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Scaling properties of centering forces.

Serge Dmitrieff∗ and Nicolas Minc
Institut Jacques Monod CNRS UMR7592 and Universite Paris Diderot

75205 Paris Cedex 13 France

Motivated by the centering of microtubule asters in cells, we study the general properties of
three types of centering forces : bulk pulling forces, surface (cortical) pulling forces, and pushing
forces. We evidence unexpected scaling laws between the net force on the aster and its position
for different modes of centering, and also address how the effective centering stiffness depends on
cell size. Importantly, we find that both scaling laws and effective stiffness depend on the spatial
dimensions, and thus that 1D and 2D ansatz usually considered could misguide the interpretation
of experimental results. We also show how scaling laws depend on cell shape. While some hold for
any convex cell, others strongly depend on the shape. By deriving these scaling laws for any spatial
dimension, we generalize these results beyond the biological perspective. This analysis provides a
broad framework to understand shape sensing mechanisms.

In animal eggs after fertilization, the male pronucleus
reaches the center of the cell, seemingly following only ge-
ometrical cues : in deformed cells, the pronucleus seems
to stop at the center of mass [1]. It is remarkable that
a small biological object can robustly find the center of
the containing space autonomously. It has thus gained a
lot of experimental and theoretical attention. The pronu-
cleus creates an aster, a radial structure of stiff elastic fil-
aments called microtubules. Molecular motors attached
to structures in the cell volume (such as vesicles or the en-
doplasmic reticulum) and/or to the surface (the cell cor-
tex) pull on microtubules, while microtubule growth cre-
ates a pushing force when they are in contact with the cell
cortex. In many species, a combination of these mecha-
nisms allows for efficient aster centration [2–6]. However,
which of bulk pulling, cortical pulling, or pushing is dom-
inating in a given species, remains controversial [7].

While more biochemical and biophysical methods be-
come available to address this issue, surprisingly little is
known on how the cell-scale centering forces depend on
how forces are applied on individual microtubules. In this
article, we aim at clarifying the mathematical properties
of centering forces according to the centering mechanism.
We use a single formalism to encompass three different
mechanisms, and study their scaling properties, i.e. how
the integrated force on the aster scales with the aster dis-
tance to the cell center, and how the effective centering
stiffness scales with cell size. We find that some cen-
tering mechanisms exhibit surprising scaling properties.
We first focus on biologically relevant case studies before
generalizing to an agent seeking the center of a space in
n dimensions. This allows us to address how centering
forces depend on dimensionality and container geometry.

∗ serge.dmitrieff@ijm.fr
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FIG. 1. Illustration of the shapes considered, in the Oxy
plane. From left to right : sphere, cone, truncated ball, dou-
blet. In 3D, all shapes are symmetric around their Ox axis.

I. CENTERING BY BULK PULLING

We consider an aster centering by motors in the cell
volume pulling on microtubules emanating from the
aster. Let us call R the radius of the cell if it is spher-
ical, or its characteristic size otherwise and l the length
of a microtubule normalized by R ; the pulling force on
the microtubule should depend on the number of motors
attached to it, and thus upon l. It is generally assumed
that the magnitude of the force on a microtubule is f1l

p,
where p is an exponent describing the interaction of the
microtubule with motors, and f1 is a typical force. For
instance, we expect a scaling exponent p = 1, if motors
are not limiting, so that they saturate the microtubule
length, and p = 3 if motor attachment is limited by the
availability or binding time of motors [1, 8, 9]. The mi-
crotubule length l should depend upon its orientation θ
and upon x the position of the aster normalized by R.
Calling N the total number of microtubules, the net force
on the aster projected on the axis Ox reads :

f̄p(x) =
Nf1

2

∫ π

0

l(x, θ)p cos θ sin θ dθ . (1)

Here we averaged over all filament orientations θ (see
Fig. 1, left), and implicitly integrated over all orienta-
tions around the Ox axis (as is described by the factor
sin θ), assuming microtubules to have a uniform angular
distribution. Because we are interested in scaling proper-
ties rather than dynamics, we will not consider the early
stages when the aster is small, and always assume that
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FIG. 2. Top : Net centering force in a spherical cell by bulk
pulling forces of different power law f̄p and by cortical pulling
f̄ ′, as a function of the position x (where x is normalized
by the typical size R). Bottom : centering forces by bulk
and cortical pulling in a conical cell (here the cortical pulling
force was scaled for visual convenience). Bulk and cortical
pulling forces are normalized by Nf1 and Mfm respectively
(see text).

