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Background 

The deposition of uniform layers of colloids on a solid surface is a major challenge for several industrial 

processes such as glass surface treatment and creating optical filters. One strategy involves the deposition of 

the colloids behind a contact line that recedes due to hydrodynamic reasons and evaporation (drying). The 

interaction between deposition, evaporation and hydrodynamics is a complex matter. We need to get a better 

understanding of the mechanisms at the contact line and the role they play in coating an organized deposit 

[1]. 

 

A simple way to coat a solid substrate is by allowing a droplet to dry on the substrate. This has been studied  
on a macroscopic scale [2, 3] and it was found that evaporation diverges at the contact line, explaining the 

famous “coffee stain” problem [3]. A high evaporation rate drives particles to the contact line and the 

particles form a ring as the droplet is drying. Excluding the case of polymer deposition [4] and drying 

micelles [5], the only available microscopic visualization of the 

growing deposition was made by Berteloot et al[6].  They found 

that the deposit grows in several distinct phases, each its own 

dynamics.  In the first phase, the deposit width and height grew 

with time following a power law of t
2/3

.  A simple model was 

built where the particles are driven balistically to fill a wedge of 

constant contact angle.  At larger time scales, the structure of 

the deposit becomes more complex, the front velocity increases 

and a “skin” is thought to float at at the free surface of the drop.  

Additionally, the pattern formations that were observed in later 

stages of growth were attributed to shear-banding or buckling 

induced by mechanical constraints by the flow.  Finally, the 

deposit fractures and delaminates, as reported by other authors 

[7,8].  

 

Our present work is an extension of the work of Berteloot et al. In the previous study, the evaporation rate 

was not controlled. Now we have factored in changes in relative humidity as a determinant of the spreading 

parameters. A humidity chamber is utilized to control the percent relative humidity of the environment in 

order to control the rate of evaporation of drop. The microscopic deposit growth, 

deposit pattern, and drop height over time as a function of relative humidity is 

studied. 

 

Materials and Equipment Setup 

The colloidal solution that we used was 50R50 Klebosol silica slurries, which 

were diluted with distilled water to 5% concentration in volume. Untreated VWR 

micro coverglass No.1 glass slides were used for the substrate. The drop was 

observed by using a Nikon Eclipse TE-2000S inverted microscope using 2x, 10x 

and 20x magnification. NIS-elements software was used to capture a video of the 

deposition growth and to extract the deposit pattern. 

 

Figure 1: View of the Nikon Total Internal 

Reflection Flourescence microscope with 

plexiglas humidity chamber and Omega 

RH32 humidity reader. 

Figure 2: Kruss Drop 

Shape Analyzer 100 with 

attached humidity 

chamber 



A humidity chamber was constructed from Plexiglas with inserts 

for dry airflow and an Omega RH32 humidity reader, shown in 

figure 1. The relative humidity was controlled manually by 

adjusting the flow rate of dry air into the chamber as the 

experiment ran. The relative humidity and temperature readings 

were recorded for each frame.  

 

The Kruss Drop Shape Analyzer 100 (DSA) along with a 

humidity controlled chamber, shown in figure 2,  was used to 

capture the profile of the drop and deposit. A drop of the silica 

particle solution was deposited on a glass slide inside the Kruss 

humidity chamber. A video of the profile of the drop was 

recorded by the DSA as the drop evaporated. 

 

 

Results 

Teh DSA has a camera that takes a video of 

the profile of the drop inside the humidity 

chamber. Figure 3 shows the evolution of the 

drop profile over time. The DSA software fit 

the drop profile to a conic section and 

measured the height of the drop. The result is 

compared to a drop of pure water drying 

under the same rate of evaporation, shown in 

figure 4. Because we are looking at the side 

profile of the drop, we can only see the 

height of the outer border of nano-particles 

and not the growing deposition front or the 

deposition structure.  

The Nikon microscope was used to measure 

the growing deposition front with 2x 

magnification. Initially the drop has no 

visible colloidal deposition, but after some 

time a deposition front is visible, along with 

the same pattern formations, shown in figure 

5. These were the same patterns that were observed in previous studies[6].  

 

 

Figure 3: Side profile of the evaporating 

colloid drop 

Figure 4: Normalized Drop height over time, where h0 was the 

initial height of the drop 

Figure 5: Figure a shows the deposit growth from the initial drop radius. Figure b shows the 

fracture of the deposit after it has completely dried. 
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Plots of the inner drop radius over 

time were normalized by the follow-

ing equations: 
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Where x is the measured deposit 

length, t0 is the time before the depos-

it fractures and x0 is the distance from 

the initial radius to the final inner ra-

dius of the drop before fracture. The 

result is plotted in figure 6.  

The normalized values were fit to the 

exponential function 
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where Y0 was held constant at 1 for each drop. Figure 7 shows the variation in A and τ over a range of rela-

tive humidities.  

Next, the patterns of the dry deposit were observed with 10x magnification using the NIS elements software, 

and the intensity profile of the patterns left by the colloid was extracted (figure 9). The profile was divided 

into 8 sections so that we can see how the wavenumber changes in relation to radial distance. The wave-

number of the patterns was computed using the fast Fourier transform for each section and then taking a 

weighted average of the wavenumbers. As shown in figure 10, the frequency of the pattern does not change 

significantly with distance from the outer radius. However, relative humidity does have an effect on the 

wavenumber. An increase in relative humidity corresponds to a higher wavenumber. 

Summary 

We investigated the location of the drying front (deposition front), drop height and deposition pattern as it 

varies with time as a function of relative humidity. The slope of drop height as a function of time was larger 

for the colloid than for the drop of pure water. Further experiments will be conducted for varying levels of 

relative humidity.  

Figure 6: The normalized inner radius, X* against normalized time, t* 

Figure 7: Figure a shows how the constant 1/τ in the exponent of equation  3 varies with relative humidity. Figure b 

shows the variation of -1/A with RH. 
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The Nikon micoscope was used to record the growth of 

the colloid deposition over time under 2x magnification. 

We expected the radius to follow a power law similar to 

the previous findings by Berteloot et al, but instead we 

found that the data fit better to an exponential function. 

The previous study used a 10x lens and only recorded 

the earlier stages of deposit growth, wheras we used a 2x 

lens and captured the entirety of the drying patter includ-

ing the later stages. The coefficients of the exponential 

function were found to vary inversely with relative hu-

midity.  

Finally, the patterns of the deposit were analyzed with a discrete Fourier transform. We found that the wave-

number does not vary signifcantly across the radius of the deposit, but the wave number of the pattern is 

larger for drops evaporating under higher RH. In the future, more deposit patterns will be analyzed under a 

larger range of RH. 
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Figure 8: Pattern left from colloid deposit under 

10% RH 

Figure 10: Wavenumber of the pattern is plotted against the sections of the intensity profile. Section 1 

is the section that is furthest away from the center and section 8 is the last section of the intensity 

profile, closest to the center of the drop. 

Figure 9: Intensity profile from figure 8 


