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Abstract

The drilling operations for oil or geothermic extraction use a slender structure introduced inside the drill well,

hanging from a derrick and driven by a rotary table at the surface. The drilling structure consists in a series of drill-

pipes and some heavy pipes at the well bottom. The drilling process involves nonlinear dynamic phenomena such

as bit-bounce, stick-slip due to the well-drillstring multi-contacts and the pulsating mud flow. The drillstring vibra-

tions may yield, the rate of penetration decrease, the premature wears and damages of drilling equipment. Many

numerical models have been proposed to study the dynamics of drillstring to improve the reliability of drilling op-

erations. However, the numerical models of drilling structures representing several kilometers length require a huge

amount of computer memory storage and yield a too long computational time. The reduction technique proposed

by Craig-Bampton (CB) has been developed for modelling the nonlinear dynamics of rotating machines to save the

computational time but still limited in the context of rotordynamics. The paper focuses on the implementation of

the CB method in the case of long drillstring assembly modelled by beam finite elements. The pre-loaded states of

the drillstring due to the well curvature, well-structure contacts and fluid-structure interactions are determined and

taken into account in the dynamic computation. The drillstring transient dynamics is simulated and the orbital motion

of several nodes are analyzed. The result convergence and the reduction of computational time obtained by the CB

method are investigated and discussed.

Keywords: Drillstring dynamics, transient response, reduction technique, rotor dynamics, fluid-structure

interactions, contact

1. Introduction

The drilling structure for oil or geothermic extraction sketched in Figure 1a is a long drillstring mainly composed of

the steel drill-pipes and a bottom-hole assembly (BHA). Drill-pipes are slender tubes of a 9-10 m length and screwed

to each other by the tooljoints. The BHA includes the drill-collars, some stabilizers and one drill-bit. Such extra
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heavy pipes at the well bottom insure the required necessary Weight-On-Bit (WOB), they also permit controlling the

structure dynamic behavior and the drilling direction (straight, directional or curved drilling). The drillstring assembly

rotates in a well bore of several-kilometer length, its top part being protected with steel tube casings. The drilling fluid

(or drilling mud) is a water-based or oil-based fluid, it circulates downward in the hollow drilling structure and then

travels back upward to the surface in the well-drillstring annular space. This drilling mud is used to clear out the rock

cuttings, to stabilize drillstring, to lubricate and to cool down the tool bit.

The drilling operations involve non linear dynamic phenomena [1] due to bit-rock interactions, structure-bore-hole

contacts, stick-slip [2, 3, 4] and fluid-structure interaction. Multiple vibration couplings between the axial, torsional

and lateral motions may yield the dangerous damages of drilling structure [5, 6, 7]. Improving the stability and the

safety of the drilling process requires a thorough study of the drilling structure dynamics to avoid harmful vibrations.

Figure 1: (a) Mechanical parts composing the drilling structure in the well bore. (b) Finite element mesh of drillstring along the curvilinear position

s. The zoom represents the beam element e with two nodes denoted 1 and 2, and with the elementary reference frame xe
k , ye

k , ze
k . Each node contains

three translations (ue
i , v

e
i ,w

e
i ), two lateral rotations (θe

xi, θ
e
yi) and one twist angle θe

zi.

In order to control the vibrations of drilling structure, a first step is the determination of the natural frequencies.

The axial vibrations can travel from the well bottom to the surface and have been studied with an analytical approach

since a long time ago [8]. The torsional vibrations, usually associated with the stick-slip phenomena of bit-rock and
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with well-drillstring contacts, were investigated with some simple models such as the wave equation [9], a dynamics

model with only torsional degrees of freedom (dof) [10, 11] or the continuous system approach [12]. Lateral vibra-

tions, also known as bending vibrations, are considered as the sources of drillstring and BHA failures and damages

to the bore-hole wall. They have been studied since the mid 1960s and extensively investigated by the finite element

method since 1990s [13, 14, 15] thanks to computer development. Recently, a beam element model with 6 dofs per

node has been developed in [16] for computing the Campbell diagram of a drillstring immersed in fluid inside a curved

well to determine the potential unstable speeds of rotation which may trigger dangerous vibrations and resonances.

In addition to the modal analysis which gives only a global view of structural dynamics, many numerical models

have been developed for predicting the nonlinear dynamics in the time domain. Christoufou et al. [17] were focused

on analyzing the axial and transverse vibrations of a rotating BHA. Ritto et al. [18] used the non-parametric approach

to take into account the model uncertainties in the bit-rock interaction, the fluid-structure interaction and the impact

forces. Tran et al. [19] extended this model to 3D curved wells. Liu [20], Gupta [21], Nandakumar [22], Yan [23] and

their co-authors proposed the lumped parameter models with two dofs to study the axial-torsional vibration coupling

for the vertical wells or drillstrings. Kreuzer et al. [24] have conducted an academic but representative experiment and

analyzed the results by considering a simple model based on few dofs. Liao et al. [25] also developed a four-dof model

to study the bending and torsional dynamics of drillstrings. The finite element method has been widely implemented

for modeling the dynamic behavior of drillstring in horizontal wells [26, 27] and in curved wells [16, 28] by taking

into account different well-structure and fluid-structure interaction models. Recently, Feng et al. have implemented a

planar curved beam element in order to take into account 3D well profile and the drillstring-well interactions [29].

The numerical model of a long drillstring requires a great amount of dofs, large computer memory and long

computational time. These difficulties can be overcomed by numerous methods of Component Mode Synthesis (CMS)

introduced since a long time ago to reduce the dof number of finite element model [30, 31, 32, 33]. Among them is

the Craig-Bampton (CB) technique [34]. It can be referred to the fixed interface model which combines the motions

of connection dofs of the structure with the modes of the structure clamped at these connection dofs.

