and so      

       
   . The 

series solution   
      ,   

        and   
         are all expressed as functions of   

      

which is itself determined by a recurrence equation based on   
     .  
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In a similar manner, when the dislocation is located in the crystal II (interphase, i.e. GB 

region), the series solution is: 

        

 
 

    
      

 
                                 

   
     

 
       

       
 
                    

  
            

        
 
                       

  ( 23 ) 

where:  

 

 
 
 
 
 
 
 

 
 
 
 
 
 

  
        

          

  
            

         
       

       
    

  
          

       
 

      
     

    

  
           

      
 

      
      

    

  
            

         
      

 
      

       
          

    

  
       

  
         

        
       

      
                                

   
         

      
   

      
      

          
             

 

  ( 24 ) 

In the above equations,   
      is now associated to crystal II and so      

        
    . 

 

5.4 Convergence of series solution through three criteria 

Choi and Earmme (2002a) proved that the above series solutions are indeed convergent (see 

the discussion in the section 6 of their paper). However, for numerical applications, it is 

important to discuss the definition of different convergence criteria in order to analyze the rate 

of convergence of the series. When the truncation of the series   becomes large, the 

computation is very time-consuming or even unrealizable for large values of mechanical 

contrasts between crystals. To study numerical convergence, Choi and Earmme (2002a) 

considered a criterion based on the image force acting on the dislocation and discussed the 

effect of the elastic stiffness of the different materials as well as the one of the thickness of the 

second material. Their criterion is expressed as: 
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 ( 25 ) 

where    
   

 is the component of the image force along the    axis at the position of the 

dislocation. They considered that convergence was achieved for   
   

     . This criterion 

is based only on stress and disregards the solutions outside the dislocation, in particular in the 

other materials. 

In the present paper, two new convergence criteria are developed. The first one considers the 

norm of the displacement vector difference between two steps summed at every point (P, Q) 

of the simulation plane (which includes the three materials): 

   
   

 
      

           
       

 

    

     
 
         

 

    

 ( 26 ) 

The second one considers the norm of the stress tensor difference between two steps summed 

at every point (P, Q) of the simulation plane: 

   
   

 
     

  
          

  
       

 

     

     
  
         

 

     

 ( 27 ) 

Through the combination of these two criteria, both displacement and stress distributions are 

considered. Contrary to the criterion of Choi and Earmme (2002a) which focuses on only one 

material point, the above criteria depends on the size and the spatial discretization (mesh 

resolution) of the simulation plane. Indeed, it can be soundly inferred that the elastic field 

differences between two steps are larger close to the singularity than far away. However, the 

numerical calculations reported in Section 7.2 will show that the influence of the simulation 

plane’s characteristics was negligible. 

 

6. Discrete dislocation pile-up theory  

6.1 Determination of dislocation pile-up equilibrium positions in heterogeneous bi-materials, 

tri-materials and half spaces 

Let us consider a single dislocation pile-up of N infinite straight edge dislocations, which are 
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all parallel to the    axis, have the same Burgers   and lie in the same slip plane as shown 

in Figure 3. 

 

Figure 3. α-inclined dislocation pile-up in slip plane of unit normal n for N edge dislocations 

with Burgers vector b and line vector t in heterogeneous anisotropic (a) bi-material and (b) 

tri-material. 

The equilibrium positions of the N dislocations can be found out by minimizing to zero the 

component of the Peach-Koehler (P-K) (Peach and Koehler, 1950) force along the slip 

direction for each dislocation (Eshelby et al., 1951). In practice, a value less than 5×10－
6
 N/m 

is used as in Wagoner (1981). Hereafter, the computation of the P-K force follows the 

Final-Start, Right-Hand (FSRH) convention (see Kelly and Groves, 1970). This means that, 

for a non-screw dislocation (here edge dislocations), the positive normal to the slip plane is 

given by           where   is the unit line direction (cf. Figure 3). The projection of 

the P-K force of the     dislocation (       ) along the glide direction is computed as 

follows: 

                                       ( 28 ) 

where               denotes the position of the     dislocation.   is a unit vector 

indicating the glide direction of all dislocations, which is considered to be directed towards 

the interface so that a pile-up can form. Accordingly,        means that the     

dislocation is attracted by the grain boundary (attractive GB) whereas        means that 

the     dislocation is repelled by the grain boundary (repulsive GB).   belongs to the slip 

plane and is normal to the dislocation line. For edge dislocations as considered in the present 

paper,   is collinear to the slip direction.      is a homogenous applied stress tensor and 
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     is the internal stress tensor produced by all the dislocations. It should be pointed out that 

in the present work, the introduction of the homogenous stress tensor      has only for 

objective to equilibrate the dislocation pile-up. Even in the absence of singularities like 

dislocations, an infinite heterogeneously elastic material that is submitted to some (remotely) 

applied stress will actually display stress heterogeneities due to incompatibility stresses that 

are needed to maintain the continuity conditions at the interfaces (Gemperlová et al., 1989; 

Richeton and Berbenni, 2013; Tiba et al., 2015). In this paper, these long-range incompatibility 

stresses due to heterogeneous anisotropic elasticity are neglected since only the normal 

22-component of      is non-zero. From traction continuity condition at an interface with 

normal along   , this component is uniform in the infinite material, so this one does not 

exhibit incompatibility stress, but other incompatibility stress 11, 33 and 13 components may 

be present. It is here conjectured that these ones are small compared to the applied stress field. 

