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Abstract: In this study, we have "blindly" assessed the ability of several combinations of docking 

software and scoring functions to predict the binding of a fragment-like library of bovine trypsine 

inhibitors. The most suitable protocols (involving Gold software and GoldScore scoring function, 

with or without rescoring) were selected for this purpose using a training set of compounds with 

known biological activities. The selected virtual screening protocols provided good results with the 

SAMPL3-VS dataset, showing enrichment factors of about 10 for Top 20 compounds. This 

methodology should be useful in difficult cases of docking, with a special emphasis on the 

fragment-based virtual screening campaigns. 

Keywords: virtual screening; docking; scoring function; fragment-like 

compounds; trypsin inhibitors 

 

Abbreviations:  

RMSD – Root Mean Square Deviation 

ROC – receiver operating characteristic 

AUC – Area Under Curve 

CI – Confidence Interval 

QPLD – QM-Polarized Ligand Docking 

 

Introduction 

The use of fragment-based approaches in drug design and particularly in virtual 

screening has known an explosive development in recent years [1-7]. In some 

instances, this approach has been successfully used as a less expensive alternative 
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to the NMR and X-ray crystallography techniques for the assessment of binding 

site druggability [8]. The key usefulness of fragment-based techniques is provided 

by the maximal exploration of the chemical space using a limited number of 

compounds [9, 10]. 

Docking of these small-sized molecules represents a very efficient tool for the 

identification of new weak, fragment-like binders that will represent starting 

points for the elaboration of complex and more potent drug-like compounds [11-

14]. One major limitation of this approach is considered to be the performance of 

scoring functions to correctly predict the binding modes of fragments [13, 15, 16]. 

In this context, the SAMPL3-VS challenge intended to provide an opportunity for 

the evaluation of the current knowledge in this exciting field. This year, the 

dataset contained 500 fragment-like compounds that were potential inhibitors of 

bovine trypsin and it was required to submit a ranked list of these compounds. 

 

Materials and Methods 

Construction of the training set of bovine trypsin inhibitors 

A training set of 25 compounds, with known biological activities against bovine 

trypsin and for which crystal structures in complex with this enzyme were 

available in the Protein Data Bank (PDB [17, 18]), were selected in the first step 

(Table 1). These compounds were further used for the evaluation of two docking 

software (Gold and Glide) for the ability of pose prediction and ranking of 

fragments using different docking protocols. 

Table 1. Compounds with known biological activities (Ki) for bovine trypsin and crystallographic 

structures available in the PDB which were used as training test in this study 

PDB code Ligand code Resolution (Å) Ki (M) Reference 

1K1N CCR 2.00 0.068 [19] 

1G36 R11 1.90 0.067 [20] 

1OYQ T87 1.90 0.11 [20] 

2ZQ2 13U 1.40 0.102 [21] 

1BJV GP8 1.80 2.9 [22] 

3GY2 BRN 1.57 1.8 [23] 

1V2J BEN 1.90 4.8 [24] 
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1GI0 BMZ 1.42 3.4 [25] 

1GI4 122 1.37 1.9 [25] 

1GI5 123 1.60 1.2 [25] 

1O2S CR4 1.65 3.4 [26] 

1O30 693 1.55 0.17 [26] 

1O38 653 1.38 0.15 [26] 

1O36 607 1.70 1.1 [26] 

1O33 801 1.46 1.8 [26] 

1O2Z 312 1.65 0.78 [26] 

1O2P 972 1.47 0.44 [26] 

1O2N 762 1.50 0.81 [26] 

1O2W 847 1.38 1.4 [26] 

1QB9 806 1.80 0.036 [27] 

1QB1 974 1.80 0.17 [27] 

1QBO 711 1.80 0.018 [27] 

1QB6 623 1.80 0.87 [27] 

1G3B 108 1.80 4.2 [28] 

1G3C 109 1.80 2.8 [28] 

 

Ligand preparation 

All 544 structures from the SAMPL3-VS dataset and the 25 structures from the 

training set were prepared using the LigPrep module from Schrödinger Suite 

(http://www.schrodinger.com). When applicable, all possible stereoisomers and 

protonation forms at pH 7.0 ± 2.0 were considered, and the one showing the best 

correlation with the experimental data (in the case of the training set) or the best 

docking score (for SAMPL3-VS dataset) was retained. In this way, an extended 

SAMPL3-VS dataset (containing 647 structures) was obtained and used for virtual 

screening. 