This paper applies the CB method for the finite element modelling of drilling structure in curved wells by using

Timoshenko beams. Another novelty of this work is to consider the pre-loaded states of the drilling structure due

to the well curvature and the static equilibrium in the dynamics computation. Section 2 presents the beam element

formulation, the well-drillstring contact model and the fluid-structure interactions. The algorithm of dynamic compu-

tation is detailed in Section 3. This first step is the path computation which consists in calculating the internal loads

of drillstrings due to the well curvature. The internal loads due to the path computation are considered for the second

step, i.e. the static equilibrium computation to determine the contact points and the static pre-loaded state. The static

position with the pre-loaded state obtained from the two first steps is considered as the initial position to begin the

dynamic computation. Section 4 shows the reduced system obtained by the CB method. Section 5 considers a drilling

structure in a helical well to illustrate each step. The convergence of CB results and the computational time versus the

CB mode number are also analyzed.
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2. Finite element model of nonlinear dynamics

2.1. Drillstring

The beam element model of drillstring dynamics is presented in details in [16, 28]. The drilling structure is

meshed along the axial curvilinear direction using straight beam elements with two nodes per element. Each beam

has a hollow circular cross section with inner and outer radii Ri, Re. Six degrees of freedom (dofs) including three

translations (u, v,w), two lateral rotations (θx, θy) and one twist angle θz are considered for each node. The 3D motion

of one beam is characterized by its 12 nodal displacements:

De = [ue
1, v

e
1,w

e
1, θ

e
x1, θ

e
y1, θ

e
z1, u

e
2, v

e
2,w

e
2, θ

e
x2, θ

e
y2, θ

e
z2]T , (1)

where [.]T is the transposed matrix, ue
i , v

e
i ,w

e
i , θ

e
xi, θ

e
yi, θ

e
zi with i ∈ {1, 2} denoting respectively six dofs of each node in

the frame of reference of this beam (Figure 1b).

The dynamic energies of one beam are mainly related to the kinetic and strain energies. The finite element (FE)

formula of elementary kinetic Ee
ka and strain Ee

sa energies are given by:

Ee
ka =

1
2

ḊeT Me
aḊe

+ DeT (ΩCe
ac)Ḋe

+ ΩFeT
θz

Ḋe
, (2)

and

Ee
sa =

1
2

DeT Ke
aDe. (3)

where Me
a, Ke

a and Ce
ac are the elementary mass, stiffness and gyroscopic matrices. ΩFe

θz
is related to the moment

due to the twist angle variation of two beam nodes with Fe
θz

= [0, 0, 0, 0, 0, ρIdl, 0, 0, 0, 0, 0, ρIdl]T with ρ the beam

mass density, l the element length, Id = π(R4
e − R4

i )/4 the area moment of inertia of beam cross-section about the

neutral axis in bending direction. The Timoshenko beams are used by modifying elastic stiffness matrix terms with a

coefficient 12EId/(GsS βl2) to take into account the shear deformation, E, Gs denoting the tensile and shear modulus,

S = π(R2
e − R2

i ) being the cross-sectional area, β being set to 0.9.

The elementary parametric axial force Fe
a and torque T e

a induce stress stiffening. Fe
a yields a supplementary strain

energy

Ee
GF =

Fe
a

2

∫ l

0

(∂ue

∂z

)2

+

(
∂ve

∂z

)2 dz, (4)

whereas the non conservative axial torque T e
a gives the virtual work [14]:

δT e
GT = T e

a

∫ l

0

[
∂ve

∂z
δ

(
∂2ue

∂z2

)
−
∂ue

∂z
δ

(
∂2ve

∂z2

)]
dz. (5)

The finite element expressions of Eqs. (4) and (5) lead to an elementary geometric stiffness matrix Ke
g, which

represents the axial-bending and torsion-bending couplings.
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2.2. Well-drillstring contacts

Due to the bending deflections, the occurring well drillstring contacts are modeled by a series of radial elastic

stops create some shock and friction effects. In the reference frame of one node which is the same as the reference

frame of the previous element (Figure 1b), the normal contact force is defined in the xy plane (Figure 2) as:

−→
F cn = −

(
Kc(G)G + Cc(G)Ġ

)
~n, (6)

with ~n = u/r ~x + v/r ~y, r =
√

u2 + v2 the radial displacement, G = r − j0 the penetration of the beam cross-section in

the well bore, Ġ = (u̇u + v̇v)/r the penetration velocity and j0 the radial clearance. The first term describes the elastic

deformation and the second term represents the energy lost during the contact.

Figure 2: Contact between one beam cross-section of the drillstring and the well in the nodal reference frame xyz with z the axial direction, O

and C the centers of well and of beam neutral lines, u, v the two lateral translations, r the radial displacement and j0 the radial well-drillstring

clearance. G denotes the beam cross-section penetration in the well bore, which induces the normal contact force ~Fcn along the normal direction ~n,

the tangential friction force ~Fct along the tangential direction ~t and the tangential friction torque ~Tct along the z axis.

Instead of the classical contact law which describes two discrete states (contact or no contact) at G = 0 and may

induce numerical instabilities, a contact law based on regularized stiffness and damping functions is applied as in [16]:

Kc(G) =
kc

2

[
2
π

arctan(πλkG) + 1
]
, Cc(G) =

cc

2

[
2
π

arctan(πλcG) + 1
]
, (7)

with kc and cc the nominal contact stiffness and damping. The arctan function and two parameters λk, λc insure the

continuity of these functions around G = 0.

When the drillstring rotates and has lateral deflections (see Fig. 2), a well-drillstring contact also includes the

tangential friction force and torque which both depend on the sliding velocity vg = (uv̇ − vu̇)/r + (Ω + θ̇z)Re [16].
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Using a smoothed Coulomb friction law, the tangential friction force and torque are given by:

−→
F ct = −µ(vg)

(
Kc(G)G + Cc(G)Ġ

)
~t,
−→
T ct = −µ(vg)

(
Kc(G)G + Cc(G)Ġ

)
Re~z, (8)

with ~t = −v/r ~x + u/r ~y. The sign of the friction function µ(vg) controls the friction force and torque direction. A

regularized form of µ(vg) is considered [16]:

µ(vg) =
vg

2vr


1 − ξ

1 +
1 − ξ
2vrµd

|vg|

+
1 + ξ(

1 +
1 − ξ
2vrµd

|vg|

)2

 , (9)

with ξ =
√

1 − µd/µs, µd and µs the dynamic and static friction coefficients, vr the regularized parameter.

