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ZERMELO DEFORMATION OF FINSLER METRICS

BY KILLING VECTOR FIELDS

PATRICK FOULON AND VLADIMIR S. MATVEEV

(Communicated by Dmitri Burago)

Abstract. We show how geodesics, Jacobi vector fields, and flag curvature of
a Finsler metric behave under Zermelo deformation with respect to a Killing

vector field. We also show that Zermelo deformation with respect to a Killing
vector field of a locally symmetric Finsler metric is also locally symmetric.

1. Introduction

Let F be a Finsler metric onMn and v be a vector field such that F (x,−v(x)) < 1

for any x ∈ Mn. We will denote by F̃ the Zermelo deformation of F by v. That
is, for each point x ∈ M , the unit F̃ -ball B̃x := {ξ ∈ TxMn | F̃ (x, ξ) < 1} is the
translation in TxM

n along the vector v(x) of the unit F -ball Bx := {ξ ∈ TxMn |
F (x, ξ) < 1} (see Figure 1).

v

ξ
J

ξ + v

J

Figure 1. The unit ball of F̃ (dashed line) is the v-translation of
that of F (bold line). If a vector J is tangent to the unit ball of F

at ξ, it is tangent to the unit ball of F̃ at ξ + v

Equivalently, this can be reformulated as

F̃ (x, ξ) = F (x, ξ − F̃ (x, ξ)v(x)). (1)
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Indeed, Equation (1) is positively homogeneous, and for any ξ such that F̃ (x, ξ) = 1
we have F (x, ξ − v(x)) = 1. The first result of this note is a description of how

geodesics, Jacobi vector fields, and flag curvatures of F and of F̃ are related if the
vector field v is a Killing vector field for F , that is, if the flow of v preserves F .

Theorem 1. Let F be a Finsler metric on Mn admitting a Killing vector field v
such that F (x,−v(x)) < 1 for all x ∈ Mn. We denote by Ψt the flow of v and by

F̃ the v-Zermelo deformation of F .
Then, for any F -arc length parametrized geodesic γ of F , the curve t 7→ Ψt(γ(t))

which we denote by γ̃(t) is an F̃ -arc length parametrized geodesic of F̃ .
Moreover, for any Jacobi vector field J(t) along γ such that it is orthogonal to

γ̇(t) in the metric g(γ(t),γ̇(t)) := 1
2d

2
ξF

2
(γ(t),γ̇(t)), the pushforward J̃(t) = Ψt∗(J(t)) is

a Jacobi vector field for γ̃(t) and is orthogonal to ˙̃γ(t) in g̃(γ̃(t), ˙̃γ(t)) := 1
2d

2
ξF̃

2
(γ̃(t), ˙̃γ(t))

.

Moreover, flag curvatures K and K̃ of F and F̃ are related by the following
formula: for any x ∈M and any “flag” (ξ, η) with “flagpole ξ ∈ TxM with F (x, ξ) =

1” and transverse edge η ∈ TxM , we have K(x, ξ, η) = K̃(x, ξ + v, η) provided that
ξ + v and η are linearly independent.

We do not pretend that the whole result is new but rather suggest that certain
parts of it are known. The first statement of Theorem 1 appears in [7]. We recall the
arguments of A. Katok in Remark 1. The third statement was announced in [3] and
follows from the recent paper [5]. Special cases when the metric F is Riemannian
were studied in detail in, e.g., [1, 9]. Though we did not find the second statement
of Theorem 1, the one about the Jacobi vector fields, in the literature, we think it
is known in folklore.

Unfortunately, in all these references, the proof is by direct calculations, which
are sometimes quite tricky and sometimes require a lot of preliminary work. One
of the goals of this note is to show the geometry lying below Theorem 1 and to
demonstrate that certain parts of Theorem 1 at least are almost trivial.

Our second result shows that Zermelo deformation with respect to a Killing
vector field preserves the property of a Finsler metric to be a locally symmetric
space. We will call a Finsler metric locally symmetric, if for any geodesic γ the
covariant derivative of the Riemann curvature (= Jacobi operator) vanished:

Dγ̇Rγ̇ = 0. (2)

Here Dγ̇ stays for the covariant derivative along the geodesic: Dγ̇ = ∇γ̇γ̇ . Both
most popular Finslerian connections, Berwald and Chern-Rund connections, can
be used as the Finslerian connection in the last formula, see, e.g., [10, §7.3], whose
notation we partially follow.