Docking and virtual screening protocols 

The bovine trypsin structure used in this study (PDB code 2AYW [29]) was 

selected considering its very good resolution (0.97 Å) and the length of the amino 

acid sequence. 
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Docking and virtual screening calculations were performed using Gold 5.0 [30] 

and Glide 5.5 (http://www.schrodinger.com) software. Gold employs a genetic 

algorithm to explore the full range of conformational flexibility of the ligand in 

the protein binding site, whereas Glide was described to perform a complete 

systematic search of the conformational, orientational, and positional space of the 

docked ligand, using a hierarchical series of filters to search for possible locations 

of the ligand in the active-site region of the receptor.  

With Gold, five different protocols were used (Table 2). Protocols 1, 4 and 5 

involved the GoldScore, ChemScore and ChemPLP scoring functions, without 

rescoring, whereas for the protocols 2 and 3 GoldScore was used for pose 

prediction, followed by rescoring with ChemScore and ChemPLP. For each 

docking calculation (training set and SAMPL3-VS dataset) 50 conformations 

were generated using 100.000 GA operations, the search efficiency was increased 

to 110% and the algorithm was not allowed to terminate early when the same 

solution was produced repeatedly. All other parameters had default values. The 

binding site was defined as a sphere with a 15 Å radius centered on the center of 

mass of the ligand originally present in the structure 2AYW. Computing time 

used was about one minute per ligand using a single core on a recent workstation 

running with Linux CentOS. 

With Glide, four protocols (denoted as 6-9 in Table 2) were evaluated, involving 

the standard SP and XP parameters alone (entries 6 and 7) or in combination with 

the QPLD procedure (entries 8 and 9). For each docking, 50 conformations were 

generated using the default values of all parameters. The binding site was defined 

as a box with the size of 20 Å, centered on the center of mass of the ligand 

originally present in the structure 2AYW.  Computing time used was about a few 

seconds (SP), a few minutes (XP) or a few hours (QPLD) per ligand using a single 

core on a recent workstation running with Linux CentOS. 

Table 2. Docking protocols used in this study 

Protocol Software Scoring Function Re-scoring Function 

1 Gold GoldScore - 

2 Gold GoldScore ChemScore 

3 Gold GoldScore ChemPLP 

4 Gold ChemScore - 

5 Gold ChemPLP - 
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6 Glide GlideScore SP - 

7 Glide GlideScore XP - 

8 Glide GlideScore SP QPLD 

9 Glide GlideScore XP QPLD 

 

Results and Discussion 

The methodology that we followed in this study, in order to propose the best 

prediction for the SAMPL3-VS challenge, involved the following three steps: i) 

selection of the most appropriate docking protocols for this task, using the 

experimental data presently available; ii) fragment virtual screening, which 

provided a ranked list of compounds from this dataset; iii) evaluation of the 

virtual screening results in the light of experimental data released by the SAMPL3 

organizers at the end of the submission period.  

Preliminary evaluation of the most appropriate docking protocols for 

fragment virtual screening on trypsin using available experimental 

data 

Different docking software generally show unequal ability to predict the bioactive 

conformation of ligands, depending on the docking protocol that is implemented 

and on the protein target. From this point of view, the docking of fragment-like 

compounds is very challenging, given their low binding affinity and the multiple 

possibilities of positioning in the binding site. In our approach, the selection of the 

most suitable tools for correct docking predictions represents the key step, which 

will ensure the quality of the data to be generated. 