microtubules have grown long enough so that they are
all touching the cortex. In this case the function l(x, θ)
depends on the shape of the cell. In a sphere, we have :

l(x, θ) = −x cos θ +
√

1− x2 sin2 θ , (2)

Taking the specific case of a spherical cell, we already see
interesting scaling properties, Fig. 2. For p = 1, f̄1(x)
is linear with x as could be expected. Remarkably, we
find that f̄4 is also linear with x, but that f̄2 and f̄3 are
sub-linear, although the forces per microtubule length
are super-linear with microtubule length. Only for p > 4
(e.g. p = 5) does the net force f̄p becomes super-linear
with x, see Fig. 2. We will see later that these power
laws depend on the dimension considered. To understand
if these results hold in non-spherical geometries, we con-
sidered a conical cell shape (see Fig. 1) -mimicking that
of cells confined in microfabricated chambers [1] - and
found that f̄1 is no longer linear with x ; f̄1, f̄2 and f̄3

are now non-monotonous with x and f̄5 is still super-
linear (Fig. 2). Interestingly, f̄4 is still linear with x. We
will see in the second part of this article that this cor-
responds to a more general result: in an n−dimensional
convex space, the centering force for p = n+ 1 is always
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FIG. 3. Top : Net centering force in a spherical cell by
bulk pulling forces of different power law f̄p, as a function of
the position x (where x is normalized by the typical size R).
p = −1 corresponds to dynamic microtubules and p = −2 to
buckling microtubules. Insert : centering forces by pushing
in a conical cell. Forces are normalized by Nf1 (see text).

linear. Centering in cells is often described by a stiff-
ness, i.e. the stiffness of an elastic potential that would
yield the same force profile [2, 10]. Although we can only
rigorously identify a centering stiffness when the force is
linear with x (e.g. for f̄4), we can define an effective cen-
tering stiffness K = −∂xfp(x = 0). For a sphere, we find
K = Npf1/3R ; for other shapes, we expect the same
result up to a geometrical factor γ that depends on p
and on cell shape but is independent of R, since all dis-
tances can be normalized by R. For bulk pulling forces,
the characteristic force f1 also depends on system size as
f1 = Rpkp. For instance if p = 1, k1 is the motor force
per unit microtubule length ; for p = 3, k3 is the force
per unit volume, and so on. Therefore, we expect the
effective stiffness to be :

K = γNpkpR
p−1/3 , (3)

in which γ = 1 when the cell is spherical. Thus, the
dependence of the stiffness on cell size varies with the
scaling exponent p. For instance, if the force per micro-
tubule is proportional to their length (p = 1), then K
is independent of cell size. In addition, we will see later
that stiffness also depends on the dimension, and as such,
a stiffness estimated in 2D is 50% bigger than that in 3D,
i.e. in 3D, one needs 50% more microtubules than would
be estimated from a 2D ansatz.

II. CENTERING BY PUSHING

Assuming microtubules to be radially distributed as
in bulk pulling, pushing can only work if the force per
microtubule depends on its length ; otherwise, we would
get a net force f̄0(x) = 0 (see Eqn. 1). Two factors can
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contribute to this : microtubule buckling, because the
buckling force for a rod depends on its length, and mi-
crotubule dynamics, because the time spent pushing on
the cortex depends on the distance to the cortex [11]. In
the appendix, we show that in the latter case, the frac-
tion of microtubules pushing against the cortex should be
l0/l, with l the normalized distance to the cortex and l0
a dimensionless parameter comparing the growth speed
normalized by R to the catastrophe rate of microtubules
at the cortex.

Centering by pushing can therefore be treated similarly
to bulk pulling. For dynamic microtubules, we have p =
−1 and f1 = −fgl0, with fg the polymerization force
of a microtubule. fg should be of a few piconewtons,
and independent of microtubule length. For a buckling
microtubule, we have p = −2 and f1 = −fb, with fb the
Euler buckling force : fb = π2κ/R2 (with κ the bending
modulus of a microtubule [12]). Centering by pushing
forces is not linear, and leads to very high forces far from
the center, and low forces close to the cell center, see Fig.
3. We can see that the behaviour of these forces depends
little on the cell geometry, be it spherical or conical, Fig.
3.