In linear elasticity,      is computed as the superposition of the stress tensor of each 

individual dislocation, which is obtained from the expressions derived in Sections 4 and 5. In 

an infinite homogenous medium, the self-contribution of the     dislocation at its position is 

considered to be zero because of the dislocation self-equilibrium. In an heterogeneous 

medium (half-space, bi- or tri-material, cf. Figure 3), the contribution of the image force due 

to the presence of interface(s) or surface should be considered for all the dislocations in     , 

i.e. only the self-contribution related to the homogeneous function   
      is omitted (cf. Eqs. 

(12 ), ( 13 ) and ( 14 )). 

The calculation of the dislocation pile-up equilibrium positions is thus obtained by following 

an iterative relaxation scheme that minimizes all the      after an initial configuration is 

specified. In order to be able to perform such a computation in an infinite homogenous 

medium, one dislocation should be considered as locked. Usually, the position of the first (or 

leading) dislocation               is fixed (Mitchell et al., 1965, Wagoner, 1981). As a 

result, the P-K force on the locked dislocation is not zero. In an heterogeneous medium, the 

boundary image force on the leading dislocation may equilibrate the applied stress and the 

stress contribution coming from the other dislocations (Wagoner, 1981), but only in case of 
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repulsive image force. In such case, all the dislocation positions, including the leading one, 

could be found by the iterative relaxation scheme. 

In the present paper, the case where the position of the leading dislocation is locked is studied 

in section 7.5 in order to perform consistent comparisons of pile-up lengths between different 

configurations such as homogeneous material, heterogeneous bi-material (Figure 3 (a)), 

half-space (Figure 3 (a)) and heterogeneous tri-material (Figure 3 (b)). The case where the 

leading dislocation is unlocked is studied in section 7.6 

 

6.2 Resolved shear stress in front of dislocation pile-ups 

According to the theoretical work of Eshelby et al. (1951) performed in isotropic elasticity, a 

lower bound estimate of the resolved shear stress on the slip system of a pile-up of straight 

dislocations is: 

      
 

 
       

 

 
        

 

  
      ( 29 ) 

where   is the distance beyond the leading (locked) dislocation,    the applied resolved 

shear stress,   the pile-up length and   the distance between the locked and the nearest free 

dislocation as shown in Figure 4. For a large number of dislocations in isotropic elasticity,   

can be approximated by   
   

  
 with   

    

       
 for edge dislocations (Eshelby et al., 

1951). 
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Figure 4. Discrete edge dislocation pile-up configuration in isotropic elasticity (Eshelby et al., 

1951). 

 

7. Results and discussion  

7.1. Different studied configurations 

In all the following numerical applications, nickel (Ni) bi-crystalline configurations are 

considered, i.e. two crystals of Ni, which can have different crystallographic orientations. In 

case of a tri-material configuration, the interphase material is supposed to represent the grain 

boundary (GB) region. Ni has a face centered cubic (FCC) structure and was chosen due to its 

moderate elastic anisotropy (Zener coefficient                         ). The elastic 

stiffness values are presented in Table 2. The role of crystal plasticity on slip incompatibilities 

in Ni polycrystals and bi-crystals were recently experimentally and theoretically studied in 

Perrin et al. (2010) and Tiba et al. (2015) but without considering discrete pile-up with 

anisotropic elasticity. 

Furthermore, only edge dislocations having their Burgers vector in the         plane are 

considered. As shown in Figure 1, the Burgers vector can be determined by an angle  , so 

that                         in the global frame           . Still following the 

FSRH convention, the slip plane normal is given by       where          . The slip 

system is supposed to be one of the usual twelve slip systems for FCC crystals, for example 

               and                  in the crystal’s frame    
    

    
  . The 
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crystallographic orientation of the upper crystal I is thus fixed by the choice of the angle   

and is defined by the transformation matrix   such that                       , where 

        . The elastic stiffness tensor in the global frame is then deduced from the 

transformation matrix   by                  
        where    is the elastic stiffness 

tensor defined in the crystal’s frame. In the lower crystal, there is no dislocation and thus the 

choice of its crystallographic orientation is free. Two specific orientations are considered in 

the following: orientation A
Ori

 with      
 ,      

 ,      
  and orientation B

Ori
 with 

    
 

 
  

  
  

 
  

  
 

 
  

 ,     
 

 
  

  
  

 
  

  
 

 
  

 ,    
  

 
  

  
  

 
  

 . For details, the 

contracted Voigt notation of elastic stiffness tensor for Ni with orientation A
Ori

 and with 

orientation B
Ori

 are the following: 

      

 
 
 
 
 
 
                  
                  
                  

          
          
           

 
 
 
 
 

    

and       

 
 
 
 
 
 
                    
                    
                      

             
             

                    
 
 
 
 
 

   , respectively. 