The ability of nine docking protocols (Table 2) in reproducing experimental data 

has been evaluated using a cross-docking approach. All 25 ligands forming the 

training set were docked on the crystal structure of bovine trypsin (PDB code 

2AYW). The resulting docking (or rescoring) scores were further correlated using 

linear regression with the experimental inhibition constants (Ki) available. 

Good results (correlation coefficients R
2
 of 0.7-0.8) were obtained only for 

protocols involving GoldScore in the pose prediction, without rescoring (protocol 

1, Figure 1) or with rescoring using ChemScore (protocol 2, Figure 2) or 
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ChemPLP functions (protocol 3, Figure 3). Based on these encouraging results, 

the three protocols were then used in the subsequent virtual screening step.  

Average predictions were obtained with protocols 4 and 5, which employ 

ChemScore and ChemPLP functions for docking, without rescoring. The 

protocols 6-9, making use of Glide scoring functions, and even with the 

computationally expensive protocol QPLD, were unable to predict the order of 

affinity for these trypsin ligands and no correlations with the experimental data 

were found (see Figures S1-S6 in Supplementary Information for the correlation 

plots). In all cases, similar correlation coefficients were obtained using logKi 

instead of Ki (data not shown). 

A rapid visual inspection, the comparison of ligand binding modes and the RMSD 

calculation showed that in most cases Glide is not able to predict the correct pose, 

whereas in the same conditions Gold succeeds. Once the ligand is correctly 

positioned in the binding site using the GoldScore function, the differences after 

rescoring are minor. 

 

 

Figure 1. Correlation between biological activities and cross-docking results (using protocol 1, 

with GoldScore scoring function and no rescoring) for a training set of trypsin inhibitors. 
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Figure 2. Correlation between biological activities and cross-docking results (using protocol 2, 

with GoldScore scoring function followed by rescoring with ChemScore) for a training set of 

trypsin inhibitors. 

 

 

 

Figure 3. Correlation between biological activities and cross-docking results (using protocol 3, 

with GoldScore scoring function followed by rescoring with ChemPLP) for a training set of 

trypsin inhibitors. 
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Fragment virtual screening 

The first three protocols (1-3), which were previously identified using the training 

set as the most suitable for ranking fragment-like trypsin inhibitors, were 

employed for the virtual screening of the SAMPL3-VS dataset. The resulting 

three predictions were submitted (as ranked lists) for the SAMPL3 challenge, in 

order to obtain a "blind" assessment for the accuracy of our selected docking 

protocols. 

Although based on the training set results we were not expecting better 

predictions, for the sake of completeness the remaining six protocols (4-9) were 

also evaluated in the virtual screening of the SAMPL3-VS dataset.  

 

Evaluation of virtual screening results 

The structures of the 20 active compounds included in the SAMPL3-VS dataset 

are depicted in Figure 4. They present a high degree of similarity, with two rings, 

aromatic or aliphatic, which can be fused or not. Most of them contain an 

aminomethyl or hydroxymethyl group connected to an aromatic ring, and a few 

compounds present a carboxyl or amino substituent on an aromatic ring. 

 

 

Figure 4. The 20 active compounds included in the SAMPL3-VS dataset. The compounds colored 

in red (subset A, plain contour line) were correctly identified in Top 20, whereas compounds 

colored in blue (subset B, dotted contour line) were ranked in the position range 21-60 by our 
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virtual screening protocols. The other compounds, colored in black (subset C), were not identified 

as actives and ranked below the 60
th

 position. 

 

Table 3 shows an overview of the virtual screening results obtained using the nine 

protocols described previously (see also Table S1 in Supplementary Information 

for more detailed statistics of the results obtained with protocols 1-3). We were 

pleased to observe that protocols 1-3, which were selected based on the good 

prediction accuracy for the training set, gave very good results, being able to 

identify correctly 7 active compounds (out of 20) in Top 20. Additional 6 active 

compounds were ranked by these protocols in the position range 21-60. In these 

conditions, the enrichment factor is 9.52 and 5.89 for Top 20 and Top 60, 

respectively. 

