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Abstract

The main purpose of this paper is to introduce and investigate degenerate Poisson distrib-
ution which is a new extension of the Poisson distribution including the degenerate expo-
nential function. We then provide several properties of the degenerate Poisson distribution
such as the �rst and the second raw moments and di¤erence operator property. Moreover,
we acquired the skewness and the kurtosis for the degenerate Poisson distribution. We also
derive its moment generating function by which we de�ne the degenerate Bell polynomials
and give a connection for these polynomials related to the unsigned Stirling numbers of the
�rst kind.

2010 Mathematics Subject Classi�cation. Primary 60E05; Secondary 11B73, 33B10.
Key Words and Phrases. Poisson distribution; raw moments; Bell polynomials; degenerate exponential
function; unsigned Stirling number of the �rst kind.

1. Introduction

Probability distributions possess many importance and have been commonly used in statistics and proba-
bility theory. They can be given by a table or an equation which links each outcome of a statistical experiment
with its probability of occurrence, see [5, 6, 7, 11, 12] for more information about the topic on probability
distribution. One of the most useful and applicable distribution is the Poisson probability distribution (cf.
[5, 6, 7, 11, 12]). The Poisson distribution is a discrete probability distribution that expresses the probability
of a given number of events occurring in a �xed interval of time or space if these events occur with a known
constant rate and independently of the time since the last event. The Poisson distribution can be also utilized
for the number of events in other speci�ed intervals such as volume, area or distance, cf. [5, 6, 7, 11, 12] and
see also the references cited therein.
Several generalizations of the Poisson distribution such as the Polya process, truncation of the domain,

stuttering Poisson distribution, linear combinations of Poisson variables, particle counting, collective risk
theory, mixed Poisson distributions, Erlang process and Poisson mixing distributions have been deeply
discussed in the book [6] in 1967. In recent years, some scientists have been considered several new extensions
of the Poisson distribution (cf. [7, 11, 12]). For instance, Hermann [7] considered a generalization of the
Poisson distribution based on the generalized Mittag-Le er function and calculated the corresponding raw
moments algebraically in terms of the familiar Bell polynomials. Mahmoudi [11] introduced the exponentiated
Weibull-Poisson (EWP) distribution which includes four parameters as increasing, decreasing, bathtub-
shaped and unimodal failure rate and satis�ed diverse properties for this distribution covering moments,
quantiles, its probability density function and its reliability and failure rate functions. Porwal [12] de�ned
Mittag-Le er type Poisson distribution and then provided several properties of this distribution. In this
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paper, we consider a novel extension for the Poisson distribution which includes the degenerate exponential
function and we call it the degenerate Poisson distribution. Then, we investigate multifarious properties of
the degenerate Poisson distribution covering the �rst and the second raw moments. We also attained the
skewness and the kurtosis for this distribution. Furthermore, we derive its moment generating function by
which we consider the degenerate Bell polynomials and present a connection for the mentioned polynomials
associated with the unsigned Stirling numbers of the �rst kind.
Here we provide some basic information taken from the references [5, 6, 7, 11, 12].

De�nition 1. The n-th moment of a discrete probability distribution about X = 0 is de�ned by

�n = E (X
n)

and the moment generating function (m.g.f.) of a random variable X is denoted by MX (t) and de�ned by

MX (t) = E
�
etX
�
:

The probability density function of Poisson distribution with parameter � is de�ned as follows

px (�) = P (X = x) =
1

N

�x

x!
for x = 0; 1; 2; : : : ; (1.1)

where N is the normalization constant and is determined by the requirement of normalizability of the
distribution, which coincides with the zeroth raw moment �0:

�0 =
1X
x=0

px (�) =
1X
x=0

1

N

�x

x!
=
1

N

1X
x=0

�x

x!
=
1

N
e� = 1 (1.2)

which implies N = e�.
The �rst and the second raw moments for the Poisson distribution are given below:

�0 = E (X) = � and �1 = E
�
X2
�
= �+ �2; (1.3)

therefore, we obtain the mean E (X) and the variance V (X) of the Poisson distribution

(Mean) E (X) = � and (Variance) V (X) = �: (1.4)