For the tri-material configuration, the thickness of the grain boundary is denoted  . GB 

width should depend on the type of GB and the thermodynamic conditions (Dillon et al., 

2007). In metals, the order of magnitude is typically around 1 nm. Hence, a default value of 

       is considered as a first guess in the forthcoming numerical calculations (see Table 

2). The GB elastic stiffness tensor      
   is modeled using a scalar parameter   as: 

      
   

 

 
      

       
     ( 30 ) 

When    , the stiffness of the GB corresponds to the average of the two grain stiffness 

tensors. When    , the GB is supposed to be softer than the grains. When    , the grain 

boundary is supposed to be stiffer than the grains. In the extreme cases, when    , the 
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tri-material reduces to a half-space with a free surface, whereas when     , the 

tri-material reduces to a half-space with a rigid surface. Hence, the parameter   allows to 

study the effect of the GB stiffness on elastic fields of single dislocations and dislocation 

pile-ups in bi-crystals with GB as a thin interphase region. 

The distance between the GB or the middle of the GB region in case of a tri-material 

configuration and the     dislocation along the glide direction is denoted     . For 

dislocation pile-ups, the leading dislocation is locked at           . The pile-up length is 

defined as the distance between the first and the last dislocation, i.e.          .  

It is always considered that           for edge dislocations and that         

(Burgers vector pointing towards the grain boundary).  

For the forthcoming results, a Matlab code was developed to compute the elastic fields over a 

regular grid of       points and of       in size. If not specifically stated in the text, 

the values used for numerical applications are the default values reported in Table 2.  

 

   (GPa)    (GPa)    (GPa)   (GPa)   (GPa)     (nm) 

246.5 147.3 124.7 94.7 179.8 0.25 

   
    (MPa)   (°)      (   ) Orientation of the lower crystal 

100 45 5 A
Ori

 

  H (   )       (    )       

1 5               

Table 2. Default values of the parameters used for analytical and numerical simulations. 

 

7.2. Convergence of the series solutions within the tri-material configuration 

In this sub-section, the three convergence criteria defined and discussed in section 5.4,   
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(Eq. ( 25 )),   
   

 (Eq. ( 26 )) and   
   

 (Eq. ( 27 )) are used to study the influence of three 

important physical parameters on the convergence of the series solutions in case of a single 

dislocation within a tri-material configuration (Figure 2). These parameters are the stiffness 

parameter   (Eq. ( 30 )), the thickness of the interphase   and the distance between the 

dislocation and the first interface along the glide direction denoted     (rather than      

since   is also varied). To avoid wasting calculation resources, it is indeed important to find 

out the minimum value of step number   allowing the convergence of the series. It is 

hereafter considered that the convergence is reached when all the three criteria   
   

,   
   

 

and   
   

 are smaller than     . 

First, the effect of   was investigated by setting       ,    =    ,           

    and                    while the other parameters are given by the default 

values presented in Table 2 with lower crystal orientation A
Ori

. Figure 5 shows the computed 

errors by the three criteria for      ,   and  . It is found that the logarithm of the errors 

roughly scales with the step number  . When λ=1, the convergence is reached for     

while for       and    , the convergence is reached for    . It was checked that the 

convergence becomes more and more difficult when λ departs more and more from unity. 

However, it is noteworthy that if   is zero or is infinite, the model equations of section 5.3 

reduces to a half-space with a free or a rigid surface and the exact solutions can be directly 

obtained from Eqs. ( 17 ) and ( 18 ). 
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Figure 5. Numerical errors computed by the three criteria (  
   

,   
   

,   
   

) for λ=0.5, 1, 2 

(tri-material with lower crystal orientation A
Ori

). 

 

Second, the effect of   was investigated by setting    ,    =    ,           

    and                   . Figure 6 shows the numerical errors computed by the 

three criteria for       ,       and      . It is found again that the logarithm of the 

errors scales with the number of steps  . The error given by   
   

 (dots in Figure 6) is very 

little dependent on   while it is easier to get convergence on   
   

and   
   

 when   

becomes larger. The reason is that when the thickness of the interphase becomes larger and 

larger, the tri-material model gets closer and closer to a bi-material configuration and the 

effects of the lower crystal becomes smaller and smaller. 
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Figure 6. Numerical errors computed by the three criteria (  
   

,   
   

,   
   

) for H=5|b|, 

25|b| and 50|b| (tri-material with lower crystal orientation A
Ori

). 