Unexpectedly, even better results were obtained using the protocol 5, which was 

able to identify correctly 8 and 13 active compounds in Top 20 and Top 60, 

respectively. All other protocols showed prediction accuracies similar to those 

obtained with the training dataset. 

 

Table 3. General overview of the virtual screening results obtained in this study using the 

SAMPL3-VS dataset. 

Protocol Empirical 

ROC AUC 

Top 20 Top 60 

Actives 

found 

Enrichment 

factor 

Actives 

found 

Enrichment 

factor 

1 0.776 7 9.52 13 5.89 

2 0.787 7 9.52 13 5.89 

3 0.786 7 9.52 13 5.89 

4 0.793 5 6.80 12 5.44 

5 0.810 8 10.88 13 5.89 

6 0.807 3 4.08 8 3.63 

7 0.721 2 2.72 7 3.17 

8 0.758 4 5.44 9 4.08 

9 0.717 0 0.00 4 1.81 

 

The plots of empirical ROC AUC for the results obtained with protocols 1-3 are 

shown in Figures 5-7 (see Figures S7-S12 in Supplementary Material for the 

analogous plots with protocols 4-9). However, from Table 3 it can be observed 
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that this metric is not able to evaluate correctly the comparative performance of 

different protocols, at least not for the Top 20 or Top 60, which are the most 

important in real life studies. We believe that the enrichment factor could another 

possible evaluation criteria, which can be possibly used for the assessment of 

prediction quality in future SAMPL3 challenges. 

 

 

Figure 5. Empirical ROC AUC calculated for results obtained using protocol 1, with GoldScore 

scoring function (no rescoring). 
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Figure 6. Empirical ROC AUC calculated for results obtained using protocol 2, with GoldScore 

scoring function followed by rescoring with ChemScore. 

 

 

Figure 7. Empirical ROC AUC calculated for results obtained using protocol 3, with GoldScore 

scoring function followed by rescoring with ChemPLP. 

 

A special remark should be made for the compounds that have been incorrectly 

predicted as actives in Top 20 (Figure 8). We can observe that the structures of 

these inactive compounds are very similar to those of the active compounds 

(Figure 4), so it would be an extremely difficult task for a scoring function to 

discriminate between these two subsets. 

 

 

Figure 8. The 13 compounds (subset D) incorrectly predicted as actives in Top 20 by the virtual 

screening protocols used in this study. 
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From Figure 4 it can be observed that all the active compounds from the subset A 

contain a terminal amine group, which is protonated under physiological 

conditions. These compounds were correctly positioned by the protocol 1 in the 

trypsin S1 pocket, in the vicinity of the residues Asp189, Ser190 and Gly219 

(Figure 9). 

 

Figure 9. Predicted binding modes of compounds that were correctly identified in Top 20 (subset 

A) using protocol 1 

 

The second group of active compounds, ranked in the position range 21-60 

(subset B), was also correctly positioned in the binding site. These compounds 

were not correctly ranked as active due to the inherent imprecision of the scoring 

functions. 
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Figure 10. Predicted binding modes of compounds that were ranked in the position range 21-60 

(subset B) using protocol 1 

 

