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Abstract14

Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechan-15

ical properties in heterogeneous geological materials. In particular, thanks to acousto-16

elasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity17

changes in the material at test.18

In this paper, we report on a small-scale laboratory application of an innovative19

time-lapse tomography technique named Locadiff to image spatio-temporal mechanical20

changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic fre-21

quencies ( 300 kHz to 900 kHz). We demonstrate the ability of the method to image re-22

versible stress evolution and deformation process, together with the development of re-23

versible and irreversible localized micro-damage in the specimen at an early stage. Using24

full-field infrared thermography, we visualize stress induced temperature changes and val-25

idate stress images obtained from diffuse ultrasound. We demonstrate that the inversion26

with a good resolution can be achieved with only a limited number of receivers distributed27

around a single source, all located at the free surface of the specimen. This small-scale28

experiment is a proof of concept for frictional earthquake-like failure (e.g. stick slip) re-29

search at laboratory scale as well as large scale seismic applications, potentially including30

active fault monitoring.31

1 Introduction32

Crustal rocks are subject to a variety of loadings such as tectonic loading, atmo-33

spheric pressure, tide and temperature [Tsai, 2011; Larose et al., 2015a]. Monitoring seis-34

mic velocity changes in rocks can provide insights into mechanical (rigidity, density etc.)35

evolutions associated with earthquakes [Brenguier et al., 2008; Niu et al., 2008], volcanic36

activity [Grêt et al., 2005; Obermann et al., 2013] or landslide destabilization [Mainsant37

et al., 2012]. In the industry, at ultrasonic frequencies, the same methodology addresses38

the demand to detect damage apparition and/or its evolution in man-made material like39

concrete, steel, etc. [Michaels and Michaels, 2005; Zhang et al., 2012; Planès and Larose,40

2013].41

The mechanical deformation of crustal rocks due to different geomechanical pro-42

cess do not occur homogeneously and crustal rocks have a high level of heterogeneity or43

granularity that may lead to localized distribution of stress and strain, potentially leading44
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to crack initiation and damage development. Thus, detecting such changes and imaging45

their spatial distribution are of first importance. Nevertheless, such detection remains chal-46

lenging since it requires ultra-high sensitive techniques, for which laboratory developments47

may be useful.48

Many traditional laboratory approaches are invasive and destructive and can be used49

only once per sample, such that they are hardly suitable to explore the time-dependent50

velocity changes as well as micro-structure changes of the medium. Among a variety of51

non-destructive and/or non-invasive techniques, a bunch of recently developed full-field52

measurements such as X-ray tomography, Infrared Thermography (IRT) and Digital Image53

Correlation (DIC-2D, DIC-3D) have proved to be powerful tools to explore stress/strain54

fields in laboratory geodynamics [Charalampidou et al., 2014]. However, such measure-55

ments hardly reveal small changes of mechanical proprieties of the material because they56

are less sensitive to the state of stress, rigidity or damage due to their non-contact mea-57

surement configuration. Ultrasound techniques have long been used in the laboratory to58

understand the mechanics of rock deformation and are still flourishing nowadays because59

they are naturally and directly sensitive to the elastic properties of the material. A sig-60

nificant amount of work has been reported to characterize the damage evolution of rocks61

by means of conventional ultrasonic methods [Schubnel et al., 2006; Hall, 2009], such as62

ultrasonic pulse velocity or wave attenuation. Such methods are useful to assess major dis-63

continuities associated with significant impedance contrast (or mismatch) in rocks: large64

cracks, cavities, and fluids. However, they have limited spatial resolution of the medium65

due to their low frequency.66

A better spatial resolution might be achieved by increasing wave frequency. How-67

ever due to heterogeneities, many polycrystalline, multi-composite crustal rocks can be68

considered as multiple scattering materials in the high frequency regime. This feature dis-69

ables most imaging techniques. Indeed in that regime, the propagation distance between70

the source and the receiver is larger than the distance between two scattering events, a71

distance noted `? and referred to as the scattering few mean free path. In this case direct72

waves are strongly attenuated and conventional methods fail to operate properly [Hirsekorn,73

1982; Thompson, 1996]. On the other hand, the noise-like diffuse waves constituting the74

late arrivals have demonstrated not only perfect reproducibility [Snieder et al., 2002], but75

also high sensitivity to small changes associated with the closing and opening of pre-76
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existing cracks, the development of damages at the tip of the crack, and/or with contacts77

at grain boundaries in heterogeneous geomaterials.78

In seismology, the late arriving diffuse waves are referred to as coda waves as the79

tail of the seismograms [Aki, 1969]. Taking advantage of the sensitivity of diffuse waves80

that have bounced repeatedly in the medium, several methods enable monitoring tiny changes81

in the medium. For example, Coda Wave Interferometry (CWI) [Poupinet et al., 1984;82

Snieder, 2006] allows to detect relative velocity changes as low as 10−5 [Larose and Hall,83

2009] by measuring phase shifts. Coda Wave Decorrelation (CWD) is a similar method84

where one observes a loss of coherence in coda after one or several structural changes85

such as appearance (or disappearance, movement) of a scatterer, fluid injection or a change86

of geometry [Planès et al., 2014]. A downside of both CWI and CWD is that the coda87

wave variations provide a measurement of the material integrated over the volume of prop-88

agation, which is generally large, such that locating the changes is highly challenging.89