The moment generating function of the Poisson distribution is as follows:

E
�
ext
�
=

1X
x=0

extpx (�) = e
��

1X
x=0

(et�)
x

x!
= e�(e

t�1) =
1X
n=0

Bn (�)
tn

n!
; (1.5)

which is the generating function of the classical Bell polynomials Bn (�) (cf . [2,7-10]). So, for n � 0, we
write the higher raw moments by means of the Bell polynomials as follows:

�n = E (X
n) = Bn (�) . (1.6)

A more detailed information about the topics mentioned above can be found in [5, 6, 7, 11, 12] and each
of the related references cited therein.

2. Degenerate Poisson Distribution

In this section, we consider an extension for the Poisson distribution via the degenerate exponential func-
tion ex� (t) and the �-falling factorial (x)n;�. We call it the degenerate Poisson distribution. We then perform
to obtain the �rst few raw moments and the moment generating function for the aforesaid distribution. By
means of this moment generating function, we de�ne the degenerate Bell polynomials and �nd the properties
for these polynomials.
For � being a real number, the �-falling factorial (x)n;� is de�ned by (see [3, 4])

(x)n;� =

�
x(x� �)(x� 2�) � � � (x� (n� 1)�); n = 1; 2; : : :
1; n = 0:

(2.1)

The degenerate exponential function ex� (t) for a real number � is given by (cf. [4, 9, 10])

ex� (t) = (1 + �t)
x
� and e1� (t) = e� (t) . (2.2)
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It is readily seen that lim�!0 e
x
� (t) = e

xt (cf. [4, 9, 10]). From (2.1) and (2.2), the degenerate exponential
function possesses the following series expansion

ex� (t) =
1X
n=0

(x)n;�
tn

n!
. (2.3)

We now introduce a generalization of the Poisson distribution via the �-falling factorial (x)n;r as follows:

px (�; �) = P (X = x) =
1

N

(�)x;�
x!

for x = 0; 1; 2; : : : ; (2.4)

the normalization constant N follows from the requirement of normalizability of the distribution:

�0 =
1X
x=0

px (�; �) =
1

N

1X
x=0

(�)x;�
x!

=
1

N
e�� (1) = 1; (2.5)

and so N = e�� (1) = (1 + �)
�
� . Thus, we state our main de�nition as follows.

De�nition 2. The degenerate Poisson distribution with two parameters � and � is de�ned by the following
formula

px (�; �) = P (X = x) = e��� (1)
(�)x;�
x!

for x = 0; 1; 2; : : : : (2.6)

We now investigate some properties of the degenerate Poisson distribution. We �rstly give the mean and
variance of the mentioned distribution as follows.

Theorem 1. The mean E (X) and the variance V (X) of the degenerate Poisson distribution are given by

E (X) =
�

1 + �
and V (X) =

�

(1 + �)
2 . (2.7)

Proof. By De�nition 2, we acquire

�1 = E (X) =
1X
x=0

xpx (�; �) =
1X
x=0

xe��� (1)
(�)x;�
x!

= e��� (1)
1X
x=1

(�)x;�
(x� 1)! = e

��
� (1)

1X
x=0

(�)x+1;�
x!

= e��� (1)
1X
x=0

�(�� �)(�� 2�) � � � (�� (x� 1)�)(�� x�)
x!

= e��� (1)�
1X
x=0

(�� �)x;�
x!

= e��� (1)�e���� (1) = (1 + �)
��
� � (1 + �)

���
�

=
�

1 + �
,
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which is the asserted mean in (2.7) and

�2 = E
�
X2
�
=

1X
x=0

x2px (�; �) = e
��
� (1)

1X
x=0

x2
(�)x;�
x!

= e��� (1)
1X
x=1

(x� 1 + 1)
(�)x;�
(x� 1)!

= e��� (1)
1X
x=2

(�)x;�
(x� 2)! + e

��
� (1)

1X
x=1

(�)x;�
(x� 1)!

= e��� (1)
1X
x=0

�(�� �)(�� 2�) � � � (�� (x� 1)�)(�� x�)
x!

+ e��� (1)�
1X
x=0

(�� �)x;�
x!