2.3. Fluid-drillstring interactions

The effects of fluid in the annular space on the rotating drill pipes are described by different models. The first

model developed in [35, 36, 37, 38] considered the annular fluid initially at rest and then entrained by the drillstring

rotation, which yields the viscosity effect, the inertial and friction forces, whereas the fluid inside the hollow drillstring

induces additional inertial force. The other model presented in [18] takes into account the effects of fluid flow in the

axial direction on the drillstring. However, these models are limited to vertical wells. In this paper, the model in [18]

is extended for the drillstring in a curved well.

The authors showed that the inviscid inner fluid flow induces some elastic forces in the axial and tangential

directions of drillstring. The annular fluid is supposed to be viscous and then yields the friction forces due to the axial

fluid flow and to the drillstring rotation. The inner and annular fluid effects on the drillstring depend on: the axial fluid

flow Q f (m3.s−1), the fluid mass density ρ f (kg.m−3), the viscosity damping coefficients: C f due to the axial flow and

another one, implicitly included in the fluid model, due to the drillstring rotation, the curvilinear position of the well,

the inner and annular pressures, the annular and inner cross-section areas.

The finite element formulation of the fluid elastic forces gives the elementary mass matrix Me
f i for the inner fluid,

and the elementary added mass, damping, stiffness matrices Me
f e, Ce

f e(Ω), Ke
f e and a static force Fe

f e for the annular

fluid.

3. Computational algorithm

The computational algorithm consists in three steps sketched in Figure 3. The first step is the path computation

of drillstring from its initial vertical position to its 3D curvilinear position on the well neutral line. External loads are

not considered in this step. Stiffness matrices and internal reaction loads obtained from the path computation are then

kept in the two following steps to take into account the pre-loaded state of the drillstring due to the well curvature. The

second step concerns the computation of the drillstring static equilibrium position of the drillstring, subject to external

loads, the nonlinear contacts with the well and the fluid-structure interaction. The axial and torsional deformations
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Figure 3: Sketch of the nonlinear dynamics computational algorithm. The first step is the path computation of drillstring from its initial vertical

position to its final 3D curvilinear position on the well neutral line to determine the geometric stiffness matrix and the internal reaction loads due

to the well curvature. Then the fluid and well-structure contact effects are added in the static equilibrium position and dynamics computations. The

pre-loaded static state is considered as the initial position for the dynamics computation.

obtained from the static computation give the geometric stiffness matrices added to the structure stiffness matrix to

take into account the pre-loaded static state of the drillstring. The static position is then considered as the initial

position for the dynamics computation in the final step. The following subsections present each step in details.

3.1. Path computation

The aim of this section is to determine the stress stiffening characterized by the geometric stiffness matrix and

internal reaction load of each beam element when the curved neutral line of the well is imposed as the target position

of the drillstring. The path computation consists in imposing the translations and/or rotations of some drillstring nodes

to move the drillstring from an initial straight vertical position to the well neutral line. The computational algorithm

is based on an incremental method and the corotational formulation [39] due to the large displacements involved (see

Figure 4a). The imposed translations and rotations are divided by N increments.

The computation begins at the first increment k = 1 from the vertical position P0. The drillstring position at the

end of the kth increment is determined from the previous position by solving the following static equation:

[
Ka +Kgpa(Dk)

]
D

k = Rint(Dk), (10)

with Dk the displacement vector for the kth increment containing all drillstring dofs, Ka the stiffness matrix of the

drillstring, Kgpa the geometric stiffness matrix calculated from the internal axial force and torque due to the beam

element strain, Rint the internal reaction load vector due to the imposed translations and rotations. The total matrices

and vectors in this section correspond to the dofs defined in the Cartesian frame of reference. They are obtained by

assembling the elementary matrices and vectors defined in Section 2.1.

The positionPk of drillstring nodes at the kth increment is obtained by adding the displacementDk to the previous

position Pk−1:

P
k = Pk−1 +Dk. (11)
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The translation dofs are added terms by terms whereas the sum of rotations dofs is obtained by the corotational

formulation using the quaternion product [39].

Figure 4: (a) Incremental algorithm of the path computation from the vertical position P0 to the final position PN (the well neutral line). For the

increment k, the displacement Dk
imp is imposed at some drillstring nodes to move the drillstring from the position Pk−1 to the position Pk . (b)

Iterative algorithm for each increment k to determine the position Pk . For each iteration i, the imposed displacement Dk
imp,i and the solution Dk

i

are corrected respectively byApdDk
i and dDk

i determined by the Newton method. The position Pk
i is then updated by Pk

i+1.

The nonlinear equation (10) is solved by applying an iterative method with four steps (see Figure 4b):

• Initial solutionDk
i=0 = 0 and initial imposed displacement vectorDk

imp,i=0 =Dk
imp

• Knowing the displacement vectorDk
i at the ith iteration, the correction is calculated by

dDk
i =

[
Ka +Kgpa(Dk

i ) +K p(Dk
i )
]−1 [
Rint(Dk

i ) +Rp(Dk
i )
]
. (12)

The penalization matrixK p and vectorRp are applied in the previous equations to take into account the imposed

translations and rotations:

K p(Dk
i ) = 106cpAp and Rp = 106cpApD

k
imp,i, (13)

with cp the maximum absolute value of the terms of Ka +Kgpa(Dk
i ),Ap the diagonal matrix whose terms are

set to 1 for the imposed dofs and to 0 for the others,Dk
imp,i the displacement vector whose imposed dofs are set

to the imposed translations and rotations at the ith iteration and the others are set to 0. The large multiplier 106

of cp is set for the penalization.

Kgpa and Rint are obtained by assembling the elementary geometric stiffness matrix Ke
gpa and reaction load

R
e
int. They depend on the strain vector Dk,e

d,i of each beam element, extracted from the nodal translations and

rotations between two position Pk
i and Pk−1:

D
k,e
d,i = [0, 0, 0, θe

d,x1, θ
e
d,y1, θ

e
d,z1, 0, 0,w

e
d, θ

e
d,x2, θ

e
d,y2, θ

e
d,z2]T . (14)
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where we
d denotes the elongation of each beam element along the element axis. The strain angles of two beam

nodes (θe
d,x, θ

e
d,y, θ

e
d,z) are extracted from the rotation vector (θx, θy, θz) using the corotational formulation and the

quaternion [39].