Recently, a time-lapse differential tomography technique named Locadiff [Larose90

et al., 2010] was developed to explore spatio-temporal changes based on analytical dif-91

fuse sensitive kernels together with a linearized inversion technique. Although Locadiff is92

still an on-going project, the performance of this method was assessed through numerical93

studies [Pacheco and Snieder, 2005; Planès et al., 2015] and applied to imaging veloc-94

ity changes and structural changes both in seismology [Obermann et al., 2013, 2014] and95

in Nondestructive Testing and Evaluation (NDT&E) [Larose et al., 2015b; Zhang et al.,96

2016]. Using another inversion procedure, it even showed a potential to image high reso-97

lution sub-wavelength (∼ 1/15λ, λ = 0.75 mm) changes [Xie et al., 2016].98

In this paper, time-lapse three-dimensional imaging of velocities and micro-cracks99

are operated by applying Locadiff on a natural rock sample under biaxial loading at labo-100

ratory scale. Full-field infrared thermography (IRT) is additionally used in order to cross-101

validate the images of stress-induced changes measured by diffuse ultrasound. Compared102

with the conventional Locadiff experimental setup which uses multiple sources, a single103

transducer is used as a source together with eight sparsely placed receivers to cover one104

side of the specimen. Such setup is similar to the active source monitoring (e.g. air gun105

or accurately controlled routine-operated seismic source (ACROSS) experiments [Yamaoka106

et al., 2001; Wang et al., 2012]) at larger scale in geophysics. The aim of the paper is to107

employ the Locadiff technique to better understand the localized velocity changes as well108
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as micro-structural changes that control the mechanical behavior of natural heterogeneous109

rock samples in the multiple scattering regime.110

2 Experiment setup111

2.1 Specimen description and loading procedure112

Figure 1(a) shows the geometry of the experiment. The rock samples used in our113

experiments are of natural granite from Fangshan County, Southwest Beijing, China, with114

dimensions of 300 mm×300 mm×20 mm. We measured the strength of the granite sample115

to be approximately ∼120-∼150 MPa under uniaxial loading. A source transducer, labeled116

S, is placed in the center of the sample and surrounded by eight receivers (labeled 1 to117

8). An infrared camera takes pictures of the whole top surface temperature regularly. The118

mechanical setup includes a biaxial loading apparatus consisting in horizontal load frames119

with a servo control system used to apply shear forces (Fig. 1( a& b)). Forces are mea-120

sured via two strain gauge load cells positioned inside the pressure vessel with an accu-121

racy of ±0.1 kN. Displacements are measured via linear variable differential transformers122

(LVDTs) with an accuracy of ±1µm referenced at the load frame and the ram. A detailed123

description of the experimental system is introduced in previous references [Miao et al.,124

2010; Collettini et al., 2014]. Once the specimen is mounted, a 750 kN loading is carried125

out in both X and Y directions respectively to reach a 50 MPa pressure. Around the av-126

erage 50 MPa pressure load, additionally, a 5 MPa sinusoidal opposite-phase cyclic load127

pattern is applied synchronously in both directions using a digital sinusoidal waveform128

generator. The mechanical data (i.e. forces and LVDTs) are digitalized with a 16-bit res-129

olution multichannel data acquisition device and stored at a sampling rate of 10Hz. Fig-130

ure 1(c) illustrates the loading history of stress and displacement curves consisting in three131

successive periods of 300 seconds each (900 seconds in total).132

2.2 Data acquisition system for ultrasound133

Nine identical broad-band piezoelectric transducers (PAC wsα, 0.1-1 MHz) are evenly134

distributed every 75 mm over the 300 mm × 300 mm area, and glued onto the bottom of135

the specimen. As illustrated in Fig. 1(a), the eight black transducers (labeled 1 to 8) serve136

as receivers while the single red transducer (labeled S) at the center serves as a source. To137

ensure a strong multiple scattering regime, we emit a chirp signal s(t) with a frequency138
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varying linearly from 300 to 900 kHz (National Instruments PXI 5105). The amplitude of139

the chirp signal is ±6 V , and the duration is 0.5 ms. The 1.5-ms long received signals are140

simultaneously pre-amplified and recorded by an 8-channels 12-bit data acquisition system141

(National Instruments PXI 5421) at a sampling frequency of 10 MHz; the acquisitions are142

synchronized with the source emission signals by a 10-MHz reference clock signals. To143

improve the signal-to-noise ratio (SNR), the source emission is reproduced 100 times and144

received records r(Rj, t) (Rj stands for receiver j, t is the propagation time) were stacked145

accordingly.146

2.3 Data acquisition system for thermal infrared147

Figure 1(b) shows the photograph of the full-field InfraTes’s ImageIR 8820 sys-148

tem to observe the thermal infrared changes induced by local stresses. The infrared cam-149

era with a spectrum range from 8 to 14 µm is mounted 0.5 meter above the specimen.150

The minimum temperature sensitivity is 25 mK, and the spatial resolution is 0.57 mm151