Remark 1. In Riemannian geometry there exist two equivalent definitions of locally
symmetric spaces: according to the “metric” definition, a space is locally symmetric
if for any point there exists a local isometry such that this point is a fixed point and
the differential of the isometry at this point is minus the identity. By the other
“curvature” definition, a space is locally symmetric if the covariant derivative of
the curvature tensor is zero. The equivalence of these two definitions is a classical
result of E. Cartan. We see that our definition above is the generalization to the
Finsler metrics of the “curvature” definition; it was first suggested in [4].

In the Finsler setup, both “metric” and “curvature” definitions are used in the
literature, but they are not equivalent anymore: the symmetric spaces with respect
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to the “metric” definition are symmetric spaces with respect to the “curvature”
definition, but not vice versa.

In fact, the “metric” definition is much more restrictive; in particular locally
symmetric metrics in the “metric” definition are automatically Berwaldian [8, The-
orem 9.2] and are clearly reversible. On the other hand, all metrics of constant flag
curvature, in particular all Hilbert metrics in a strictly convex domain, are locally
symmetric in the “curvature” definition, and are symmetric with respect to the
“metric” definition if and only if the domain is an ellipsoid.

In view of this, the name “locally symmetric” is slightly misleading, since lo-
cally symmetric manifolds may have no (local) isometries. We will still use this
terminology because it was used in the literature before.

Theorem 2. Suppose that F is a locally symmetric Finsler metric and v a Killing
vector field satisfying F (x,−v(x)) < 1 for all x. Then, the v-Zermelo deformation
of F is also locally symmetric.

All Finsler metrics in our paper are assumed to be smooth and strictly convex
but may be irreversible.

2. Proofs.

2.1. Proof of Theorem 1. Let γ(t) be an arc length parametrized F -geodesic,

we need to prove that the curve t 7→ Ψt(γ(t)) is an arc length parametrized F̃ -
geodesic. In order to do it, observe that for any F -arc length parametrized curve
x(t) the t-derivative of Ψt(x(t)) is given by Ψt∗(ẋ(t)) + v(Ψt(x(t))). Since the flow

Ψt preserves F and v, it preserves F̃ and therefore

F̃ (Ψt(x(t)),Ψt∗(ẋ(t)) + v(Ψt(x(t)))) = F̃ (x(t), ẋ(t) + v(x(t))) = F (x(t), ẋ(t)) .

The last equality in the formula above is true because, for any ξ such that F (x, ξ) =

1, we have F̃ (x, ξ + v(x)) = F (x, ξ) by the definition of the Zermelo deformation.
Thus, if the curve x(t) is F -arc length parametrized, then the curve Ψt(x(t)) is

F̃ -arc length parametrized.

This also implies the integrals
∫
F (x(t), ẋ(t))dt and

∫
F̃
(
Ψt(x(t)), ˙(Ψt(x(t)))

)
dt

coincide for all F -arc length parametrized curves x(t). Since geodesics are lo-
cally the shortest arc length parametrized curves connecting two points, for each
arc length parametrized F -geodesic γ the curve t 7→ Ψt(γ(t)) is an F̃ -arc length
parametrized geodesic as we claimed.

Remark 2. Alternative geometric proof of the statement that for each arc length
parametrized F -geodesic γ the curve t 7→ Ψt(γ(t)) is an F̃ -arc length parametrized
geodesic is essentially due to [7]: consider the Legendre-transformation T : T ∗Mn →
TM corresponding to the function 1

2F
2 and denote by F ∗ the pullback of F to

T ∗Mn, F ∗ := F ◦ T . Next, view the vector field v as a function on T ∗M by the
obvious rule η ∈ T ∗xMn 7→ η(v(x)). It is known that the Hamiltonian flow corre-
sponding to the function v is the natural lift of the flow of the vector field v to T ∗M .
Since v is assumed to be a Killing vector field, the Hamiltonian flows of F ∗ and of v
commute. Next, consider the function F̃ ∗ := F ∗+v. If v satisfies F (x,−v(x)) < 1,

then the restriction of F̃ ∗ to TxM
n is convex, consider the Legendre-transformation

T̃ : TMn → T ∗M corresponding to the function 1
2 (F̃ ∗)2 and the pullback of F̃ ∗ to