We can use our previous result for the effective stiff-
ness, and we find K = γNfg/3R for dynamic micro-
tubules and K = 2γNκπ2/3R3 for buckling microtubules
(with γ = 1 for a spherical cell). We see, that the depen-
dence of the effective stiffness on cell size markedly differs
between the two pushing mechanisms, and could thus be
used to discern mechanisms at play. Note that assuming
a polymerization force of 6pN and a microtubule stiffness
κ = 2× 10−23Nm [12], buckling should occur as soon as
microtubules are longer than 5µm ; we should thus ex-
pect that the scaling exponent p = −2 shall apply for
large cells, and/or when the aster is far enough from the
cortex. A spherical cell of size R ∼ 15µm is thus expected
to have a centering stiffness K = N × 0.039pN/µm. The
centering stiffness measured in the C. Elegans embryo,
which has this typical radius, is 16.4pN/µm, yielding an
estimate of 420 microtubules contributing to centering
stiffness [10]. In larger (R ∼ 45µm) sea urchin Em-
bryos, a stiffness K ∼ 60pN/µm was measured, lead-
ing to nanoNewton-order forces [2]. About 16000 micro-
tubules would be necessary to create a such stiffness by
pushing. Indeed, bulk pulling was shown to dominate in
this system [2].

A. Centering by cortical pulling

If motors are located on the cell cortex rather than in
the bulk, this should result in a net force f̄(x) = 0 (see
Eqn. 1). Cortical pulling however has been proposed to
lead to efficient centering if the number of motors on the
cortex is limiting [3], or if microtubule tips can slide on
the cortex [13]. In both cases, we cannot write the net
force in the same form as Eqn. 1. Here we will con-
sider the case where the number of motors on the cortex

is limiting, as this was recently shown to control aster
positioning in-vivo [14, 15]. Let us call f̄ ′ the directed
centering force projected on Ox. With M the number
of motors, fm the force exerted by a single motor, and
assuming motors to be uniformely distributed on the sur-
face, we can write :

f̄ ′(x) =
−Mfm
S

∫
S

ux · uθ(r)d2r , (4)

in which S is the cell surface, d2r is the surface element
and ux · uθ(r) = cos θ is the projection of the direction
uθ of the microtubule on the x axis. In a sphere, this
simplifies to (see Eq. 8) :

f̄ ′(x) = −2Mfm
3

x (5)

However, this linear scaling seen in a spherical cell is
not shape independent and does not hold in a conical
cell (see Fig. 2). The centering stiffness thus reads
K = 2γMfm/3R (with γ = 1 for a spherical cell), and de-
creases with increasing system size. Were the forces due
to cortical pulling, we would thus expectM ∼ 180 motors
to participate in C. Elegans (assuming fm ∼ 2pN), while
about 12× this number would be required to explain the
stiffness measured in sea urchin embryos. Note that, in
2 dimensions, we find K = Mfm/2R, therefore the stiff-
ness of a 2D ansatz is 3/4 that of the real 3D system (see
hereafter, for the derivation in n dimensions).

B. Generalization to n-dimensional cells

To reach a more general understanding, we now con-
sider centering forces of an agent in any dimension. We
will consider the cell as an n− dimensional space that
is symmetric around the axis Ox. We will introduce
the generalized formalism for bulk pulling (and push-
ing) and cortical pulling, before discussing the results.
In bulk pulling and pushing, forces are averaged on all
angular directions from the agent’s perspective, and thus
we term this mechanism autonomous centering. For cor-
tical pulling, the pulling forces are averaged over all the
surface points, and thus the agent’s motion is controlled
by the surface properties [14, 15]. Thus we name this
mechanism directed centering. We will see that these two
mechanisms belong to different universality classes. From
now on, all distances will be normalized by R, and forces
by Nf1 (for autonomous centering) or Mfm (for directed
centering). The generalization of spherical and conical
cells embedded in a n-dimensional space are called n-ball
and n-cone respectively.

In the case of autonomous centering, the net force f̄pn
(normalized by Nf1) is, with Γ the gamma function :

f̄pn(x) =
1

αn

∫ π

0

cos θ sinn−2 (θ)l(x, θ)pdθ . (6)

αn =
Γ[n−12 ]

Γ[n2 ]

√
π , (7)
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In the general case of directed centering, the pulling force
could depend on the distance to the surface. The net
force f̄ ′

p
n(x) (normalized by Mfm) can be written :

f̄ ′
p
n(x) =

1

Sn

∫
Sn

ux · uθ(r)l′(x, r)pdn−1r , (8)

in which Sn is the surface in n dimension, i.e. an
n − 1-dimensional manifold embedded in an n dimen-
sional space. We can see this centering mechanism as a
generalization of Newton’s shell [16] for forces of different
exponents, and for any dimension. In the particular case
of a spherical cell we find :

f̄ ′
p
n(x) =

1

αn

∫ π

0

(
cosφ− x
l′(x, φ)