(640×512 pixels). The acquisition rate is 50 frames/second. To ensure the reliable ther-152

mal infrared observations, room temperature stabilization actions are taken during the op-153

eration (e.g. turning off lights, closing all doors, leaving curtains down and avoiding any154

human activity).155

3 DATA ANALYSIS169

3.1 Diffusion characterization and sensitivity kernels170

We further correlate the received records r(Rj, t) with the source chip signal s(t) to171

evaluate the impulse response h(Rj, t) in the working frequency band:172

h(Rj, t) = r(Rj, t) × s(t), (1)173

where × stands for the correlation.174

An example of impulse response signal h(R1, t) acquired at receiver 1 is plotted in175

Fig. 2(a) together with a theoretical fit (red line). The diffusion constant can be approxi-176

mated by fitting the envelop of the signal using the theoretical intensity
√

I predicted by177

the diffusion equation. In infinite three dimensions, the diffusion equation simply reads:178
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Figure 1. (a) Sketch map of the biaxial loading apparatus, sample geometry and transducers setup (black

transducers labeled 1 to 8 as receivers, and one single red transducer as a source). (b) photograph of full-field

infrared thermography measurement setup, the apparatus in yellow solid box is an InfraTec’s ImageIR 8820

mounted 0.5-meter above the specimen; (c) loading history of stress and displacement curves consisting

in three successive periods of 300 seconds each (900 seconds in total). Opposite phase cyclic loading with

5 MPa loading amplitude oscillating around a 50 MPa average confining pressure synchronously along the

X-axis and Y-axis with three successive periods of 300 seconds each.
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162

I∞(S, R, t) =
1

(4πDt)3/2
exp(−

‖S − R‖2

4Dt
− ξt), (2)179

where D stands for the diffusion constant, ξ is the dissipation rate (intrinsic absorp-180

tion) and ‖S − R‖2 is the square of the source-receiver distance. In our case, considering181

the finite dimensions of the specimen, we evaluate the intensity by adding terms associ-182

ated with mirror images of the source after perfect reflections on the boundaries using183

Sabin’s principal [Sabin, 1932; Egle, 1981]. In order to evaluate the diffusivity and dissi-184

pation rate properly, we tested different source-receiver distances (from 14 cm to 56 cm)185

using another sample from the same granite. By such fitting process, we evaluate roughly186

the average diffusion constant to be D ≈ 17 ± 8 m2/s. We acknowledge a rough estima-187
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a b

Figure 2. Illustration of a recorded diffuse ultrasound signal h(R1, t) and the corresponding sensitivity

kernel between S and R1. (a) diffuse ultrasound signal and square root of it’s theoretical intensity prediction

using the diffusion equation with a diffusion constant D = 17 m2/s and a dissipation rate: ξ = 8000 s−1/s.

The time-window is marked by a gray area with the center time t = 0.35 ms for general CWI and CWD

analysis; (b) spatial distribution of the sensitivity kernel for S and R1 built with the 3-D diffusion equation

considering the finite dimensions of the specimen at 0.35 ms.

163

164

165

166

167

168

tion and assume a very large relative incertitude of 50% on this measurement. Decreasing188

the incertitude would request many other source-receiver distances, but as we will see later189

the Locadiff technique is very weakly dependent on the value of D, so a simple order of190

magnitude is enough for our study.191

We also assume that the energy velocity propagation is close to the shear wave ve-192

locity c0 ≈ 2500 m/s. The transport mean free path (`? = 3/D/c0) is therefore of the193

order of `? ≈ 19 mm, corresponding to a transport mean free time t? ≈ 8 µs. We sum-194

marize the physical parameters in Table 1. It is worth to note that the minimum distance195

(75 mm) between transducers is approximately 4 times longer than the transport mean free196

path (`?), which ensures the signals to be multiply scattered and the diffusion equation to197

hold.198

In order to predict the travel time change in the multiple scattering medium, we in-200

troduce the statistical sensitivity kernel for diffuse ultrasound (instead of predicting arrival201

time with a specific set of trajectories in the coda, a calculation that is hardly possible to202

perform). Sensitivity kernel K(S, R, x0, t), also called local times, represents the probability203
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C

Table 1. Properties of diffuse ultrasound in the granite sample.199

Parameters notation Value Unit

Energy velocity c0 ∼ 2500 m/s

Frequency range 300-900 kHz

Wavelength range 8-2.8 mm

Diffusion constant D 17 m2/s

Transport mean free path `? ∼19 mm

Transport mean free time t? ∼ 8 µs

of a wave emitted from location S to pass at location x0 and then to arrive at location R204

after a period of time t [Planès et al., 2014; Pacheco and Snieder, 2005]:205

K(S, R, x0, t) =

∫ t

0 I(S, x0, u)I(x0, R, t − u)du

I(S, R, t)
. (3)

In the above expression, I(S, R, t) represents the intensity propagator for a wave to travel206

from S to R within time t, which simply relates to the diffusion intensity. Figure2(b) il-207

lustrates the spatial distribution of the sensitivity kernel K between the source (S) and the208

receiver 1 at t = 0.35ms.209

3.2 Coda Wave Interferometry and Coda Wave Decorrelation210

We perform coda wave interferometry (CWI) and coda wave decorrelation (CWD)211

analysis to extract velocity changes and structural changes, respectively. We adopt the212

stretching method [Hadziioannou et al., 2009] because of its robustness against the noises.213

The signal records are noted as hi(Rj, t), where i is the number of the record along the214

loading history. Note that there are different time scales: time t is the time of the ultra-215

sonic record (of the order of microseconds to milliseconds) and date i refers to the loading216

history (several seconds to hundreds of seconds).217

The stretching procedure is in two steps: assuming h1(Rj, t) as the reference record,218