TMn, it is a Finsler metric which we denote by F̃ . It is a standard fact in convex
geometry that the Finsler metric F̃ is the v-Zermelo-deformation of F . Since the
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Hamiltonian flows of F ∗ and of v, which we denote by ψt and d∗Ψt , commute, the
Hamiltonian flow of F̃ ∗ is simply given by

ψ̃t = d∗Ψt ◦ ψt. (3)

Then, for any point (x, ξ) ∈ TM with F (x, ξ) = 1, the projections of the orbits of

ψ̃t and of ψt starting at this point are arc length parametrized geodesics γ of F and
γ̃ of F̃ . By (3) we have γ̃(t) = Ψt ◦ γ(t) as we claimed.

Let us now prove the second statement of Theorem 1. Consider a Jacobi vector
field J(t) which is orthogonal to γ. We need to show that the pushforward J̃(t) =

Ψt∗(J(t)) is a Jacobi vector field for the F̃ -geodesic γ̃(t) := Ψt(γ(t)). By the
definition of Jacobi vector field there exists a family γs(t) of geodesics with γ0 = γ
such that J(t) = d

ds |s=0
γs(t), since J(t) is orthogonal to γ we may assume that all

geodesics γs(t) are arc length parametrized. As we explained above, Ψt(γs(t)) is a

family of F̃ -geodesics; taking the derivative by s at s = 0 proves what we want.
Let us now show that J̃ is orthogonal to ˙̃γ. First observe that the condi-

tion that J(t) is orthogonal to γ̇(t) is equivalent to the condition that J(F ) :=∑
r J

r ∂F
∂ξr

vanishes at γ̇(t) for each t. Indeed, consider the one-form U ∈ Tγ(t)M
n 7→

gγ(t),γ̇(t)(γ̇(t),U). Because of the (positive) homogeneity of the function F we have
that at a point γ̇(t) ∈ Tγ(t)M

n

g(γ(t),γ̇(t))(γ̇(t),U) = Ur
∂F

∂ξr
. (4)

Next, take Equation (1) and calculate the differential of the restriction of F̃ to the
tangent space: its components are given by

∂F̃

∂ξi
=

1

1 + v(F )

∂F

∂ξi
. (5)

In this formula, the derivatives of the function F̃ are taken at ξ ∈ TxS2, and the
derivatives of the function F are taken at ξ − F̃ (x, ξ)v. By v(F ) we denoted the
function

∑
r
∂F
∂ξr

vr.

In view of (5), J(F̃ ) :=
∑
r J

r ∂F̃
∂ξr

vanishes at γ̇(t)+v(γ(t)), so J(t) is orthogonal

to γ̇(t) + v(γ(t)) (the orthogonality is understood in the sense of g̃(γ(t),γ̇(t)+v(γ(t)))).

Then, J̃(t) = Ψt∗(J(t)) is g̃(γ̃(t), ˙̃γ(t)) orthogonal to ˙̃γ(t).

Remark 3. Geometrically, the just proved statement that J̃ is orthogonal to ˙̃γ,
after the identification of Tγ(t)M

n and TΨt(γ(t))M
n by the differential of the diffeo-

morphism Ψt, corresponds to the following simple observation: if J is tangent to
the unit F -sphere at the point ξ = γ̇, then it is also tangent to the unit F̃ -sphere at
the point ξ + v, see Figure 1.

Let us now prove the third statement of Theorem 1, we need to show that
K(x, ξ, η) = K̃(x, ξ + v, η). We consider an F -geodesic γ(t) with γ(0) = 0 and

γ̇(0) = ξ and the corresponding F̃ -geodesic γ̃(t) = Ψt(γ(t)); since Ψ0 = Id, we have
˙̃γ(0) = γ̇(0) + v = ξ+ v. Observe that by combining [2, Eqn. 6.16 on page 117] and
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[2, Eqn. 6.3 on page 108] we obtain

1

2

d2

dt2
g(J(t), J(t)) = g(Dγ̇(t)Dγ̇(t)J(t), J(t)) + g(Dγ̇(t)J(t), Dγ̇(t)J(t))

= −K(γ(t), γ̇(t), J(t))(g(γ̇(t), γ̇(t))g(J(t), J(t)) (6)

− g(γ̇(t), J(t))2) + g(Dγ̇J,Dγ̇J).