)
sinn−2 (φ)l′(x, φ)pdφ , (9)

l′(x, φ) =
√

1 + x2 − 2x cosφ . (10)

It is possible to solve f̄ ′
p
n(x) analytically, to find, with

2F1 the (2, 1) hypergeometric function :

f̄ ′
p
n(x) = −Nf1(1− x)p−1

×(2F1

(
n+ 1

2
,

1− p
2

;n;− 4x

(x− 1)2

)
+(x− 1)2F1

(
n− 1

2
,

1− p
2

;n− 1;− 4x

(x− 1)2

)
) (11)

Note that here we find f̄ ′
−2
3 (x) = 0 in agreement with

Newton’s first theorem [16] ; this result is known to be
valid only for a sphere in 3 dimensions.

C. Scaling properties and shape dependence

For autonomous centering, we did not find any generic
analytical solution for any n, p or any general shape.
However, we did find one peculiar scaling for some values
of p. For this, we first define the mean distancep l̄pn to
the surface :

l̄pn(x) =
1

αn

∫ π

0

sinn−2 (θ)l(x, θ)pdθ . (12)

Note that lnn(x) is the fraction of space visible from x,
and is equal to 1 for any convex space. Moreover, for a
such convex space,

∂xl(x, θ) = − cos θ − ∂θl(x, θ)

l(x, θ)
sin θ (13)

And we find that, for any convex shape :

∂xf̄
p
n

p
=
αn+2

αn

(
p− n− 1

p− 1

)
l̄p−1n+2 −

(
p− n
p− 1

)
l̄p−1n (14)

Using l̄nn = 1, we find :

f̄n+1
n (x) = −n+ 1

n
x . (15)

Therefore, in n dimensions, the net (n+1)-force f̄n+1
n (x)

is linear with x, explaining the surprising scaling proper-
ties we observed in three dimensions. We could not find
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p
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sition x∗ such that f̄pn(x∗) = 0 (solid lines) and such that
f̄ ′
p
n(x∗) = 0 (dashed lines) for several n. Thick markers on

the left indicate the center of mass of the volume.

any general scaling law for f̄1n(x), in agreement with our
finding in 3D that the shape of f̄13 (x) depends on cell
geometry, Fig. 2.

To identify universal scaling laws, we systematically
computed the power law of f̄pn(x) with x. For this, we
numerically integrated equations 6, 8, and fitted f̄pn(x)
by a power law xβ . We could do this in any shape by
redefining l(x, θ) in equation 2. This analysis showed that
in a sphere, the net pulling force f̄pn(x) is linear with x
for p = 1 and p = n + 1, sub-linear in between, and
super-linear for p < 1 and p > n + 1, Fig. 4, top. In
a cone, the scaling law f̄n+1

n (x) ∝ x was still valid but
f̄1n(x) was no longer proportional to x, as expected. By
taking n=3, in the above results, one falls back on the
results discussed in the first part of this manuscript for
the case of 3D shapes.

Because the scaling behaviour of f̄pn depends on the
dimension n, it is interesting to consider what happens
when one dimension becomes arbitrarily small. For this,
we thus integrated Eqs. 12,6 in a 3-ball symmetrically
truncated along its Oy axis at a height h, see Fig. 1. We
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found that the expected scaling law for f̄43 still held even
for h → 0, Fig. 5. Although this was expected from l̄nn
being space invariant in any convex space, it is interesting
to see that a (n)-dimensional system does not behave as
(n−1)-dimensional system when one dimension becomes
infinitesimally small.

For directed centering mechanisms, we first consider
the simple case p = 1, and note that a convex shape
symmetric around the axis Ox can be entirely described
by a function r(φ), in which r is the distance from a point
on the surface, at angle φ to the center of the space. We
can thus write :

f̄ ′
1
n ∝

∫ π

0

(−x+ r(φ) cos(φ)) (r(φ) sin(φ))
n−2

dφ(16)

From there, it is clear that ∂xf̄ ′
1
n is a constant depending

on r(φ) but not on x. Therefore f̄ ′
1
n is always linear with

x in a convex space. However, we could not find such

argument for f̄ ′
0
n ; this is in agreement with our finding

that f̄ ′
0
3 is not linear with x in a conical 3D cell, Fig. 2.