(1) the current record hi(Rj, t) is stretched using interpolations with various stretching fac-219

tors εk ; (2) each stretched signal hi(Rj, t(1 + εk)) is then compared to the reference record220

h1(Rj, t) by computing its correlation coefficient CC(εk) within a given time-windows221

[t1 t2] :222
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CC(εk) =

∫ t1
t2 h1(Rj, t)hi(Rj, t(1 + εk))√∫ t1

t2 h1(Rj, t)2dt
∫ t1
t2 hi(Rj, t(1 + εk))2dt

(4)223

In practice, we choose the time-window [t1 t2] duration greater than > 10 t? and224

SNR > 40 dB which insures the stable measurements of the cross-correlation coefficients.225

The stretching computation can be repeated for a huge number of values of the pa-226

rameters εk over the plausible range of interest. This simple linear grid search algorithm is227

nevertheless quite inefficient, as it typically requires more than 105 iterations. We improve228

the computation by using a collapsing grid search algorithm which significantly reduces229

the iterations to less than 102, as an initial coarse grid is first used for the minimum misfit230

correlation coefficients.231

The parameter εmax which maximizes the CC(εk) corresponds to the actual relative232

velocity change dv/v = −εmax , micro-structural change (dc) is measured from the residual233

waveform correlation CC: dc = 1 − CC(εmax).234

3.3 Inversion algorithm235

Before the inversion, we discretize the specimen into 800 elementary cubic cells ∆V ,236

the size of each cell ∆V = 0.015 m × 0.015 m × 0.01 m. We choose the mesh size slightly237

smaller than the transport mean free path. We introduce a general linear model in matrix238

form used to image the local changes:239

d = Gm (5)240

where d is a vector corresponding to the velocity change or the decorrelation mea-241

sured for a given source-receiver pair at time t; G is a matrix corresponding to the sensi-242

tivity kernel K at time t and weighted by the cell volume, then either divided by the time243

for CWI (G = ∆Vt k) or multiplied by the energy velocity c0 for CWD (G = c0∆V
2 k); m is244

the vector we wish to inverse that corresponds either to the relative velocity change per245

volume, or to the micro-structural changes characterized by the density of effective scatter-246

ing cross-section changes σ (m2/m3).247

Equation 5 can not be solved directly because it is not an even-determined problem.248

To reduce the negative influence lead by an ill-posed problem, 32 values of CWI (resp.249
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CWD) measurements from multiple time-windows ranging from 0.2 ms to 0.7 ms with250

SNR≥40 dB are calculated together with a linear least-square inversion solution proposed251

by Tarantola and Valette [1982]; Tarantola [2006] to derive the model of m:252

m = m0 + CmGT (GCmGT + Cd)
−1(d − Gm0) (6)253

where superscript T is the matrix transpose, m0 is the initial model filled with zeros254

since there is no a priori information about the perturbation and its impact such as stress255

distribution or about the value obtained from previous loading time, Cm and Cd are both256

diagonal covariance matrix. Cd describes the standard deviations on measured changes in257

coda. For CWD, we use empirical model proposed by Planès et al. [2015] Cdii = 0.3dc258

(ii stands for each element alone the diagonal of Cd). For CWI, we use theoretical model259

proposed by Weaver et al. [2011] Cdii =
1−cc2

i

2cci
6
√
π/2

f∆(2π fc )(t3
2−t

3
1 )
, where fc and f∆ are the cen-260

ter frequency and the frequency bandwidth of emitted source signal.261

Cm describes the deviations of real model from the a priori information which can262

reduce the under-determination of the problem. We use exponential correlation between263

the cells proposed by Hansen [Hansen, 1992]:264

Cmii = (stdm
L0
Lc
)exp(−

|xi − xj |
Lc

) (7)265

where stdm is the a priori standard deviation of the observed data m. |xi − xj | is266

the distance between two cells. L0 = 0.02m is the regularization distance for which diffu-267

sive sensitivity kernels could be separated. stdm and Lc can be chosen using the L-curve268

method based on an optimal trade-off between the regularization of m and the quality of269

the fit that it provides with the d. Note that in order to inverse micro-structural change,270

nine iterations are carried out using Eq. 6 to constrain positive values since negative val-271

ues have no physical means.272

To confirm the validity of the inversion model, we perform quality tests for the273

model resolution R:274

R = CmGT (GCmGT + Cd)
−1G (8)275
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The closer to one the restitution index which sum over the elements of the rows the276

resolution matrix R, the more accurate the changes can be recovered by the inversion.277