 

Finally, the effect of     was investigated by setting    ,  =    ,           

    and                   . Figure 7 shows the computed numerical errors by the 

three criteria for         ,        and       . The error given by   
   

 and   
   

 

(dots and squares in Figure 7) are very little dependent on    . Contrary to Figure 5 and 

Figure 6, when            and       , the criterion based on   
   

 gives the slowest 

convergence. The reason is that when the distance between the dislocation and the interface is 

large, the elastic fields close to the dislocation are weaker than before. Hence, at each step, the 

relative part of the image force increase is larger compared to the case where the dislocation is 

close to the interface. 
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Figure 7. Numerical errors computed by the three criteria (  
   

,   
   

,   
   

) for LΓ1=2|b|, 

100|b|and 150|b| (tri-material with lower crystal orientation A
Ori

). 

 

As a consequence of these investigations, the convergence criteria based on   
   

 and   
   

 

seem the most appropriate to consider all kinds of situations. Moreover, it was found that only 

the stiffness parameter   strongly influences the numerical convergence. Hence, for a same 

value of  , a same value of   will be considered in the applications. 

The obtained values of   for different   in case of anisotropic elasticity and isotropic 

elasticity are presented in Table 3. The computations of the elastic fields in a tri-material with 

heterogeneous isotropic elasticity were also performed for comparisons following the model 

expressions obtained by Choi and Earmme (2002b). In this case, the configuration of a Ni 

bi-crystal is considered such that        and       , where   is the shear modulus and 

  the bulk modulus of Ni, which can be found in Table 2. Hence, when λ=1, the configuration 

reduces to the homogeneous material model and no convergence step is needed (   ). It is 

found that for a same value of λ, the convergence is faster in the isotropic elastic case than in 

the anisotropic one. 
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  0.25 0.5 1.0 2.0 4.0 

  

Anisotropic 9 5 3 5 9 

Isotropic 7 4 0 4 7 

Table 3. Number of steps   to reach numerical convergence according to the criteria (  
   

, 

  
   

 and   
   

     ) for different values of λ : anisotropic vs. isotropic elastic cases. 

 

7.3. Effects of grain boundary modelling characteristics 

This sub-section considers a single straight edge dislocation in a Ni bi-crystal and compares the 

induced elastic fields for different kinds of grain boundary (GB) modelling characteristics: zero 

thickness GB (bi-material configuration) or GB with        and different values of the 

stiffness parameter   (tri-material configuration). It must be underlined that such description, 

of a GB is a simplified one as it ignores its internal structure and composition (e.g., in terms of 

GB defects or interfacial elasticity considering intrinsic GB elastic energy). The interface or the 

middle of the GB is fixed at      and the distance from the interface or the middle of the 

GB to the dislocation along the slip direction is           . The other parameters are set to 

the values presented in Table 2. 

Figures 8a and 8b show contour plots of the displacement component    and stress 

components     which are induced by a single edge dislocation in a Ni bi-crystal with a zero 

thickness GB and with GBs characterized by        and         and   (tri-material 

model), as well as the differences between bi-material model and tri-material models. It is 

remarked that    and     are continuous across interfaces, which is consistent with 

continuity conditions. In the case of    , for both fields, the greatest differences are located 

in the middle of the GB. In the case       and  , the differences are mainly located around 

the first (or upper) interface and are also much larger compared to the case    . The cases 

      (compliant GB) and     (stiff GB) often display opposite effects. For example, the 

difference of displacement    is negative below the dislocation when       while it is 

positive when    .  
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Zero thickness GB 

 

 

      ,       

  

      ,     

  

      ,     

  

Figure 8 (a). Displacement u1 induced by a single dislocation in a Ni bi-crystal with 

different GB models (left column), as well as the differences with respect to the zero 

thickness GB case (right column).  
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Zero thickness GB 

 

 

      ,       

  

      ,     

  

      ,     

  

Figure 8 (b). Stress σ12 induced by a single dislocation in a Ni bi-crystal with different GB 

models (left column), as well as the differences with respect to the zero thickness GB case (right 

column). 
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7.4. Analysis of image force effects 

This sub-section considers a single straight edge dislocation in a Ni bi-crystal or in a Ni 

half-space. In such heterogeneous medium, an image force is exerted on the dislocation due to 

the presence of interface(s) or surface. In the absence of applied stress, the projection of the 

P-K force along   reduces to (Hirth and Lothe, 1982): 

                    ( 31 ) 

As mentioned in the previous sub-sections, it is always considered that   points towards the 

GB or the surface. Hence,       means that the dislocation is attracted by the GB or the 

surface whereas       means that the dislocation is repelled by the GB or the surface. 