= e��� (1)�(�� �)
1X
x=0

(�� 2�)x;�
x!

+ e��� (1)�
1X
x=0

(�� �)x;�
x!

= e��� (1)�(�� �)e��2�� (1) + e��� (1)�e���� (1)

=
�(�� �)
(1 + �)

2 +
�

1 + �

=
�2 + �

(1 + �)
2 :

Therefore, we get the variance

V (X) = E
�
X2
�
� (E (X))2

=
�2 + �

(1 + �)
2 �

�2

(1 + �)
2

=
�

(1 + �)
2 ;

which is the desired variance in (2.7). �

Remark 1. As �! 0, the mean and variance in (2.7) reduce to the mean and variance for familiar Poisson
distribution in (1.3).

The third raw moment (skewness) and fourth raw moment (kurtosis) are given by the following theorem.

Theorem 2. The skewness and the kurtosis for the degenerate Poisson distribution are given below

�3 = E
�
X3
�
=
�(�� �)(�� 2�)

(1 + �)
3 + 3

�(�� �)
(1 + �)

2 +
�

1 + �
(2.8)

and

�4 = E
�
X4
�
=
�(�� �)(�� 2�)(�� 3�)

(1 + �)
4 + 6

�(�� �)(�� 2�)
(1 + �)

3 + 7
�(�� �)
(1 + �)

2 +
�

1 + �
. (2.9)

Proof. Utilizing the similar methods used in the proof of the Theorem 1, the proof of Theorem 2 is based
on the following expansions

x3 = x (x� 1) (x� 2) + 3x (x� 1) + x
and

x4 = x (x� 1) (x� 2) (x� 3) + 6x (x� 1) (x� 2) + 7x (x� 1) + x:
So, we omit the proof. �
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The moment generating function E
�
etX
�
of the degenerate Poisson distribution is obtained by the fol-

lowing procedure:

E
�
etX
�
= e��� (1)

1X
x=0

etx
(�)x;�
(x� 1)! =

1X
n=0

 
e��� (1)

1X
x=0

xn (�)x;�
(x� 1)!

!
tn

n!
. (2.10)

In usual, the moment generating function of the familiar Poisson distribution coincides the generating
function of the usual Bell polynomials, see the formula (1.5). By this motivation, we de�ne the degenerate
Bell polynomials, di¤erent from Kim�s degenerate Bell polynomials in [9, 10], as follows:

1X
n=0

Bn;� (�)
tn

n!
= e��� (1)

1X
x=0

etx
(�)x;�
x!

. (2.11)

In view of (2.10) and (2.11), for n � 0, the degenerate Bell polynomials are given by the following series:

Bn;� (�) = e
��
� (1)

1X
x=0

xn
(�)x;�
x!

. (2.12)

Remark 2. As � tends to zero, the formula given in (2.12) reduce to the well known formula for usual Bell
polynomials (cf. [8, 9, 10]):

Bn (�) = e
��

1X
x=0

xn
�x

x!
.

With the help of Theorems 1 and 2, the �rst few degenerate Bell polynomials are

B0;� (�) = 1

B1;� (�) =
�

1+�

B2;� (�) =
�(���)
(1+�)2

+ �
1+�

B3;� (�) =
�(���)(��2�)

(1+�)3
+ 3�(���)

(1+�)2
+ �

1+�

B4;� (�) =
�(���)(��2�)(��3�)

(1+�)4
+ 6�(���)(��2�)

(1+�)3
+ 7�(���)

(1+�)2
+ �

1+�

B5;� (�) =
�(���)(��2�)(��3�)(��4�)

(1+�)5
+ 10�(���)(��2�)(��3�)

(1+�)4
+ 25�(���)(��2�)

(1+�)3
+ 15�(���)

(1+�)2
+ �

1+�

B6;� (�) =
�(���)(��2�)(��3�)(��4�)(��5�)

(1+�)6
+ 15�(���)(��2�)(��3�)(��4�)

(1+�)5

+65�(���)(��2�)(��3�)
(1+�)4

+ 90�(���)(��2�)
(1+�)3

+ 35�(���)
(1+�)2

+ �
1+� :

The �� di¤erence operator is de�ned by (see [3])

��f(x) =
f(x+ �)� f(x)

�
; � 6= 0: (2.13)

Note that as � goes to zero, the �� di¤erence operator reduce to the usual derivative operator:

lim
�!0

��f(x) = lim
�!0

f(x+ �)� f(x)
�

= f 0 (x) =
df (x)

dx
:

The following di¤erence rules hold true (cf. [4]):

��
k (x)n;� =

n!