3.4 Data processing for thermal infrared camera data278

We assume that the temperature recorded by the thermal infrared system originates279

from three contributions: (1) the physical phenomenon under study, which in our case is280

associated with applied stresses; (2) the thermal bias due to environmental room tempera-281

ture fluctuations, such as human activities, lights, electronics etc; and (3) the experimental282

bias, which refers to additional fluctuations of the apparatus, such as temperature drift of283

the camera and noise from the data acquisition system. To obtain temperature changes284

induced by applied stresses as well as to improve the spatial resolution, two procedures285

have been applied: (1) environmental temperature changes are removed by subtracting the286

temperature of a reference specimen; (2) experimental bias can be reduced by spatially287

subtracting a reference image and applying a neighborhood average smoothing method (20288

pixels×20 pixels) in the space domain and the adjacent average smoothing method in the289

time domain. The temperature sensitivity in this way can be improved from 25 mK down290

to ∼5 mK, which is enough to detect 5 MPa loads assuming a stress sensitivity coefficient291

of 1.03 mK/MPa [Ren et al., 2017].292

4 Experimental results293

4.1 Velocity and micro-structural changes from each receivers294

The general evolution of the velocity changes (dv/v from CWI) and the micro-295

structural changes (dc from CWD) from each receiver as a function of loading time is296

illustrated in Fig. 3. We divide the receivers into two columns because the dv/v and dc297

diverge from one receiver to another at different loading times. The left column in Fig. 3298

consists in receivers R2, R7, R4 and R5 located at four sides of the specimen ; the right299

column in Fig. 3 consists of 4 receivers of R1, R3, R6 and R8 located along the diagonals300

of the specimen.301

Generally, the velocity changes show variations that are consistent with the local307

state of stress, in agreement with acousto-elasticity [Murnaghan, 1951]: the velocity in-308

creases by about 0.02% where the stress is increased by 5 MPa, and decreases by about309

−0.02% where the stress is released by 5 MPa. For instance, at receiver R2 and R7 (resp310
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a

b

Figure 3. General evolution of dv/v and dc as a function of loading time. (a) The loading history of stress

and displacement curves; (b) left column: velocity changes (dv/v, black line) and micro-structural changes

(dc, red line) as a function of loading time located at four sides of the specimen (R2, R7, R4, R5); right col-

umn: velocity changes (dv/v, black line) and micro-structural changes (dc, red line) as a function of loading

time located at four corners along the diagonals of the specimen (R1, R3, R6, R8).

302

303

304

305

306

R4 and R5), the acoustic velocity is maximum when the Y-axis (resp. the X-axis) stress311

is maximum at time 225 s, 525 s and 825 s, (resp. 75 s, 375 s, 675 s) and the velocity is312

minimum when the Y-axis (resp. X-axis) stress is minimum.313

The decorrelation (dc) of 8 receivers increase twice at each period of sinusoidal314

loading time. This is simply related to the reference state to which current waveforms are315

compared: the reference waveform is the first one obtained an intermediate loading, both316

50 MPa in X and Y direction. Any decrease or increase in stress induces an increase of317

decorrelation, thus making two dc oscillations every one loading period. The maximum318

decorrelation value appears along the diagonals (> 1 %) which suggest that the micro-319

deformation (and potentially micro-damage or micro-crack initiation) is more important320

along the diagonals of the specimen.321
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We note that “noises” are observed in the black curves that stand for the relative322

velocity changes at each sensor. This is attributed to the machine effect because the accu-323

racy of the force generator (±0.1 kN) controlled by the servo control system is not high324

enough to stabilize such 5 MPa opposite phase cyclic loading. It produces tiny force per-325

turbations which are recorded by highly sensitive diffuse ultrasound during the cyclic load326

process. We also note that room temperature stabilization actions have been taken to min-327

imize environmental temperature change (∼ 0.2 oC) during the experiment, therefore we328

attribute the apparent relative velocity changes to the stresses applied by biaxial loading.329

Based on these preliminary observations, we conclude that the CWI successfully de-330

tects the stress evolution. It suggests a non-uniformed stress distribution, which seems nat-331

ural in such asymmetric loading pattern since the velocity changes along the X-direction332

(top and bottom areas) of the specimen are totally opposite against the Y-direction (left333

and right areas). CWD is also observed to have quite heterogeneous distribution. CWD334

detects an increase in micro-cracks and/or micro-deformation for both positive and nega-335

tive loadings (with respect to the average value of 50 MPa) with maximum values appear-336

ing along the diagonals of the specimen. However, both CWI and CWD provide only the337

measurement of diffuse waves integrated over the volume where the wave actually prop-338

agated. For a proper cartography of relative velocity changes and/or local wave decor-339

relation, results from the inversion procedure described earlier are presented in the next340

section.341

4.2 Inversion resolution342

Given that the thickness of the sample is relatively small compared to other dimen-350

sions, we consider only the average value of three dimensional dv/v (or dc) along Z to351

produce top-view two dimensional images in the X-Y plane. Figure 4 illustrates the in-352

verted model distributions of changes in the X-Y plane occurring at 75 s loading time353

for the given inversion parameters. Figure 4(a) is the two dimensional image of micro-354

structural changes characterized by the density of effective scattering cross-section changes355

σ. Figure 4(b) and (c) illustrate the search for the optimal inversion parameter stdm =356

0.43 using the L-curve test for a given value of spatial smoothing of L = 3L0 and the357

restitution index of R which qualifies the inversion quality of micro-structural changes.358

Figure 4(d) is the two dimensional image of velocity change at 75 s loading time. Fig-359

ures 4(e) and (f) illustrate the search for the optimal inversion parameter stdm = 0.048360
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Figure 4. Images of changes occurring at 75 s of loading time in the X-Y plane. (a) the distribution of

micro-structural changes (σ). (b) L-curve test for a given value of spatial smoothing of L = 3L0. The best

compromise is obtained at the corner of the slop, at the arrow for stdm = 0.43. (c) Resolution index map of σ

which value is relatively homogeneous in this plane, with values greater than 0.8. (d) Distribution of velocity

change (dv/v). (e) L-curve test for a given value of spatial smoothing of L = 3L0. The best compromise is

obtained at the corner of the slop, at the arrow point for stdm = 0.048. (f) Resolution index map of dv/v,

which is relatively homogeneous in this plane, with values greater than 0.8.