Hereafter, the misorientation effect between both crystals is investigated. Both orientations A
Ori

 

and B
Ori

 are considered for the lower crystal while the other parameters are set to the default 

values reported in Table 2. The results are presented in Figure 9 and Figure 10. In the legends of 

the figures, “Ani”, “Iso”, “rigid Half-space”, “free Half-space”, “bi”, “A
Ori

” and “B
Ori

” indicate 

elastic anisotropy, elastic isotropy, half space with rigid surface, half space with free surface, 

bi-material model, orientation A
Ori

 for lower crystal and orientation B
Ori

 for lower crystal, 

respectively.  

First, Figure 9 (a) considers half-space configurations and Figure 9 (b) considers bi-materials 

(i.e., zero thickness GB). As expected, it indicates that in a half space, a rigid surface has always 

a repulsive effect on the dislocation. On the contrary, a free surface has always an attractive 

effect. Moreover, if the lower crystal is set to orientation A
Ori

, the projected image force     is 

always positive, which means that the zero thickness GB exerts an attractive effect on the 

dislocation, whereas with orientation B
Ori

, the dislocation is repelled by the GB. It can be also 

noticed that the magnitude of     is far smaller for the bi-crystals than for the half-spaces with 

free / rigid surfaces, which represent two extreme cases. Besides, considering isotropic 

elasticity in half-spaces lead to slightly larger magnitude of     than considering anisotropic 

elasticity but the differences remain very small. Given the chosen orientation of upper crystal, 

it should be pointed out that orientation A
Ori

 and orientation B
Ori

 of lower crystal produce the 

maximum positive and negative projected image forces    , respectively. 
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Figure 9. Variation of the projected image force Fim with the distance from the GB along the 

slip direction for different configurations: half space with anisotropic vs. isotropic elasticity (a) 

and bi-crystal modeled by bi-material configurations (b). 

 

Figure 10 considers only tri-material configurations with       . Considering isotropic 

elasticity, the projected image force     is always negative in case of a stiff GB (   ) and 

positive in case of a soft GB (     ). Interestingly, in the case of anisotropic elasticity,     

may exhibit a change of sign and extremal points because of the coupled effects of the image 

forces arising both from the lower crystal and the GB. For instance, considering a GB 

characterized by     and orientation A
Ori

 for the lower crystal,     is negative close to 

the GB and becomes positive beyond       from the center of GB (Figure 10 (a)). The 

repelling effect close to GB is due to the larger stiffness of the GB (   ) while the attractive 

effect that becomes predominant at long distance is due to orientation A
Ori

 of the lower crystal 

as shown in Figure 9 (b). Accordingly, an equilibrium position for the dislocation can be 

defined where      . In a similar manner, an equilibrium position in the absence of 

applied stress can also be found by coupling an attractive compliant GB (     ) with the 

repulsive orientation B
Ori

 of the lower crystal (Figure 10). In this case, the equilibrium 

position of the dislocation is found around       along the slip direction from the center of 

GB. It is noteworthy that the image forces of Figure 10 are one order of magnitude lower than 

the ones reported for anisotropic bi-materials (Figure 9 (b)). 
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Figure 10. Variation of the projected image force Fim with the distance from GB for different 

tri-material configurations with H=5|b|. Anisotropic vs. isotropic elasticity. 

 

7.5. Results and discussion for dislocation pile-ups with locked leading dislocation  

As mentioned in section 7.1, for dislocation pile-up configuration, the position of the first (or 

leading) dislocation is locked at           and the other parameters are set to the default 

values presented in Table 2. Comparisons are made for different GB modelling characteristics, 

as well as between pile-ups having different total number   of dislocations. As a result, the 

position of each dislocation in the pile-up, the displacement and stress fields are obtained. 

7.5.1. Dislocation pile-up lengths 

The results for dislocation pile-up length for different numbers of dislocations are 

summarized in Table 4. From Table 4, it can be inferred that the dislocation pile-up length 

increases with the GB stiffness (from       to    ), whatever the total number of 
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dislocations considered in the pile-up. This effect is, however, very weak with a variation of 

less than 1%. As discussed in section 6.1, the P-K force is not zero on the leading dislocation. 