The elementary reaction load Re
int is given by

R
e
int(D

k
i ) = −

[
K

e
a +Ke

gpa(Dk
i )
]
D

k,e
d,i . (15)

K
e
gpa is characterized by the elementary internal axial force and torque, which at this iteration are defined by

accumulating all element stretching from the previous iterations and increments:

Fe,k
apa = ES

le,k−1 − le,0

le,0
+ ES

we
d

le,k−1 and T e,k
apa =

k−1∑
j=1

2IdGs

le, j−1 ∆θ
e, j
d +

2IdGs

le, j−1 ∆θe,k
d,i , (16)

where le, j the elementary length at the jth increment, ∆θe
d the elementary torsional strain extracted from the

difference of (θe
d,x, θ

e
d,y, θ

e
d,z) of two beam nodes in Eq. (14) by using the quaternion product [39].

• Applying the correction of solution:

D
k
i+1 =Dk

i + dDk
i . (17)

It is observed that the penalization technique in Eqs. (12) and (13) yields the displacements of the imposed dofs

after the first iteration which are close but not exactly equal to the imposed vectorDk
imp. It should be corrected

for the next iterations as:

D
k
imp,i+1 =Dk

imp,i +ApdDk
i . (18)

• When the maximal absolute value of dDk
i is smaller than a criterion εpa, the iterative loop stops and the position

at the kth increment is obtained. Then the process is repeated for the (k + 1)th increment starting from the

drillstring position obtained at the kth increment.

3.2. Static computation

Following Section 2.2, the contact forces in the static and dynamics computations are defined in the nodal frame

of reference. For computational convenience, the total matrices and vectors in the remaining sections of this paper

are also defined in the nodal frame of reference instead of Cartesian one to avoid the repeated transformation of dofs

between these two frames of reference in the contact force calculation.

The path computation gives the elementary geometric stiffnessKe
gpa and the total elementary reaction load Re

ipa =∑N
j=1R

e
int(D

k
i ). Assembling these matrices and vectors in the nodal frame of reference yields the total geometric

stiffness matrix Kgpa and internal load vector Ripa. They are considered in the static computation to take into account

the pre-loaded state of the drillstring due to the well curvature. After the path computation, the fluid, the external

9



loads are considered in the next computations and the modified stiffness matrix of drillstring immersed in fluid is

Kpa = Ka + Kgpa + K f e where Ka is the total drillstring stiffness matrix and K f e the total stiffness matrix due to the

fluid-structure interaction.

The static equilibrium equation is given by:

(
Kpa + Kgpo(D)

)
D = Fs + Fcs(D) + Ripa, (19)

where Kgpo is the stress stiffening matrix depending on the axial and torsional deformations due to the static position.

This matrix is obtained by assembling the elementary geometric stiffness matrices characterized by the elementary

axial force Fe
apo and torque T e

apo respectively:

Fe
apo =

ES
l

(we
2 − we

1) and T e
apo =

EId

(1 + ν)l
(θe

z2 − θ
e
z1). (20)

with ν the Poisson ratio. The displacement vector D contains all the drillstring dofs in the nodal frame of reference.

The FE vector Fs contains the external static loads such as gravity g, elastic fluid forces presented in Section 2.3,

WOB and Torque-on-Bit (TOB), while Fcs the FE vector of contact forces and torques applied at the nodes of the

drillstring. The static normal contact force at one node is defined from Eq. (6) by

−→
F cns = −Kc(G)G~n. (21)

All normal static contact forces are gathered in the FE vector Fcns.

Eq. (19) describes the real static position if only the normal contact forces are considered. When the structure

rotates and has permanent contacts with the well, this situation corresponds to the quasi-static equilibrium. In this

case, Fcs contains also the FE vector Fcts of static tangential friction forces and torques applied to each contact node

obtained from Section 2.2:
−→
F cts = −µsKc(G)G~t,

−→
T cts = −µsKc(G)GRe~z. (22)

The Newton-Raphson method is implemented to solve the nonlinear equation (19) with four steps:

• Initial displacement vector D1 is the solution of the static equation (19) but without the geometric stiffness

matrix

KpaD = Fs + Fcs(D) + Ripa. (23)

The resolution of Eq. (23) briefly presented in [16] is depicted in details in Appendix A.

• Knowing the displacement vector D j at the jth iteration, the correction is defined by

dD j = −

Kpa −
∂Fcs

∂D

∣∣∣∣∣
D=D j

+
∂(Kgpo(D)D)

∂D

∣∣∣∣∣∣
D=D j

−1 [
(Kpa + Kgpo(D j))D j − Fs − Fcs(D j) − Ripa

]
, (24)
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where ∂/∂D denotes the Jacobian matrix with respect to D. Assuming that the initial displacement D1 is

sufficiently close to the final solution of Eq. (19), the variation of Kgpo compared to D is negligible. The

Jacobian matrix of geometric internal load Kgpo(D)D is then approximated by

∂(Kgpo(D)D)
∂D

∣∣∣∣∣∣
D=D j

' Kgpo(D j). (25)

• Applying the correction: D j+1 = D j + dD j

• If the relative error
‖dD j‖2

‖D j+1‖2
is smaller than a criterion εpo, the iterative loop is stopped. Otherwise, the process

returns to step 2.

This iterative algorithm converge to the FE vector Ds.

3.3. Dynamic response computation

The nonlinear drillstring dynamic response is governed by the following set of equations:

MD̈ + CḊ + KD = F(t,D, Ḋ), t ≥ 0 (26)

with
M = Ma + M f e + M f i,

C = Ω(CT
ac − Cac) + Cad + C f e(Ω),

K = Kpa + Kgpo(Ds) + CT
acΩ̇,

F = Fs + Fu(t) + Fc(D, Ḋ) − FθzΩ̇ + Ripa.