(n� k)! (x)n�k;� ; 0 � k � n (2.14)

and
��e

x
� (t) = te

x
� (t) : (2.15)

From (2.14) and (2.15), we obtain

��e
��
� (1) = e��� (1) and �� (�)x;� = x (�)x�1;� . (2.16)

We give a product rule of the di¤erence operator in a special case as follows.
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Lemma 1. For m;x being two natural numbers, we then have

��

�
(��)m;� (�)x;�

�
= m (��)m�1;� (�)x;� + x (��+ �)m;� (�)x�1;� . (2.17)

Proof. In terms of (2.13) and (2.16), we attain

��

�
(��)m;� (�)x;�

�
=

(��+ �)m;� (�+ �)x;� � (��)m;� (�)x;�
�

=
(��+ �) (��)m�1;� (�+ �) (�)x�1;�

�

�
(��)m�1;� (��� (m� 1)�) (�)x�1;� (�� (x� 1)�)

�

=
(��)m�1;� (�)x�1;�

�
[(��+ �) (�+ �)� (��� (m� 1)�) (�� (x� 1)�)]

= (��)m�1;� (�)x�1;� [m (�+ � (�x+ 1)) + x (�� �)]
= m (��)m�1;� (�)x�1;� (�� (x� 1)�) + x (��+ �) (��)m�1;� (�)x�1;�
= m (��)m�1;� (�)x;� + x (��+ �)m;� (�)x�1;� ;

which is the claimed result (2.17). �

We now improve the properties of the degenerate Poisson distribution. We give the following theorem.

Theorem 3. (Di¤erence Operator Property) For x � 2, we have

4�px (�; �) = px (�; �) +
�

x� 1px�2 (�� �; �) . (2.18)

Proof. By means of the De�nition 2, the de�nition of the di¤erence operator (2.13) and Lemma 1, we
investigate

4�px (�; �) = 4�

�
e��� (1)

(�)x;�
x!

�
= 4�

 1X
m=0

(��)m;�
m!

(�)x;�
x!

!

=
1X
m=0

1

m!x!
4�

�
(��)m;� (�)x;�

�
(By Lemma 1) =

1X
m=0

m (��)m�1;� (�)x;� + x (��+ �)m;� (�)x�1;�
m!x!

=
(�)x;�
x!

1X
m=0

(��)m�1;�
(m� 1)! +

(�)x�1;�
(x� 1)!

1X
m=0

(��+ �)m;�
m!

=
(�)x;�
x!

1X
m=0

(��)m;�
m!

+
�

x� 1
(�� �)x�2;�
(x� 2)!

1X
m=0

(��+ �)m;�
m!

= px (�; �) +
�

x� 1px�2 (�; �) ;

which means the desired result (2.18). �
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In order to get more properties about the degenerate Poisson distribution, we consider that

(�)x;�
x!

=
�(�� �)(�� 2�) � � � (�� (x� 1)�)

1:2::: (x� 1)x

=
�

x

(�� �)(�� 2�) � � � (�� (x� 1)�)
1:2::: (x� 1)

=
�

x
(�� �)

�
�

2
� �

�
� � �
�

�

x� 1 � �
�

=
�

x

x�1Y
k=1

�
�

k
� �

�
. (2.19)

The unsigned Stirling numbers of the �rst kind is de�ned by the rising factorial given below (cf. [1])

xn = x (x+ 1) � � � (x+ n� 1) =
nX
k=0

S1 (n; k)x
k; (2.20)

which satis�es the following recurrence relation

S1 (n+ 1; k) = nS1 (n; k) + S1 (n; k � 1) (2.21)

and the following relations

S1 (n; n) = 1, S1 (n+ 1; 1) = n! and S1 (n; n� 1) =
n (n� 1)

2
(2.22)

for n being a natural number.
We now give the following theorem.