The force on the locked dislocation due to the other dislocations and the applied stress may 

indeed exceed the image force arising from the GB. Moreover, it is observed that the pile-up 

length obtained with     and orientation A
Ori

 is smaller than the one obtained for the 

homogenous anisotropic crystal (Table 4). As discussed in section 7.4, if the GB with     

exerts a repelling effect, orientation A
Ori

 of the lower crystal exerts an attractive effect so that 

the global effect on dislocations beyond the equilibrium point is attractive. It is noteworthy 

that the equilibrium distance is about 10.25nm, which represents a short distance compared to 

the pile-up length. This means that nearly all the dislocations undergo attractive effects 

(Figure 10). By comparison, in a homogeneous single crystal, there is neither attractive nor 

repulsive effect due to boundaries and thus the dislocation pile-up length is larger. A similar 

analysis explains why the dislocation pile-up length obtained with       and orientation 

B
Ori

 is larger than the one obtained for the homogenous anisotropic crystal since orientation 

B
Ori

 exerts a global repulsive effect on the dislocations of the upper crystal. Table 4 indicates 

clearly that going from an attractive to a repulsive orientation for the lower crystal has much 

more impact on the pile-up length (variation of about 8%) than changing   from     to   

(variation less than 1%). 

In the isotropic case, the dislocation pile-ups length is always larger when considering a GB 

with    , and smaller if      , compared to the homogeneous single crystal case since 

there is no misorientation effect. A strong effect on the pile-up length is only obtained when 

considering a half-space with a rigid surface (variation of 100%) since such interface displays 

the strongest repulsive image force on dislocations that one can obtain. 

As mentioned in section 6.2, for a large number of dislocations in isotropic elasticity, the 

pile-up length can be approximated by   
   

  
 with   

    

       
 for edge dislocations 

(Eshelby et al., 1951). For      and the other parameters are set to the default values 

presented in Table 2, the approximated pile-up length for Ni is 10.375 µm. This length is 
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11.9%. greater than the value presented in Table 4 for isotropic homogeneous crystal 

          . 
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Table 4. Pile-up length L for different configurations considering anisotropic vs. isotropic elasticity: homogeneous crystal, bi-material, tri-material 

with GB stiffness characterized by  , rigid half-space. 

 N 

Homogeneous 

crystal 

Bi-material 

Tri-material 

Half-space 
              

Ani Iso 

Ani Ani 

Iso 

Ani Ani 

Iso Ani Iso 

A
Ori

 B
Ori

 A
Ori

 B
Ori

 A
Ori

 B
Ori

 A
Ori

 B
Ori

 

  

(µm) 

6 0.6976 0.7394 0.6608 0.7262 0.6586 0.7230 0.7367 0.6607 0.7256 0.6629 0.7275 0.7404 1.390 1.497 

9 1.203 1.274 1.144 1.248 1.142 1.245 1.273 1.145 1.248 1.147 1.250 1.278 2.283 2.451 

15 2.260 2.395 2.157 2.337 2.154 2.335 2.393 2.157 2.337 2.160 2.340 2.398 4.161 4.370 

50 8.747 9.274 8.385 9.021 8.382 9.018 9.270 8.385 9.021 8.389 9.024 9.277 15.09 16.35 
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Since the orientation of the lower crystal has a strong effect on the dislocation pile-up length 

  for anisotropic elasticity, it is interesting to see the variation of   with a continuous 

variation of this orientation. Figure 11 shows such variation of   in case of a pile-up with 50 

dislocations and a zero thickness GB. The orientation of the upper crystal (where there is the 

pile-up) is fixed, still defined by      , whereas the orientation of lower crystal is given by 

a rotation   around  . In Figure 11, the rotation angle   varies continuously from    to 

    . Hence, the homogenous single crystal case is retrieved for      and        for 

which           (Figure 11). As a consequence, when   is smaller (resp. larger) than 

       , it can be inferred that the image force has globally an attractive (resp. repulsive) 

effect on the pile-up. Figure 11 also displays the misorientation angle between both crystals, 

i.e. the minimum rotation angle to get from one crystal orientation to the other. In the present 

example, the maximal possible value for misorientation angle in cubic crystal,       

(Mackenzie and Thomson, 1957), is almost reached but does not correspond to an extremal 

value of  . The maximal value of   corresponds however to a high misorientation angle 

(about    ). Furthermore, it is noteworthy that a same misorientation angle can be related to 

different elastic behaviors corresponding to different pile-up lengths (for example,       

is retrieved with       and       , which give           and          , 

respectively, see Figure 11). Thus, besides the misorientation angle, attention should also be 

paid on misorientation axis as many different mechanical behaviors can be associated to a 

same misorientation angle. Finally, it can be observed that the relative variations of   in Ni 

can reach about 7%. The important point is that such significant variations occur in a 

moderately elastic anisotropic material and cannot be captured considering pile-ups in 

isotropic elasticity. Furthermore, the average of   for anisotropic elasticity is about 

         . And compared with anisotropic half space            (Table 4) and 

isotropic half space            (Table 4), the average length is only 58.1% and 53.6% of 

the pile-up length for anisotropic and isotropic half space, respectively. 
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Figure 11. Misorientation effect on pile-up length L for a pile-up with 50 dislocations and an 

anisotropic bi-crystal with zero thickness GB (Ani_Bi). The rotation axis is the glide direction 

 . Comparisons with the homogeneous isotropic case (Iso_Bi), the isotropic half-space 

(Iso_Half space) and the anisotropic half-space (Ani_Half space). 