(27)

Ma corresponds to the total mass matrix, Cac represents the gyroscopic effect of the rotating drillstring and FθzΩ̇

is related to the total torsional moment variation at the drillstring nodes, obtained by assembling the elementary

matrices and vector presented in Section 2.1. Cad is the Rayleigh damping matrix of the drillstring characterized by

two Rayleigh coefficients cM and cK such as:

Cad = cMMa + cK(Ka + Kgpa + Kgpo(Ds)). (28)

M f i is the total mass matrix due to the inner fluid inertia and M f e, C f e, K f e are the total added mass, damping and

stiffness matrices related to the elastic forces of the annular fluid. They are given by assembling the fluid elementary

matrices introduced in Section 2.3. Fc is the nodal dynamic contact load vector and Fu the vector of the nodal transient

loads such as the mass unbalance forces.

The initial position is the static displacement Ds:

D(t = 0) = Ds, Ḋ(t = 0) = 0. (29)
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The speed of rotation Ω(t) is imposed at the first node over the surface. The twist angle of the first node has the

initial conditions:

θz1(t) = θz1(0) and θ̇z1(t) = 0, ∀t ≥ 0. (30)

Since θz1(0) is obtained by the static computation and usually considered as a blocked dof, then θz1(0) = 0.

Eliminating the lines and columns of total matrices and vectors corresponding to the blocked dofs yields the

following set of equations:

M D̈ + C Ḋ + K D = F(t,D, Ḋ), t ≥ 0. (31)

4. Craig-Bampton (CB) method

4.1. Constraint and normal modes

All dofs of the displacement vector are rearranged into two groups as

D =

 DC

DI

 , (32)

where DC includes the connection dofs on which external nodal loads and translation dofs of contact nodes obtained

in Section 3.2 could be applied. The remaining dofs considered as the internal dofs are contained in DI .

The Craig-Bampton modal basis includes the constrained modes and normal modes. Constrained modes are the

deformations obtained by imposing a unit translation or rotation to one connection dof. Consequently, the number of

constrained modes is equal to the number of connection dofs. The matrix ΦC of constrained modes is given by [34]

ΦC =

 ICC

−K
−1

II KIC

 =

 ICC

φC

 . (33)

The normal modes correspond to the vibration modes of internal dofs obtained by blocking all connection dofs.

The number η of first normal modes retained in the CB basis is the key parameter controlling the efficiency of CB

method. The matrix of normal modes is given by

ΦD =

 0CD

ΦID

 , (34)

where D denotes a set of indices of the η first normal modes. For a sake of simplicity, ΦID is denoted by φD. Each

column φD j of φD is the solution of the eigenvalue problem

ω2
jMIIφD j = KIIφD j, (35)

with K = (K + K
T

)/2.
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Assembling the matrices of the constrained and normal modes yields the reduction matrix Φ = [ΦC ΦD]. The

physical displacement vector D is approximated by the reduced modal coordinate vector q as

D ' Φq, ∀t ≥ 0, (36)

with

D =

 DC

DI

 , Φ =

 ICC 0CD

φC φD

 , q =

 qC

qD

 . (37)

4.2. Reduced dynamic equation

First, the initial reduced vector q(0) should be determined. Equation (36) at t = 0 is rewritten as

φCqC(0) + φDqD(0) = DI(0) and qC(0) = DC(0), (38)

then, φDqD(0) = DI(0) − φCDC(0).

Since only some first normal modes are retained, the matrix Φ is rectangular. Consequently, knowing the initial

displacement vector D(0), q(0) is then the solution of a minimization problem:

min
∣∣∣∣∣∣∣∣φDqD(0) − DI(0) + φCDC(0)

∣∣∣∣∣∣∣∣2
2
. (39)

Then,

qD(0) =
(
φT

DφD

)−1
φT

D

[
DI(0) − φCDC(0)

]
. (40)

The same approach yields the reduced initial velocity:

q̇D(0) =
(
φT

DφD

)−1
φT

D

[
ḊI(0) − φCḊC(0)

]
. (41)

The initial condition in the reduced system is given by

q(0) =

 DC(0)(
φT

DφD

)−1
φT

D

[
DI(0) − φCDC(0)

]
 , q̇(0) =

 ḊC(0)(
φT

DφD

)−1
φT

D

[
ḊI(0) − φCḊC(0)

]  . (42)

The dynamic equation (31) is rewritten in the CB basis as

mq̈ + cq̇ + kq = f(t,Φq,Φq̇), t ≥ 0 (43)

with m = ΦT MΦ, c = ΦT CΦ, k = ΦT KΦ and f = ΦT F.

The Runge-Kutta time-integration scheme with an adaptive time step is applied to compute Eq. (43) with initial

condition (42), it is presented in details in Appendix B.
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5. Numerical application and discussions

5.1. Test case

Figure 5 shows the helical geometry of a well defined by the following parametric Cartesian coordinates:

X(s) = a cos(s) − a,

Y(s) = a sin(s),

Z(s) = bs,

(44)

with a = 85.1 m, b =
√

(L/α)2 − a2, α = π/2, L = 170.2 m the well length. The well circular cross section radius is

0.108 m.

Figure 5: Well geometry in the Cartesian reference frame XYZ.

Figure 6: Mechanical parts composing the drillstring and geometry of a drill-pipe.

All components of the steel drilling structure of length L are described by Figure 6: six drill-pipes begining from

the surface, ten parts of drill-collars, two stabilizers and one drill-bit. One drill-pipe consists of two 0.3 m length

tooljoints and of a 9 m length pipe-body. Three gauges are applied at the stabilizers and drill-bit with a very small

well-gauge radial clearance to concentrate the drilling direction. The geometrical parameters of these components are

listed in Table 1. The structural damping is characterized by two Rayleigh coefficients cM = 0.03 s−1 and cK = 0 s
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with the mass density ρ = 7900 kg.m−3, the Young modulus E = 2.03 1011 Pa and the Poisson ratio ν = 0.3. The

inner and annular fluids have a mass density ρ f = 1200 kg.m−3, a viscous damping coefficient C f = 0.013, a viscous

coefficient 10−6 m.2s−1 and an axial flow Q f = 0.01 m3.s−1. It should be mentioned that the gravity is along Z axis.