From the analysis of the binding modes for the compounds that were not 

identified as actives and ranked below the 60th position (subset C, Figure 11), 

several cases can be distinguished: i) compound 188, which is very similar to all 

the active compounds that were correctly identified in Top 20, was well 

positioned in the binding site. One possible explanation for this inaccurate ranking 

might be the compactness of its structure and the smaller volume, which will 

require a small rearrangement of the binding site residues to optimize the protein-

ligand interactions. This rearrangement is not possible under the conditions used 

in this study (rigid protein); ii) some of the compounds bearing the hydroxymethyl 

group (207, 385) and the aniline derivative 340 are positioned is a similar way as 

the aminomethyl derivatives. The inaccurate ranking is probably due in this case 

to the error in the estimation of the interaction energy between the hydroxyl group 

or the aromatic (unprotonated) amine and the trypsin S1 pocket, compared to the 

positively charged amino group in the case of the other compounds; iii) the 

compounds 014, 221 and 223 are positioned in different regions of the binding 

pocket. 
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Figure 11. Predicted binding modes of compounds that were not identified as actives and ranked 

below the 60
th

 position (subset C) using protocol 1 

 

Conclusion 

In this study, we have "blindly" assessed the ability of several combinations of 

docking software and scoring functions to predict the binding of a fragment-like 

library of bovine trypsine inhibitors. The most suitable protocols (involving Gold 

software and GoldScore scoring function, with or without rescoring) were 

selected for this purpose using a training set of compounds with known biological 

activities. The selected virtual screening protocols provided good results with the 

SAMPL3-VS dataset, showing enrichment factors of about 10 for Top 20 

compounds. This methodology should be useful in difficult cases of docking, with 

a special emphasis on the fragment-based virtual screening campaigns. 
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Figure S1. Correlation between biological activities and cross-docking results (using protocol 4, 

with ChemScore scoring function and no rescoring) for a training set of trypsin inhibitors. 
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Figure S2. Correlation between biological activities and cross-docking results (using protocol 5, 

with ChemPLP scoring function and no rescoring) for a training set of trypsin inhibitors. 
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Figure S3. Correlation between biological activities and cross-docking results (using protocol 6, 

with Glide SP scoring function and no rescoring) for a training set of trypsin inhibitors. 
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Figure S4. Correlation between biological activities and cross-docking results (using protocol 7, 

with Glide XP scoring function and no rescoring) for a training set of trypsin inhibitors. 
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Figure S5. Correlation between biological activities and cross-docking results (using protocol 8, 

with Glide SP scoring function and QPLD) for a training set of trypsin inhibitors. 
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Figure S6. Correlation between biological activities and cross-docking results (using protocol 9, 

with Glide XP scoring function and QPLD) for a training set of trypsin inhibitors. 
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Figure S7. Empirical ROC AUC calculated for SAMPL3 dataset after virtual screening using 

protocol 4, with ChemScore scoring function (no rescoring). 

 

 

 

Figure S8. Empirical ROC AUC calculated for SAMPL3 dataset after virtual screening using 

protocol 5, with ChemPLP scoring function (no rescoring). 
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Figure S9. Empirical ROC AUC calculated for SAMPL3 dataset after virtual screening using 

protocol 6, with Glide SP scoring function (no rescoring). 

 

 

 

Figure S10. Empirical ROC AUC calculated for SAMPL3 dataset after virtual screening using 

protocol 7, with Glide XP scoring function (no rescoring). 
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Figure S11. Empirical ROC AUC calculated for SAMPL3 dataset after virtual screening using 

protocol 8, with Glide SP scoring function and QPLD. 

 

 

 

Figure S12. Empirical ROC AUC calculated for SAMPL3 dataset after virtual screening using 

protocol 9, with Glide XP scoring function and QPLD. 

 



S8 

Table S1. Statistics for virtual screening results obtained with protocols 1–3, provided by the 

SAMPL3 organizers. 

 Protocol 1 Protocol 2 Protocol 3 

Empirical 
ROC AUC 

0.776 0.788 0.787 

ROC AUC 
Standard Deviation 0.068 0.065 0.066 

Empirical 95% CI 0.64 < AUC < 0.91 0.66 < AUC < 0.92 0.66 < AUC < 0.92 

Bootstrapped 
ROC AUC* 

0.760 
(0.727,0.806) 

0.772 
(0.741,0.815) 

0.772 
(0.739,0.816) 

* median (95% confidence values) 

 

 

 

 