 

7.5.2. Resolved shear stress profiles 

From Eq. ( 29 ) of section 6.2, the lower bound estimate of the resolved shear stress in front of 

a dislocation pile-up can be written in isotropic homogeneous elasticity as: 
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      ( 32 ) 

where      is the resolved shear stress produced by all the dislocations of the pile-up. Figure 

12 shows then the variation of 
       

  
 with respect to 

 

 
 for 50 edge dislocations and 

different kind of configurations (in case of heterogeneous medium,      includes the effects 

of image forces). In order to compare the present results with the work of Eshelby et al. (1951) 

in isotropic elasticity, the value of   used for normalization always corresponds to the 

approximation 
   

  
. 

From Figure 12 (a), it can be seen that the approximation of a resolved shear stress decrease 

with the inverse of the square root distance from the pile-up remains valid in anisotropic 

elasticity and for a heterogeneous medium. All the plots are relatively close to each other. The 

results display also some influence of the second crystal orientation in case of a bi-material 

model. The resolved shear stress with orientation A
Ori

, which exerts an attractive effect on 

dislocations, is smaller than the one obtained with orientation B
Ori

, which exerts a repulsive 

effect on dislocations. Thus, in the studied case, the repulsive orientation leads to slightly 

higher resolved shear stress in front of the dislocation pile-up compared to the attractive 

orientation. 

Figure 12 (b) represents the results obtained with the tri-material model. It is found that, with 

the same orientation of the second crystal, the resolved shear stress are nearly the same in the 

area of 
 

  
      for λ=0.5 and λ=2. The reason is that the thickness of the interphase is 

very small (H=5|b|), and its stiffness has not been varied too much. Hence, the effect of 

interphase stiffness is negligible compared to the one of misorientation. Similar 

misorientation effects as obtained with the bi-material model are indeed retrieved: the 

attractive orientation A
Ori

 gives lower resolved shear stress than the repulsive orientation B
Ori

. 
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Figure 12. Eshelby et al’s diagrams: resolved shear stress along the slip direction in front of a 

dislocation pile-up with 50 edge dislocations for different configurations. 

 

7.6. Results and discussion for dislocation pile-ups without locked leading dislocation  

As mentioned in section 6.1, in an heterogeneous medium, the boundary image force on the 

leading dislocation may balance the applied stress and the stress contribution coming from 

other dislocations (Wagoner, 1981), but only in case of repulsive image force. So in this case, 

it is not needed to lock the leading dislocation in the pile-up. All the dislocation positions, 

including the leading one, can be found by the iterative relaxation scheme. From the results 

discussed in section 7.4, for a tri-material model with a small thickness H=5|b|, the image 

force is mainly dependent on the orientation of neighboring crystal at long distance from GB. 

In the region close to GB, a coupled effect due to both the neighboring crystal’s orientation 

and GB stiffness occurs. To investigate the influence of GB stiffness on real dislocation 

positions, the orientation of neighboring crystal is chosen as orientation B
ori

, which gives a 

maximal repelling effect. In addition, the GB stiffness varies from         to      

which could reflect a compliant or a stiff GB. The minimum value of   is chosen as 0.925 in 

order to lead to a stable dislocation pile-up. If   is too small, the positive image force close 

to GB will be very large (attractive effect) and therefore the dislocation pile-up would not be 

equilibrated. To study a difference between different GB stiffnesses, the applied stress field is 

chosen lower than in section 7.5 (see Table 2), with    
          . The other parameters are 

set to the default values presented in Table 2. Comparisons are made for different GB 
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stiffnesses   and different total number   of dislocations within the pile-up. As a result, the 

equilibrium position of each dislocation in the pile-up and the resolved shear stress in the 

neighboring grain are obtained. 

 

7.6.1 Position of dislocations in the pile-up and dislocation pile-up length 

As the leading dislocation is no longer locked, its position is modified when different GB 

stiffnesses are considered as well as the positions of the other dislocations and the pile-up 

length. The results are presented in Figure 13 where           defines the pile-up length. 

For a fixed number of dislocations in the pile-up (       and    , the equilibrium 

position of each dislocation inside the pile-up is more and more far away from the GB as   is 

larger as shown in Figure 13. Besides, the pile-up length   almost linearly scales with   

following the red lines displayed in Figure 13 (a)-(c). It is noteworthy that Lubarda (2017) 

also found an increase of pile-up length   in the case of stiffer inhomogeneity for isotropic 

bi-materials. Here, a similar effect is obtained in the context of heterogeneous anisotropy. 