Figure 7: Finite element beam mesh of the drillstring inside the well bore, axisymetric representation of longitudinal section.

The drilling structure is meshed with 163 nodes and 162 beam elements. The meshes of the drillstring and its

elementary parts are shown in Fig. 7. The beam element number of each drilling component is given in Table 1. The

three translations of the first node over the surface and the lateral displacements of drill-bit node are blocked. The

WOB and TOB are modeled by imposing a static force of −104 N and torque of −5000 N.m at the last node 163.

The well-drillstring contacts are modeled by radial elastic stops. Their nominal contact stiffness kc and damping

cc are 107 N.m−1 and 104 N.s.m−1 respectively. Two regularized parameters λk, λc are set to 7 1011 m−1. The dynamic

and static contact friction coefficients are set respectively to µd = 0.1 and µs = 0.2. Table 2 gives the different

clearances j0 in the annular space due to different cross-sections of the drillstring.

Type Length (m) Outer radii (m) Inner radii (m) Gauge radius (m) Beam numbers

Pipe-body 9 0.0635 0.054 - 5

Tooljoint 0.3 0.081 0.048 - 1

Drill-collar part 10 0.0795 0.0355 - 10

Stabilizer 5 0.0795 0.0355 0.108 4

Drill-bit 0.5 0.0795 0.0355 0.108 1

Table 1: Geometric and mesh parameters of the drilling structure.
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Well - component Clearance j0 (m)

Well-pipe-body 0.0445

Well-tooljoint 0.0270

Well-stabilizer 0.0285

Well-gauge 0

Well-drill-collar 0.0285

Well-drill-collar 0.0285

Well-drill-bit 0.0285

Table 2: Different clearances for the drillstring components.

5.2. Results of the path and static computation

The path computation is carried out to move the drillstring from its initial vertical position to the well neutral line.

Assuming that the variation of beam element lengths by the path computation is small, the final position of drillstring

nodes can be estimated. The displacements in X and Y directions of nine nodes (dots in Figure 8a) are determined

and imposed for the path computation with 10 increments. The positions of drilling structure at each increment are

represented in Figure 8a. The comparison between Figures 8a and 5 shows that the final position of drillstring (gray

line) is close to the helical well trajectory. Following Figure 8b, the path computation yields the total internal reaction

forces of Ripa which are the largest at some BHA and tooljoint nodes.

Figure 8: Path computation: (a) drillstring positions at each increment, the dots represent nine nodes whose displacements in X, Y directions are

imposed, (b) distribution of nodal internal reaction force (gray lines) in the Cartesian reference frame XYZ.
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Figure 9: Quasi-static computation: (a) radial displacement r, (b) nodal normal | ~Fcns | and tangential | ~Fcts | contact forces, (c) elementary axial force,

(d) elementary axial torque |~Tcts | (gray curve) and nodal axial friction torque versus the curvilinear position s.

The total internal reaction load and the elementary axial load obtained by the path computation are taken into

account for the quasi-static equilibrium computation. Figures 9a and 9b represent the radial displacement of each

drillstring node versus the curvilinear coordinates and the distribution of contact forces and torques applied to the

drilling structure in the helical well. There are 82 nodes in contact with the well. Many nodes of drill-collars and

stabilizers of BHA contact the well due to their heavy weight. The well-drill-pipe contacts occur at the tooljoints and

two pipe-bodies. Following Figure 9b, the contact loads are the largest at the gauge, tooljoint and some BHA nodes.

The distribution of elementary axial force Fe
apo and torque T e

apo is represented in Figure 9c. The last 15 elements of

drilling structure are in compression state (Fe
apo < 0) due to the WOB and the remaining elements are in the tension

state (Fe
apo > 0) due to the structure heavy weight. Fe

apo and T e
apo of the last element are close to the WOB and TOB

applied to the drill-bit. Figure 9d shows that the multi-jumps of T e
apo occur between two adjacent elements when the

tooljoint nodes are in contact with the well. The line contact between the well and BHA induces the linear variation

of T e
apo.
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5.3. Results of the dynamics computation with the CB method

Figure 10: (a) Radial displacement r of quasi-static computation and radial clearance j0, lateral displacements u and v of (b) two constrained modes

and of (c) two normal modes along the curvilinear position s.

The results obtained by the static computation are used to determine the CB modes. The number of constrained

modes is 166, equal to the number of connection dofs including 2 dofs subjected to TOB, WOB and 164 lateral

displacements of contact nodes obtain from the static position (see Section 4.1). Figure 10b represents two constrained

modes of CB basis obtained by imposing the unit displacements v and u at the curvilinear position s ' 55.4 m and

s ' 72.7 m respectively. These positions correspond to the static contact nodes of tooljoints and BHA whose lateral

displacements are considered as the connection dofs (see Figure 10a). Two normal modes and their natural frequencies

are represented in Figure 10c. Following Figures 10a and 10c, the lateral displacements of normal modes are obtained

by blocking the connection dofs including the lateral displacements of static contact nodes.

The dynamics of the drilling structure in the helical well is computed from t = 0 s to t = 20 s. An exponential time

law Ω(t) = 120 − 120e−6t (rpm) is imposed for the speed of rotation at the first node over the surface. No transition

WOB and TOB are considered. Table 3 compares the computational time obtained with the total and reduced systems

versus different numbers η of normal modes. Compared to the computation with the full system, the CB method with

η ≤ 180 reduces the computational time from 10 to 2.5 times. When η increases more than 220, the computational

time of CB system grows strongly and is larger than the one with the full system. The quick increase of computational

time versus η is mainly due to the conversion at each time step between the CB dofs and internal physical dofs to

compute the nonlinear contact forces (see Eq. (43)). Under the assumption where the internal dofs are always free of

contact with the well, this conversion can be avoided, and then the computational time can be much more reduced.
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Normal mode number η 0 60 180 220 300

Constraint mode number 166 166 166 166 166

Reduced dof number 166 226 302 386 466

Computational time (s) 147.99 155.97 461.83 1553.48 4475.19

Full system time/CB time 9.44 8.95 3.02 0.89 0.31

Table 3: Computation time of drillstring dynamics obtained with the CB method for different numbers of normal modes. The total free physical

dof number is 972 and the computational time with the full system is 1396.49 s.