343

344

345

346

347

348

349

using the L-curve test for a given value of spatial smoothing of L = 5L0 and the restitu-361

tion index of R which qualifies the inversion quality of velocity changes. Both the resti-362

tution indexes of micro-structural and velocity are greater than 0.8 in the central area of363

the images, indicating that we are able to inverse the changes with confidence. It also in-364

dicates that the resolution index along boundaries of the specimen is worse (∼ 0.8), thus365

delimiting the confidence area.366

4.3 Spatio-temporal images367

Following the above mentioned inversion procedure, we produce a series of images372

of velocity and structural changes for each loading time (please refer to Movie S1). Fig-373

ure 5(b) presents images of 3 different physical changes at 6 successive loading times374

(from 75 s to 825 s) associated to the maximum and minimum applied stress as well as375

initial (0 s) and final state of the sample (900 s). We also provide the loading history from376

stress and displacement curves (Fig. 5(a)).377
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b

Figure 5. Snapshots of spatio-temporal images of changes in the X-Y plane at eight successive loading

times from 0 s to 900 s. (a) Loading history: stress and displacement curves; (b) the first row corresponds to

images of micro-structural changes (σ); the second row corresponds to images of velocity changes (dv/v); the

third row corresponds to infrared thermography snapshots (◦C).

368

369

370

371

The first row in Fig. 5(b) presents the distribution of structural changes σ. The im-378

ages reveal that the micro-structural variation are occurring at the center and along the379

diagonals of the specimen. The distribution is relatively uneven, though reproducible380

for various loadings along the X (resp. Y ) direction at time 75 s, 375 s and 675 s (resp.381

225 s, 525 s and 825 s). Please note that the physical unit (m2/m3) represents the den-382

sity of scattering cross-sections of structural changes, that can be interpreted as a density383

of 2D cracks in a 3D cell in the case of developing damage, or to local geometrical de-384

formation. We observe that σ mainly concentrates at the center and along the diagonals.385

From a simple mechanical model considering the opposite-phase loading procedure and386

the geometry of the sample, we can determine that most shear deformation concentrates at387

the center and along the diagonals of the specimen (see later the numerical model), which388

is consistent with the observed σ. It is inferred that the shear deformation is developing389

at it’s early stage by means of coalescence of micro-cracks under such loading pattern.390

It is, therefore, reasonable to suggest that the damage caused by the loading could be in-391
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creased along these diagonals, and more specifically that the diagonals gets weaker with392

the experience such that the damage increases with a similar spatial pattern during the ex-393

periment. We find that the maximum value of scattering cross-section σ reaches 4 m2/m3.394

This number has to be compared to previous works during mechanical experiments using395

intact concrete [Larose et al., 2015b; Zhang et al., 2016] that found structural changes of396

the order of (0.1 ∼ 1 m2/m3) for cracks developing in concrete. In the case of granite,397

there exist no specific experiment to compare to, so it is hard to discriminate which part398

of σ is due to reversible micro-deformation, and which part of σ is due to irreversible399

damage/micro-cracking developments. But we can definitely conclude that the distribution400

of σ is a quantity that perfectly images a mix of micro-deformation and micro-damage.401

Although it is an on-going research topic, we can anticipate that there seems to be a direct402

relation between the scattering cross-section σ and the size of developing cracks [Planès403

et al., 2014; Xie et al., 2018a], we do notice that in general a larger scattering cross-section404

corresponds to greater crack dimensions (or greater cracks concentrations).405

The second row in Fig. 5(b) presents the distributed evolution of velocity changes406

(dv/v). The images reveal that the velocity perturbations occur mainly in four regions407

which are divided by the diagonals. The velocity change increases in upper and lower408

conical regions while decreases in left and right conical regions at 75 s, 375 s and 675 s,409

accordingly with increased/decreased stress areas obtained from simple mechanical mod-410

elisation (see later the numerical model). A negative velocity change occurs in the upper411

and lower conical regions at 225s, 525s and 825s, but the spatial distribution of increased412

velocity (stress) is not exactly what theory would predict. This feature is understood as413

experimental imperfection in the loading apparatus/design at active pistons, consistently414

with observed strongest perturbation (“noises”) of velocity changes originating from R6415

and R8 which are located at the left top and bottom corner of sample (Fig. 3(b)) and the416

IR observations (see below). Only the regions along diagonals show zeros (white) velocity417

change.418

To better understand and confirm the results of time-lapse stress distribution from419

CWI, we simultaneously monitor the surface temperature with infrared thermography420

(third row in Fig. 5). The presented temperature images are found to increase in upper421

and lower conical regions while decreasing in left and right conical regions at 75 s, 375 s422

and 675 s. A negative temperature change occurs in such four regions at 225 s, 525 s and423

825 s, consistently with loading distribution (stress decrease). These results confirm that424
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both velocity and temperature changes are jointly related to the bulk stress (confining pres-425

sure, see later) while the specimen remains in its elastic regime. Thus, as confirmed by426