To understand the generic scaling properties, we could
once again integrate f̄ ′

p
n(x) numerically and fit it by a

power law xβ . In general, in an n-ball, for p > 1, the
exponent β appeared to increase with p independently of
the dimension considered, but this result did not hold in

an n-cone. As expected, for p = 1, we found f̄ ′
1
n(x) to

be systematically linear with x, be the shape spherical
or conical, Fig. 4. Interestingly, the ’cortical pulling’

mechanism f̄ ′
0
n appeared linear only for a 3D spherical

cell, and was not linear either for non-spherical cells or

for n 6= 3. Thus, only the scaling f̄ ′
1
n(x) ∝ x seems

universal.

D. Effective stiffness

For both autonomous and directed centering, we next
derived expressions for the effective stiffness in a spherical
cell in n-dimensions. We defined the effective stiffness
Kp
n, as :

Kp
n = −∂xf̄pn

∣∣∣∣
x=0

, K ′
p
n = −∂xf̄ ′pn

∣∣∣∣
x=0

. (17)

For autonomous centering, and in a spherical cell, we can
keep the aforementioned definition of l(θ, x), see Eq. 2,
and we find the stiffness (normalized by Nf1/R) :

Kp
n = p

Γ(n/2)

Γ(1 + n/2)
=
p

n
. (18)

For directed centering, using Eqns. 11, 17, we can deduce
the stiffness K ′pn (normalized by Mfm/R) in a sphere :

K ′
p
n =

n− 1 + p

n
. (19)

The dependence on n and p of the stiffness is very differ-
ent from the autonomous centering case, compare Eq. 18,
further highlighting the fundamental differences between
autonomous and directed centering.

E. Definition of the cell center

As mentioned, in non-spherical cells, the aster seems
to find the center of mass [1]. We therefore inquired
which equilibrium position x∗ may be reached in different
centering mechanisms. Surprisingly, neither autonomous
nor directed mechanism converged strictly to the cen-
ter of mass of the space, Fig.4, bottom. Interestingly,
x∗ was not even necessarily monotonous in p (e.g. for
n = 3). This highlights the non-trivial properties of cen-
tering forces. While this finding is theoretically interest-
ing, it remains to be determined whether the predicted
differences are within the range of experimental resolu-
tion in the case of pronucleus centering. More generally,
this is to be kept in mind when using such centering
schemes to find the center of a space.

F. Centering in non-convex spaces

Eventually, we studied centering mechanisms in a non-
convex shape by considering a doublet of spheres, trun-
cated on their Ox axis at x = 0, mimicking the geometry
of a dividing cell, see Fig. 1. We took 3D spheres of
radius 1/2 ≤ r1 ≤ 1, truncated at x = 0 and with centers
at x = −1 + r1 and 1− r1, see Fig. 1. For such a shape,
all the volume is not visible by any point in the sphere,
and we do not expect l̄nn to be space invariant. Indeed,
we found that the violation of the scaling law initially
increases as r1 decreases from 1, see Fig. 6, top. As the
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doublet closes (r1 → 1/2), the scaling laws are restored
because the visible space tends towards a single sphere.

We would also expect the center to be at x∗ = 0 for
r1 = 1 (a spherical cell) and x∗ = ±0.5 for r1 = 0.5 (a
perfect doublet). Indeed, we find a transition of x∗ from
0 to 0.5 when r1 → 1/2. This transition happens after
a threshold value of r1 that depends on p ; whether this
transition is continuous or not also depends on p, Fig.
6, bottom. This thus resembles a sub-critical pitchfork
phase transition. Overall, the higher p, the higher the
threshold value of r1 both for autonomous and directed
centering.

G. Alternative centering mechanisms

Beyond the biological context, another centering mech-
anism that could be considered is to minimize l̄pn(x).
Going down the gradient of l̄pn yields a force gpn(x) =
−∂x l̄pn(x). Note that an agent implementing such a strat-
egy needs some kind of memory in order to compute the
gradient, while the biologically relevant strategies require
no memory. It is possible to show that :

gpn(x) = p

(
p− n
p− 1

)
f̄p−1n (x) . (20)

Because of this result, the scaling properties of gpn(x) are
directly known from that of f̄p−1n (x). It is interesting to
note that gpn is a centering force for p > n and promotes
decentering for p < n, and that, ∀n, gnn(x) = 0.