We will assume that J(0) := η is g-orthogonal to γ̇(0). As explained above

this implies that ˙̃γ(0) is g̃-orthogonal to J̃(0). Then, by (6), the minimum of
d2

dt2 g(J(t), J(t))|t=0 taken over all Jacobi vector fields J along γ which are equal to
η at t = 0, is equal to −K(x, ξ, η)g(ξ, ξ)g(η, η). An analogous statement is clearly

true also for γ̃, g̃ and J̃ : namely, the minimum of d2

dt2 g̃(J̃(t), J̃(t))|t=0 taken over all

Jacobi vector fields J̃ along γ̃ which are equal to η at t = 0, is equal to −K̃(x, ξ +

v, η)g̃(ξ + v, ξ + v)g̃(η, η). Here we used the relation J̃(0) = Ψt∗(J(t))|t=0 = J(0).

Finally, in order to show that K(x, ξ, η) = K̃(x, ξ + v, η), it is sufficient to show
that the function t 7→ g(J(t), J(t)) is proportional, with a constant coefficient, to

the function t 7→ g̃(J̃(t), J̃(t)).
In order to prove this, let us first compare g(γ(t),γ̇(t)) = 1

2d
2
ξF

2
(γ(t),γ̇(t)) and

g̃(γ̃(t), ˙̃γ(t)) =
1

2
d2
ξF̃

2
(Ψt◦γ(t),Ψt∗(γ̇(t))+v(Ψt(γ(t)))).

It is convenient to work in coordinates (x1, . . . , xn) such that the entries of v are
constants, in these coordinates for each t the differential of the diffeomorphism Ψt

is given by the identity matrix, so in these coordinates J(t) = J̃(t) and ˙̃γ(t) =

γ̇(t) + v(γ(t)). Differentiating (5), we get the second derivatives of F̃ . They are
given by

∂2F̃

∂ξi∂ξj
=

1

1 + v(F )

∂2F

∂ξi∂ξj

− 1

(1 + v(F ))2

∑
r

(
∂2F

∂ξi∂ξr
vr
∂F

∂ξj
+

∂2F

∂ξj∂ξr
vr
∂F

∂ξi

)
.

(7)

Again, all derivatives of the function F̃ are taken at ξ, and of the function F are
taken at ξ− F̃ (x, ξ)v(x). Note that one term in the brackets in (7) appears because
we differentiate 1

1+v(F ) , and the other appears because the derivatives of ∂F
∂ξj

are

taken at ξ−F̃ (x, ξ)v(x). When we differentiate it, we also need to take into account

the additional term −F̃ (x, ξ)v(x).

Now, in view of the formula 1
2d

2(F̃ 2) = F̃ d2F̃ + dF̃ ⊗ dF̃ we obtain from (7) the
formula for g̃ij :

g̃ij =
F̃

1 + v(F )
gij −

F̃

(1 + v(F ))2

∑
r

(
∂2F

∂ξi∂ξr
vr
∂F

∂ξj
+

∂2F

∂ξj∂ξr
vr
∂F

∂ξi

)
+

1

(1 + v(F ))2

∂F

∂ξi

∂F

∂ξj
.

(8)

Let us now compare the length of J in g(x, ξ) with that of in g̃(x, ξ + v). We
multiply (8) by J iJj and sum with respect to i and j. Since by assumptions
J(F ) =

∑
r J

r ∂F
∂ξr

vanishes at ξ, all terms in the sum but the first vanish. We thus
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obtain that the length of J in g̃ is proportional to that of in g with the coefficient

which is the square root of F̃
1+v(F ) .

But along the geodesic both F̃ and v(F ) are constant. Indeed, v(F ) is the
“Noether” integral corresponding to the Killing vector field. Theorem 1 is proved.

Remark 4. After this paper was accepted we learned that our Theorem 1 also
follows from [6, Theorems 1.2 and 1.3], which at the time of writing is in preprint.

2.2. Proof of Theorem 2. First, observe that a Finsler metric is locally symmetric
if and only if for any geodesic γ and any Jacobi vector field J along γ the vector
field Dγ̇J is also a Jacobi vector field. Indeed, the equation for Jacobi vector fields
is

Dγ̇Dγ̇J +Rγ̇(J) = 0. (9)

Dγ̇-differentiating this equation, we obtain

Dγ̇(Dγ̇Dγ̇J +Rγ̇(J)) = Dγ̇Dγ̇(Dγ̇J) +Rγ̇(Dγ̇J) + (Dγ̇Rγ̇) (J) = 0.