Theorem 4. For n � 1, we have

nY
k=1

�
�

k
� �

�
=
1

n!

nX
k=0

S1 (n+ 1; k + 1)�
k (��)n�k : (2.23)

Proof. We prove this theorem by induction: For n = 1, we get

(�� �) = 1

1!

1X
k=0

S1 (2; k + 1)�
k (��)1�k = S1 (2; 1) (��) + S1 (2; 2)�;

which is correct because of the values S1 (2; 1) = 1 = S1 (2; 2). We assume that the formula in (2.23) holds
for n = m, namely

mY
k=1

�
�

k
� �

�
=

1

m!

mX
k=0

S1 (m+ 1; k + 1)�
k (��)m�k :
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To prove for n = m+ 1, we compute that

m+1Y
k=1

�
�

k
� �

�
=

�
�

m+ 1
� �

� mY
k=1

�
�

k
� �

�

=

�
�� � (m+ 1)

m+ 1

�
1

m!

mX
k=0

S1 (m+ 1; k + 1)�
k (��)m�k

=
1

(m+ 1)!

mX
k=0

S1 (m+ 1; k + 1)�
k+1 (��)m�k

+
1

m!

mX
k=0

S1 (m+ 1; k + 1)�
k (��)m+1�k

=
S1 (m+ 1;m+ 1)�

m+1

(m+ 1)!
+
1

m!
S1 (m+ 1; 1) (��)m+1

+
1

(m+ 1)!

m�1X
k=0

S1 (m+ 1; k + 1)�
k+1 (��)m�k + 1

m!

mX
k=1

S1 (m+ 1; k + 1)�
k (��)m+1�k

=
�m+1

(m+ 1)!
+ (��)m+1 + 1

(m+ 1)!

mX
k=1

S1 (m+ 1; k)�
k (��)m+1�k

+
1

m!

mX
k=1

S1 (m+ 1; k + 1)�
k (��)m+1�k

=
�m+1

(m+ 1)!
+ (��)m+1

+
1

(m+ 1)!

mX
k=1

[S1 (m+ 1; k) + (m+ 1)S1 (m+ 1; k + 1)]�
k (��)m+1�k

=
�m+1

(m+ 1)!
+ (��)m+1 + 1

(m+ 1)!

mX
k=1

S1 (m+ 2; k + 1)�
k (��)m+1�k

=
1

(m+ 1)!

m+1X
k=1

S1 (m+ 2; k + 1)�
k (��)m+1�k ;

where we use the formulas (2.21) and (2.22). Therefore, the proof is completed by induction. �

By means of Theorem 4 and formula (2.19), we give

(�)x;� =
x�1X
k=0

S1 (x; k + 1)�
k+1 (��)x�1�k : (2.24)

Using (2.24), we rewrite (2.6) and (2.12) with explicit representations as

px (�; �) =
e��� (1)

x!

x�1X
k=0

S1 (x; k + 1)�
k+1 (��)x�1�k

=
1X
m=0

x�1X
k=0

(��)m;�
m!x!

S1 (x; k + 1)�
k+1 (��)x�1�k
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and

Bn;� (�) = e��� (1)
1X
x=0

xn

x!

x�1X
k=0

S1 (x; k + 1)�
k+1 (��)x�1�k

=
1X
m=0

1X
x=0

x�1X
k=0

(��)m;�
m!x!

xnS1 (x; k + 1)�
k+1 (��)x�1�k :

3. Conclusion

In the present paper, the degenerate Poisson distribution covering the degenerate exponential function
and the �-falling factorial have been de�ned and investigated. Various properties of the degenerate Poisson
distribution such as the �rst to the fourth raw moments and di¤erence rule have been provided with their
proofs. The corresponding moment generating function has been investigated, by which the degenerate Bell
polynomials have been considered and their properties have been developed. The results obtained in this
paper reduce to the known results for the Poisson distribution and Bell polynomials as � approaches zero.

Con�ict of Interest: The authors declare that they have no con�ict of interest.
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