H. Discussion

We investigated the scaling properties of different cen-
tering mechanisms associated to microtubule forces: bulk
pulling, pushing, and cortical pulling. In three dimen-
sions, we found that bulk pulling exhibited surprising
properties : the scaling of the force with the distance to
the center was not straightforwardly given by the scaling
of the individual microtubule forces. When the force per
microtubule was proportional to microtubule length, the
net centering force was proportional to the distance to
the center, but only for a spherical cell. Similarly, corti-
cal pulling had a force proportional to the distance to the
center only in a spherical cell. However, we found that
the linear scaling of f̄4 was independent of the geometry.
Pushing can be mapped to the same problem as bulk
pulling, but with a negative power law p. This analysis
thus suggests that certain modes of microtubule force ex-
ertion may be more robust to cell shape or size variations,
and could provide a theoretical rationale to understand
evolutionary pressure that promote one mode of aster
centering over another. It also matches previous findings
that certain modes of centering can be more sensitive
to asymmetric cues than other [5]. We did not consider
dynamic processes such as aster oscillations and decen-
tering. However, these processes are strongly controlled
by the value of the centering stiffness (e.g. the amplitude
of aster oscillations, or the extent of aster decentration)
[2, 17, 18].

Experimentally, the stiffness K has been used to char-
acterize the centering forces. In this letter, we clarified
how K depends on dimensionality. This may be of broad
biological relevance : rod-like cells like fission yeast have
microtubules organized as a 1D array [19], and flat ad-
herent cells might have an essentially 2D aster [20]. For
3D cells, 2D approximations of K can be off by up to
50%. More generally, K also depends on cell size in a
way depending on p, which could be used experimen-
tally to determine p if the centering mechanism is known.
The stiffness only gives part of the story : to determine
the centering mechanism, measuring the scaling of the
force with x can be of high value. For example center-
ing by pushing has a distinct scaling. While cortical and
bulk pulling can yield the sale scaling for f̄(x) and f̄ ′(x),
we showed that this scaling should depend differently on
shape and size for these two modes of pulling. Therefore,
measuring how K scales with R in one shape, and the
scaling of the force with x in several shapes, should yield
a unique choice of centering mechanism and of p [9, 10].

To reach more general understanding, we extended our
study to an n-dimensional space. This allowed us to un-
derstand that the linear scaling of f̄n+1

n (x) with x was
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a general property in any convex space, while f̄1n was
not necessarily linear with x. A generalization of corti-
cal pulling showed no general reason for the linearity of

f̄ ′
0
n(x) (which is indeed not universal), while f̄ ′

1
n(x) was

always linear with x for a convex cell. At this stage, it is
interesting to note that cortical pulling can be mapped to
a generalization of Newton’s shell, but not bulk pulling;
those two mechanisms, with their different scaling prop-
erties, thus belong to different universality classes. Even-
tually, we also showed that the universal scaling laws
break down when one assumption, the convexity of the
space, is violated. For very non-convex cells, the ’cen-
tering’ mechanisms may converge far from the geomet-
ric center. Biologically, this could be mitigated by other
properties of the branching of microtubule networks, such
as branching or nucleation away from the nucleus/centro-
some. In such case we expect the exponent p to be some
fractal dimension, or that equation 6 could be altogether
broken. Even in convex cells, the definition of center is
not necessarily straightforward. Neither centering mech-
anism actually led to the center of mass in a conical cell;
rather, the zero-force position depends non-trivially on p
and n.

These findings show a new behavior of a simple phys-
ical system. Further work on centering should include
these non-trivial scaling properties. While this problem
is inspired by biology, it has more generic applications, in-
cluding the design of autonomous systems, or algorithms

to find the center of a space.

I. Appendix : dynamic microtubules

We compute the fraction of microtubules touching the
cortex at a distance l normalized by R. We take the
most common assumption that microtubules may start
depolymerizing (undergo catastrophe) with a rate c0 upon
touching the cortex ; if so, they depolymerize completely
(no rescue). After a such event, microtubules start grow-
ing again at a speed v (normalized by R), and they can
undergo no catastrophe until they touch the cortex. In
this limit, the probability that a microtubule at a dis-
tance l from the cortex is pushing against it is l0/(l0 + l)
with l0 = v/Rc0. In the regime l0 � 1, most micro-
tubules are pushing against the cortex and there little
net centering. In the limit l0 � 1, the probability for a
microtubule to be pushing on the cortex is l0/l, which
should lead to centering.
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