IR camera, we conclude that CWI together with the Locadiff inversion technique provide427

cartographies of localized stress evolution of the material at test.428

5 Discussion429

The images of spatio-temporal changes raise at least two questions. First: why ve-430

locity and temperature changes are related positively to each other? Second: why does the431

spatial distribution of scattering cross-section σ significantly differ from velocity or tem-432

perature changes?433

To answer the first question, it is widely known from laboratory and field experi-434

ments that elastic wave velocities vary with the level of applied stress, a phenomenon435

known as acousto-elasticity. In our experiment, diffuse wave frequencies range from 300436

kHz to 900 kHz, the associated wavelengths are equivalent to the mesoscopic scale of437

brittle rocks (grain size), leading to strong multiple scattering at grain boundaries. With438

the applied forces, the opening and closing of grain boundaries and grain contacts emit439

thermal infrared radiations [Wu et al., 2006; Chen et al., 2015]. In other word, velocity and440

infrared radiation depend on micro-cracks opening/closing induced by stress. This explains441

that images of velocity changes are similar to those from infrared thermographic ones.442

However the temperature images have lower sensitivity (∼5 mK) yielding to a level of de-443

tection of stress of 5 MPa (1.03 mK/MPa). In addition, due to the thickness of the spec-444

imen, heterogeneities and intrinsic dissipation also lead to a lower emitting efficiency of445

infrared radiation. This favors using ultrasonic CWI and Locadiff for future experiments446

instead of IR camera. What is clear, nevertheless, is that the velocity changes measured447

from diffuse ultrasound propagation and surface temperature changes measured from in-448

frared thermography are both correlated to the changes of elastic properties of the mate-449

rial.450

Concerning the spatial distribution of stress, temperature and velocity changes, a465

simple mechanical model which is well documented in literatures (e.g. [Karato, 2012]) is466

illustrated in Fig. 6 to better understand the stress distribution. By maintaining the con-467

stant pressure at 50 MPa, there should be no volumetric deformation along the X-Y plane468

while the loading forces are canceled out in two directions. It suggests that the specimen469
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Figure 6. A simple mechanical model for understanding the stress distribution under biaxial opposite-

phase load. The red arrows indicate the shear stresses (τ) due to the generation of side frictions. Conical

compression/tension regions associated with applied loading/unloading in (a) X-axis direction in associate

with the closing (upper-right inset) and the opening (lower-right inset) contacts of grain boundaries and

micro-cracks coalesce (upper-left inset) or (b) Y-axis direction in associate with the closing (lower right inset)

and the opening (upper-left inset) contacts of grain boundaries and micro-cracks coalesce (lower-left inset)

are formed in the bulk of the specimen during cyclic load with a 90-degree phase difference. (c) The finite

element model of the sample is meshed with 6282 quadratic triangular elements. The boundary conditions

under consideration are normal pressure of -5 MPa and 5 MPa applied respectively to AB and BC surfaces.

The nodes of the OA and CB surfaces are constrained depending to the X direction, the nodes of the OC and

AB surfaces are constrained depending to the Y direction. (d) the stationary elastic behavior of upper-right

quarter (150 mm×150 mm) of the rock sample under plane stress during biaxial loading. (e) the maximum

shear stress of upper-right quarter (150 mm×150 mm) of the rock sample under plane stress during biaxial

loading.
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remains in shear state during such loading pattern and no dv/v should be observed. We470

observe strong velocity and temperature heterogeneities that we assume due to frictions in471

contact surfaces between edges of the specimen and the plate of active load pistons.472
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In order to verify this hypotheses on friction, we use the finite element code COM-473

SOL to simulate the stationary elastic behavior of the upper-right quarter (150 mm×150 mm)474

of the rock sample under plane stress during biaxial loading. The deformable body is475

meshed with 6282 quadratic triangular elements. The boundary conditions under con-476

sideration are normal pressure of -5 MPa and 5 MPa applied respectively to AB and BC477

surfaces. To mimic friction at the boundaries, the nodes of the OA and CB surfaces are478

constrained depending to the X direction, the nodes of the OC and AB surfaces are con-479

strained depending to the Y direction. Young’s modulus E and Poisson’s coefficient are480

respectively imposed to 50 GPa and 0.3 (approximative values). In Fig. 6(c), we plot the481

mesh used in the numerical model. Figure 6(d) illustrates the confining pressure that re-482

sults from the loading with friction at the boundaries. This numerical simulation perfectly483

confirms the results obtained from dv/v images.484

Conical compression/tension regions associated to applied loading/unloading in the485

Y-axis direction (Fig. 6(a)) or in the X-axis direction (Fig. 6(b)) are formed in the bulk of486

the specimen during cyclic loading with a 90-degree phase difference. Shear state only re-487

mains at stress junction regions e.g. along the diagonals of the specimens in our case. It488

is noted that the regions of velocity changes may become more irregular in shapes later489

in the experiment (e.g. at 825 second of loading time) because of experimental imper-490

fection in the loading apparatus/design (e.g.frictions may increase over several periods491

of cyclic loadings at contact areas against active pistons while remaining constant at two492

other sides).493

For the second question on spatial distribution, the opening and closing of micro-494

cracks not only modify the arrival times of the diffuse waves (e.g. the apparent rigidity495

of the material) but also the wave coherence. Considering the loading condition, the ac-496

tivations of micro-cracks and/or grain boundaries are related to the distribution of stress.497