The convergence of CB results versus the normal mode number is analyzed by defining two criteria:

εt(t) =
1
3



√∑
n

(
ucb(sn, t) − ure f (sn, t)

)2

√∑
n

u2
re f (sn, t)

+

√∑
n

(
vcb(sn, t) − vre f (sn, t)

)2

√∑
n

v2
re f (sn, t)

+

√∑
n

(
wcb(sn, t) − wre f (sn, t)

)2

√∑
n

w2
re f (sn, t)


, (45)

and

εn(s) =
1
3



√∑
i

(
ucb(s, ti) − ure f (s, ti)

)2

√∑
i

u2
re f (s, ti)

+

√∑
i

(
vcb(s, ti) − vre f (s, ti)

)2

√∑
i

v2
re f (ti)

+

√∑
i

(
wcb(s, ti) − wre f (s, ti)

)2

√∑
i

w2
re f (s, ti)


, (46)

where (ucb, vcb,wcb), and (ure f , vre f ,wre f ) denote three translations obtained by the reduced and the full models respec-

tively. The first criterion εt represents the relative error of the three translations of all 163 drillstring nodes with the

curvilinear positions sn,n=1...163 at each time iteration t while the second one the relative error of the three displacements

of one node at the curvilinear position s in the time period [0 s, 20 s].

Figure 11: (a) First convergence criterion εt for different normal mode numbers η versus the time t and (b) εt for different time iterations versus the

normal mode number.
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Figure 12: (a) Second convergence criterion εn for different normal mode numbers η versus the curvilinear position s and (b) εn for different

curvilinear positions versus the normal mode number.

Figure 11 shows that the criterion εt increases with η. For each η, εt increases versus the time. This phenomenon

is due to the fact that the approximation of initial position of drillstring nodes by the CB method induces a small error

εt at t = 0 s even with a large number of normal modes and this error is accumulated due to the time computation.

Figure 12 shows the second convergence criterion εn which decreases for large η. For each η, εn is the largest for the

pipe-body node 3 and two gauge nodes 86 and 130.

Criteria εt, εn only represent the global convergence of the CB method, a more detailed comparison between the

results obtained by the CB method and by the full system should be carried out for some nodes of the drilling structure.

Figures 13a-e compare the radial displacements of pipe-body (Nodes 3 and 21), tooljoint-BHA interface (Node 44),

BHA (Nodes 82 and 147), obtained by the CB method with η = 180 and by the full system. This comparison shows

that the CB method yields the same global dynamic behavior as the full system. Since the results obtained by the

CB method η = 180 give a good convergence with εt, εn ≤ 10% with a smaller computational time compared to

the reference results (see Figs. 11, 12 and Tab. 3), they are considered for the vibration analysis. According to the

results plotted in Figs. 13a-e, Node 147 is always in contact and Node 44 shows intermittent contacts with the well at

contrary to the nodes 21 and 82 free of contact. The contact model described in Sec. 2.2 allows a small penetration of

drillstring in the well (see Figs. 13a, c, e). Figure 13f represents the radial acceleration axy =
√

ü2 + v̈2 versus the time

and the curvilinear positions. The drillstring vibration becomes more remarkable when t ≥ 10 s due to the amplified

variation of the radial displacements as shown in Figs. 13a-e. The first 50 m part corresponding to 6 drill-pipes shows

a larger lateral vibration than the heavy BHA.

The variation Ω+θ̇z of the axial rotation angle of aforementioned nodes, the surface and drill-bit nodes are analyzed

by Figure 14a. Their axial rotation angles oscillate around the speed of rotation Ω imposed at the surface node. This

oscillation grows slowly until 10 s and then increases strongly to attain a stable variation level after 15 s. Node 3

having an intermittent contact and strong lateral vibration has the smallest variation of axial rotation angle. The most

important variation of Ω + θ̇z can be observed for the non-contact pipe-body (Node 21), BHA (Node 147) and drill-bit
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(Node 163). Following Figure 14b, after 10 s, the drill-bit axial rotation angle oscillates from -45 rpm to 289 rpm. The

large range of variation and the negative values are due to all friction torques of multi-contacts between the drillstring

and the well.

Figure 13: (a-e) Radial displacements of some nodes at different curvilinear positions s, obtained by the CB method with 180 normal modes

compared to the results of the computation with the full system, (f) radial acceleration versus the time and curvilinear position obtained by the CB

method with 180 normal modes.
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Figure 14: Torsional angle velocity of drillstring nodes 1 (s = 0 m), 3 (s = 3.6 m), 21 (s = 23.6 m), 44 (s = 49.5 m), 82 (s = 87.7 m), 147

(s = 154.7 m) and 163 (s = 170.2 m) obtained by the CB method with 180 normal modes, s being the curvilinear position.

6. Conclusion

The prediction of the static and transient dynamic behavior of a drillstring in a 3D well has been simulated by using

a Finite Element model either full or reduced with the Craig-Bampton technique. These models take into account the

pre-loaded state of drillstring due to the well curvature, the well-drillstring contacts, the fluid-structure interactions

and all external static loads such as the WOB, TOB and the gravity force.

The numerical convergence of the CB method is analyzed for a drillstring in the helical well. A variable law of

speed of rotation is imposed at the first drillstring node at the surface. The results obtained by the CB method converge

to those computed with the full system by increasing the number of normal modes. However, increasing the number

of normal modes of the CB basis induces a longer computational time due to the conversion at each time step between

the CB and physical dofs to compute the contact forces. The CB method reduces the computational time about three

times with a relative error about 5 %. One difficulty of the CB method for the time computation is that the relative

error is accumulated at each time step.

For this test case, the drill-pipes show the stronger lateral vibrations than the BHA because the BHA has a larger

weight and more contacts with the well than the drill-pipes. Some drillstring nodes have intermittent or permanent

contacts with the wells. The axial rotation angles of some drillstring nodes, especially the drill-bit node, show the

significant variations around the speed of rotation imposed at the surface node and can have negative values. These

phenomena are due to all friction torques of many contacts between the drillstring and the well.
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Appendix A. Static computation without the geometric stiffness matrix

The static equation without the geometric stiffness matrix is given by

KpaD = Fs + Fcs(D) + Ripa. (A.1)

The Newton-Raphson method is implemented to solve this equation by an iterative loop with four steps:

• Initial displacement vector D0 is chosen as K−1
paFs.