If Dγ̇J is a Jacobi vector field, Dγ̇Dγ̇(Dγ̇J) + Rγ̇(Dγ̇J) vanishes so the equation
above implies (Dγ̇Rγ̇) (J) = 0, and since it is fulfilled for all Jacobi vector fields we
have Dγ̇Rγ̇ = 0 as we claimed.

Thus, we assume that for any geodesic and for any Jacobi vector field for F
its Dγ̇ derivative is also a Jacobi vector field, and our goal is to show the same

for F̃ . Clearly, it is sufficient to show this only for Jacobi vector fields which are
g-orthogonal to γ̇. Note that for such Jacobi vector fields Dγ̇J is also orthogonal
to γ̇, since both g(γ,γ̇) and γ̇ are Dγ̇-parallel.

Take a (arc length parametrized) F -geodesic γ and a point P = γ(0) on it.
Consider the geodesic polar coordinated around this point, let us recall what they
are and their properties which we use in the proof.

Consider the (local) diffeomorphism of TPM
n \ {0} to Mn which sends ξ ∈

TPM
n \ {0} to exp(ξ) := γξ(1), where γξ is the geodesic starting from P with the

velocity vector ξ. As the local coordinate systems on TPM
n \ {0} we take the fol-

lowing one: we choose a local coordinate system x1, . . . , xn−1 on the unit F -sphere
{ξ ∈ TPMn | F (P, ξ) = 1} and set the tuple

(
F (P, ξ), x1

(
1
F ξ
)
, . . . , xn−1

(
1
F ξ
))

to
be the coordinates of ξ. Combining it with the diffeomorphism exp, we obtain a
local coordinate system on Mn. By construction, in this coordinate system each arc
length parametrized geodesics starting at P , in particular the geodesic γ, is a curve
of the form (t, const1, . . . , constn−1). Next, consider the following local Riemannian
metric ĝ in a punctured neighborhood of P : for a point σ(t) of this neighborhood
such that σ is a geodesic passing through P we set ĝ := g(σ(t),σ̇(t)). It is known that
in the polar coordinates the metric ĝ is block-diagonal with one 1× 1 block which
is simply the identity and one (n− 1)× (n− 1)-block which we denote by G:

ĝ =

(
1

G

)
.

It is known, see, e.g., [10, Lemma 7.1.4], that the geodesics passing through P are

also geodesics of ĝ, and that for each such geodesic the operator ∇̂γ̇ , where ∇̂ is
the Levi-Civita connection of ĝ, coincides with Dγ̇ .

Next, consider analogous objects for the metric F̃ . As the local coordinate
system on the unit F̃ -sphere we take the following: as the coordinate tuple of ξ̃
with F̃ (P, ξ̃) = 1 we take the coordinate tuple (x1(ξ), . . . , xn−1(ξ)), where ξ :=
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ξ̃ − v(P ). (Recall that the v-parallel-transport sends the unit F -sphere to the

unit F̃ -sphere.) By Theorem 1, in these coordinate systems each Jacobi vector field
J = (J0(t), . . . , Jn−1(t)) along γ which is orthogonal to γ is also a Jacobi vector field

along γ̃, which is the F̃ -geodesic such that γ̃(0) = P and ˙̃γ(0) = γ̇(0)+v(P ), and is

orthogonal to γ̃. By (8), the corresponding block G̃ is given by G̃ = 1
1+v(F )G. Since

the function v(F ) is constant along geodesics, the coefficients Γkij of the Levi-Civita

connection ∇̂ of ĝ such that i = 0 or j = 0 coincide with that of for the analog for F̃ .

A direct way to see the last claim is to use the formula Γkij = 1
2g
ks
(
∂gis
∂xj

+
∂gjs
∂xi
−∂gij∂xs

)
,

where all indices run from 0 to n − 1 and the summation convention is assumed.
Then, in our chosen coordinate system, the formula for the covariant derivative
in ∇̂ along γ for vector fields which are orthogonal to γ simply coincides with that
of the formula for the corresponding objects for F̃ . Then, for any F̃ -Jacobi vector
field J̃ orthogonal to ˙̃γ we have that D̃ ˙̃γ J̃ is again a Jacobi vector field. Theorem 2
is proved.
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