This effect is localized mostly at places where the deformation is the greatest. In our ex-498

periment, the expected greatest local shear deformations are distributed along the diago-499

nals (see the results of the numerical simulation of maximum shear stress Fig. 6(e)). This500

suggests that the development of micro-cracks and/or micro-deformation is favored by X-501

shape distribution of shear stress and cracks are more likely to coalesce and localize along502

these diagonals. Since only 5 MPa stress perturbation is applied, and structural changes σ503

mostly reversible, we believe that the damage level of the specimen is at it’s early stage.504

The localized micro-cracks reversibility should be understood as following slow dynamics505
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phenomena [Tencate et al., 1999; Guyer and Johnson, 1999]. Continuing several loading506

cycles may lead to micro-crack coalescence and the development of macroscopic cracks,507

and irreversible damage, especially along those diagonals.508

Recently, laboratory observations were conducted by monitoring temporal changes509

in ultrasonic wave speed (coda of Vp) along experimental faults throughout the seismic510

cycle for the complete spectrum of slip behaviors [Scuderi et al., 2016; Tinti et al., 2016].511

The results show a systematic Vp reduction of 1% prior to failure (Fig. 7(a)) during the512

earthquake preparatory phase (weakening and rupture nucleation), spanning a wide spec-513

trum of slip rates. Such systematic precursory variations of elastic properties for both slow514

and fast earthquakes are indicating similar physical mechanisms which relate to changes515

in asperities’ contact stiffness, crack density, and disruption of asperities’ force chains of516

the fault during rupture nucleation [Scuderi et al., 2017]. Xie et al. [2017b] also conducted517

a laboratory observation of stick-slip failure on 1.5-meter granite fault by measuring tem-518

poral velocity changes with a 10−6 relative resolution of diffuse ultrasound. The results of519

velocity reductions prior to failure (Fig. 7(b)) are consistent with previous laboratory stud-520

ies using changes of Vp. Meanwhile, a reduction in velocity of diffuse ultrasound of about521

0.02% is consistent with field examples of precursory changes in seismic wave speed, such522

as those observed along the San Andreas Fault using seismic ambient noise (Fig. 7(c))523

[Brenguier et al., 2008].524

It has been demonstrated that multiple scattering (reflected) waves could be recon-525

structed in both active pulse-echo configuration(e.g. laboratory ultrasound experiment526

and/or active source field monitoring) and passive cross correlation configuration (e.g.527

seismic ambient noise) [Larose et al., 2006]. Due to the increasingly importance of under-528

standing evolution in fault zone and finding clear precursors to the earthquake, the time-529

lapse tomography method based on diffuse waves could offer a promising high-sensitive530

means to study the spatiotemporal evolution of elastic properties as well as the micro-531

structures in the fault-loading medium and to detect earthquake precursors in both small-532

scale laboratory experiments and field experiments.533
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Precursory velocity change
of diffuse ultrasound

a b c

Figure 7. Comparison between laboratory and natural variation in temporal velocity change. (a) Vp

changes during the earthquake cycle for fast audible laboratory earthquakes [modified from Scuderi et al.

[2016]]; (b) velocity changes of diffuse waves during the earthquake cycle for audible laboratory earthquakes

on 1.5-meter granite fault [modified from Xie et al. [2017b]]; (c) San Andreas Fault using seismic ambient

noise [modified from Brenguier et al. [2008]]
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538

6 Conclusion and perspective539

In this study, with the application of high sensitivity diffuse ultrasound and its time-540

lapse inversion method Locadiff, we investigated spatio-temporal mechanical changes in a541

heterogeneous specimen of a natural granite sample under biaxial loading.542

The present work:543

(1) provides a validation of the ability of the diffuse ultrasonic method to produce544

time-lapse images as a way to monitor stress-induced velocity changes during complex545

mechanical loading. By means of infrared thermography, which allowed to cartography546

stress induced temperature changes, we validated the results obtained from Locadiff, and547

demonstrated the good resolution and sensitivity of the diffuse ultrasonic technique for548

laboratory applications;549

(2) demonstrates the detection capability to image the opening/closing of micro-550

cracks (or grain boundaries activations) and located the deformation process at early stage551

of damage (in a mostly reversible regime);552

(3) demonstrates that a good resolution can be achieved with only a few properly553

distributed receivers together with one single source on one side (free surface) of the spec-554

imen.555

The most important advantages of Locadiff compared to other experimental ap-556

proaches is its highly sensitivity to weak changes. Also it demands a limited number of557

transducers and can be performed either at laboratory scale or in field experiments at seis-558

–22–



mological scales [Poupinet et al., 1984; Wang et al., 2012]. Combining such experimental559

method with other complementary approaches will allow to enhance the ability to inves-560

tigate the mechanisms of natural rocks at mesoscopic scales under complex mechanical561

loading, such as laboratory earthquakes. In addition, compared to the multiple sources562

setup, the temporal resolution has been increased here thanks to the single source used,563

while spatial resolution could be maintained by using more time-windows of diffuse coda564

waves. Considering such advantages, further works applying Locadiff to temporal critical565

observations, such as nucleation process of laboratory earthquake, are conceivable from a566

practical and instrumental point of view.567
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