When the number of dislocations in the pile-up increases from     to      and for a 

same  , the pile-up length also increases following Figure 13 (a)-(c). For    , the pile-up 

length increases with a magnitude of 1.5 nm when   varies from       to  . For      

and     , the pile length increases with magnitudes 2.0 nm and 2.5 nm, respectively. As a 

conclusion, the more dislocations there are in the pile-up, the larger the increase of pile-up 

length with  . 
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Figure 13 (a)-(c) Dislocation pile-up length and position of last dislocation in the pile-up for 

N=5, 10 and 20, respectively. (d) First (not fixed) leading dislocation position in the pile-up 

for N=5, 10 and 20 with different GB stiffnesses characterized by         to    . 

 

7.6.2 Resolved shear stress profiles 

As discussed in section 7.5 when the leading dislocation is locked, the resolved shear stress 

along the slip direction is nearly the same for the same orientation of lower crystal with 

different   in the area of 
 

  
     . For the unlocked case, the values of resolved shear 

stresses at a distance of |b| from the second interface along the slip direction for   varying from 

0.925 to 2 and different   are shown in Figure 14. It is seen that the resolved shear stress 

always decreases when   increases for different number of dislocations in pile-up due to the 

pushing back of dislocations from GB. For        and   , the resolved shear stress 

decrease from         to      is 1446.3 MPa, 1301.6 MPa and 1058.4 MPa, 

respectively. When N is large (N=20), Figure 14 shows a slower decrease of the resolved 

shear stress with    From Figure 14, it is shown that for          , the resolved shear 

stress decreases faster than for      . The influence of   is more important for a GB 

stiffness from       to       than for      .  
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Figure 14. Resolved shear stresses in the neighboring grain at a distance of |b| from the 

second interface along the slip direction. 

 

8. Conclusions 

The present paper considered the Leknitskii-Eshelby-Stroh (LES) formalism for 

two-dimensional anisotropic elasticity to compute elastic fields due to single dislocations and 

dislocation pile-ups in heterogeneous media like bi-materials, half-spaces and tri-materials. For 

the latter, the solutions were derived using the alternating technique developed by Choi and 

Earmme (2002a). The tri-material configuration was used to consider grain boundary (GB) 

regions with non-zero thickness and specific GB stiffness thanks to the parameter λ. 

After studying the convergence of the series solutions for tri-material configuration with two 

new criteria based on stress and displacement fields in the whole simulation box, the effects of 

GB modelling characteristics were considered. It was first found that the Peach-Koehler (P-K) 

force on a single edge dislocation in a Ni bi-crystal with different GB stiffness can exhibit a 

change of sign with the dislocation position. In this configuration, an equilibrium position in the 

absence of applied stress was found as the result of the competition between an attractive 
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compliant GB with a repelling neighboring grain, or a repelling stiff GB with an attractive 

neighboring grain. 

For discrete edge dislocation pile-ups in bi-crystals with different GB stiffness and different 

misorientations with or without leading locked dislocation, the different conclusions are 

sketched below: 

 The pile-up length for different configurations considering anisotropic versus isotropic 

elasticity has been computed for different situations: homogeneous crystal, bi-material, 

tri-material with GB stiffness characterized by   from 0.5 to 2, rigid half-space. From 

these configurations and following the numerical results, it was concluded that the first 

effect on the dislocation pile-up length is the crystallographic misorientation between 

grains compared to the intrinsic GB stiffness. For a given misorientation, the pile-up length 

is always much lower than the one resulting from anisotropic or isotropic rigid half-space. 

 From the calculations of resolved shear stress profiles in the neighboring grain, it was shown 

using Eshelby et al’s diagram (see Figure 12) that the approximation of a shear stress 

decrease with the inverse of the square root distance from the pile-up remains valid in the 

case of anisotropic and heterogeneous elasticity. 

 In the case of stiffer GB (unlocked pile-up configurations), an increase of the dislocation 

pile-up length was observed to be more important as the number of dislocations in the 

pile-up and the GB stiffness are higher. The resolved shear stress at short distance of the 

GB in the neighboring grain exhibits a decrease in magnitude as the GB stiffness increases. 

If the parameter λ is low, then a stronger decrease was observed. 

The results of this paper may be used to improve the theoretical modeling of GB elastic 

stiffness in Discrete Dislocation Dynamics (DDD) numerical codes including anisotropic 

elasticity, since the often used assumption of impenetrable rigid GB repelling dislocations 

may lead to unrealistic pile-up lengths in polycrystalline materials. 

As future work, it is intended to consider dislocation pile-ups with more compliant GBs and 

absorbed dislocations in the GB region to study slip transfer configurations in comparison 

with experimental results on Ni bi-crystals. 
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