• The displacement vector Di at the ith iteration is assumed to be known, the increment correction is defined by :

dDi = −

(
Kpa −

∂Fcs

∂D

∣∣∣∣∣
D=Di

)−1 (
KpaDi − Fs − Fcs(Di) − Ripa

)
, (A.2)

where
∂Fcs

∂D
is the Jacobian matrix of Fcs with respect to D:

∂Fcs

∂D
=



J1 0 . . . 0 0

0 J2 . . . 0 0
...

...
. . .

...
...

0 0 . . . JP−1 0

0 0 . . . 0 JP


, (A.3)

P is the node number. Jp,p=1...P is the nodal Jacobian matrix:

Jp =



∂Fcnsu

∂u
+
∂Fctsu

∂u
∂Fcnsu

∂v
+
∂Fctsu

∂v
0 0 0 0

∂Fcnsv

∂u
+
∂Fctsv

∂u
∂Fcnsv

∂v
+
∂Fctsv

∂v
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∂Tcts

∂u
∂Tcts

∂v
0 0 0 0



, (A.4)

where

∂Fcnsu

∂u
= −(K′c(G)G + Kc(G))

∂G
∂u

u
r

+ Kc(G)G
1
r2

∂G
∂u

u −
Kc(G)G

r
,

∂Fcnsu

∂v
= −(K′c(G)G + Kc(G))

∂G
∂v

u
r

+ Kc(G)G
1
r2

∂G
∂v

u,

∂Fcnsv

∂u
= −(K′c(G)G + Kc(G))

∂G
∂u

v
r

+ Kc(G)G
1
r2

∂G
∂u

v,

∂Fcnsv

∂v
= −(K′c(G)G + Kc(G))

∂G
∂v

v
r

+ Kc(G)G
1
r2

∂G
∂v

v −
Kc(G)G

r
,
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∂Fctsu

∂u
= µs(K′c(G)G + Kc(G))

∂G
∂u

v
r
− µsKc(G)G

1
r2

∂G
∂u

v,

∂Fctsu

∂v
= µs(K′c(G)G + Kc(G))

∂G
∂v

v
r
− µsKc(G)G

1
r2

∂G
∂v

v + µs
Kc(G)G

r
,

∂Fctsv

∂u
= −µs(K′c(G)G + Kc(G))

∂G
∂u

u
r

+ µsKc(G)G
1
r2

∂G
∂u

u − µs
Kc(G)G

r
,

∂Fctsv

∂v
= −µs(K′c(G)G + Kc(G))

∂G
∂v

u
r

+ µsKc(G)G
1
r2

∂G
∂v

u,

∂Tftsu

∂u
= −µs(K′c(G)G + Kc(G))Re

∂G
∂u

,

∂Tftsu

∂v
= −µs(K′c(G)G + Kc(G))Re

∂G
∂v
,

with K′c(G) =
kcλ

1 + (πλG)2 ,
∂G
∂u

=
u
r

,
∂G
∂v

=
v
r

.

• Applying the correction : Di+1 = Di + dDi.

• If the relative error
‖dDi‖2

‖Di+1‖2
is smaller than a criterion ε0, the iterative loop is stopped. Otherwise, the process

returns to step 2.

Appendix B. Fourth-order Runge-Kutta with an adaptive time-step algorithm

Eq. (43) can be solved by applying the RK4 with a constant time step dt. Assuming that the system displacement

qn and velocity q̇n at tn are known, their values at tn+1 = tn + dt are computed by determining four slopes:

• Slope 1 :

k11 = dtq̇n, k12 = dtm−1 (
f(tn,Φqn,Φq̇n) − kqn − cq̇n

)
(B.1)

• Slope 2 :

qi = qn +
k11

2
, q̇i = q̇n +

k12

2
,

k21 = dtq̇i, k22 = dtm−1
(
f
(
tn +

dt
2
,Φqi,Φq̇i

)
− kqi − cq̇i

) (B.2)

• Slope 3 :

qi = qn +
k21

2
, q̇i = q̇n +

k22

2
,

k31 = dtq̇i, k32 = dtm−1
(
f
(
tn +

dt
2
,Φqi,Φq̇i

)
− kqi − cq̇i

) (B.3)

• Slope 4 :

qi = qn + k31, q̇i = q̇n + k32,

k31 = dtq̇i, k32 = dtm−1 (
f(tn + dt,Φqi,Φq̇i) − kqi − cq̇i

) (B.4)
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• Computing the system displacement and velocity at tn+1

qn+1 = qn +
k11 + k41

6
+

k21 + k31

3
,

q̇n+1 = q̇n +
k12 + k42

6
+

k22 + k32

3
,

(B.5)

The nonlinear dynamic computation may require a small time step to avoid the numerical problems and then

induce a large computational time. The following adaptive time-step algorithm is applied to reduce the computation

time.

• Assuming that the system displacement qn and velocity q̇n at tn are known,

• Computing q(1)
n+1, q̇(1)

n+1 with a time step dt and q(2)
n+1, q̇(2)

n+1 by two consecutive time steps dt/2

• Estimating the numerical error: er =
(∥∥∥q(1)

n+1 − q(2)
n+1

∥∥∥
2 +

∥∥∥q̇(2)
n+1 − q̇(2)

n+1

∥∥∥
2

)
/15.

• If er ≤ ε0/100 with ε0 the threshold criterion, then dtnew = βdtold, qn+1 = q(2)
n+1, q̇n+1 = q̇(2)

n+1 and the next time

iteration with time step dtnew is processed.

Otherwise,

• If ε0/100 < er ≤ ε0, then qn+1 = q(2)
n+1, q̇n+1 = q̇(2)

n+1 the next time iteration is processed with the same time

step

• If not, dtnew = dtold/α then return to the second step

with α, β two coefficients given by the user. In this work, α and β are set to 1.1 and 1.01 respectively.
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