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Motion Planning with Multi-Contact and Visual Servoing
on Humanoid Robots

Kevin Giraud-Esclasse1, Pierre Fernbach1, Gabriele Buondonno1,
Carlos Mastalli1 and Olivier Stasse1

Abstract— This paper describes the implementation of a
canonical motion generation pipeline guided by vision for a
TALOS humanoid robot. The proposed system is using a mul-
ticontact planner, a Differential Dynamic Programming (DDP)
algorithm, and a stabilizer. The multicontact planner provides
a set of contacts and dynamically consistent trajectories for the
Center-Of-Mass (CoM) and the Center-Of-Pressure (CoP). It
provides a structure to initialize a DDP algorithm which, in
turn, provides a dynamically consistent trajectory for all the
joints as it integrates all the dynamics of the robot, together
with rigid contact models and the visual task. Tested on Gazebo
the resulting trajectory had to be stabilized with a state-
of-the-art algorithm to be successful. In addition to testing
motion generated from high specifications to the stabilized
motion in simulation, we express visual features at Whole Body
Generator level which is a DDP formulated solver. It handles
non-linearities as the ones introduced by the projections of
visual features expressed and minimized in the image plan of
the camera.

I. INTRODUCTION

The expectations for a humanoid robot stand in its capabil-
ity to navigate in structured and unstructured environments,
potentially using other parts of its body than only feet.
It should also fullfil tasks of manipulation with its upper
body for instance. These expectations imply the use of
multiple loops of control on different sensors. Specifically,
the exteroceptive sensors like cameras are needed to react
to an environment modifications or modelling errors. From
the results of the DRC (Darpa Robotic Challenge) it appears
that the methods available in the robotic field do not live up
to these expectations. Considering assumptions or simplifi-
cations in either the environment or robot models, a part of
the goal has been reached. Assuming flat floor, absence of
obstacle and only biped locomotion (without multicontact), a
significant body of work exists to use a representation of the
environment, plan foot steps and execute them on humanoid
robots of various sizes[1], [2], [3], [4]. An approach could
be to use Model Predictive Control (MPC) on a Linear
Inverted Pendulum where footsteps, Center-of-Mass (CoM)
and Center-of-Pressure (CoP) trajectories are solved together
with only the desired CoM velocity as input. Often, to
reach online execution of the algorithm, the model of the
robot dynamics is simplified as Angular Momentum is not
taken into account in the centroidal dynamics (non-linearity).
For instance, the model can be kinematically expressed in
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an Optimal Controller problem (less time consuming) and
then rectified with a dynamic filter as in [1] that calculates
dynamics errors and corrects the previous solution.

Fig. 1: Resulting position of the robot after simulation with
three contacts and visual task. TALOS’ right hand (frame
represented by a small red point) is equal with the target
one. Center of mass trajectories are displayed: each color
represents a phase corresponding to a contact change. Big
green spheres represent referenced features for the visual
task, blue ones for the output last position.

To get closer from the initial expectations, the CoM
velocity can be driven by desired visual features as done
in [5] where they tackle the sway motion generated by
walk oscillations. In addition to all the previous assumptions,
the CoM velocity cannot always be achieved due to the
constraints of the foot placements and the balance which are
of high priority. Another work with exteroceptive sensors
copes with dynamical model simplification: in [6] HRP-2
humanoid robot was able to carry a fire hose while walking.
The system was using an external localization by motion
capture feedback and a real-time pattern generator able to
decide by itself foot step locations and generate a balanced
Center-of-Mass trajectory.

The final goal is to remove the assumptions and
simplifications commonly made, such as assuming a flat
floor, convex obstacles, a gaited motion, ignoring the
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Fig. 2: Overall approach: The reachability planner takes a starting configuration (CS) and a goal configuration CG. The motion
planner described in section II provides a contact sequence, and a centroidal dynamics trajectory. The DDP described in
section III generates a whole body trajectory which is consistent with the contact dynamics and the complete model of the
robot.

self-collisions, approximating the dynamic model, ... Being
able to leverage such functionalities with a computation
time suitable for online execution is quite challenging.

A common approach is to decouple the entire problem
in smaller sub-problems solved sequentially as shown in
figure 2, that could be handled more efficiently [7]. From
a desired final position, the Planner (first and second block)
provides steps and contact locations to a Centroidal Dynam-
ics generator (third block) giving CoM dynamical trajectories
to a Whole Body Controller (fourth block) that generates
joint trajectories. Then, these joint trajectories are sent to a
Stabilizer looped on robot motions.

Exteroceptive sensors providing SLAM or visual refer-
ences could be looped on these blocks at different levels. In
this more general setup, combination of these blocks is very
tough as highlighted during the DRC [8]. Recent work has
proposed a solution to introduce multiple contacts together
with vision in [9]. They use this decoupled approach to
generate a motion in simulation. The main drawback lies
in the use of local Quadratic Programming formulation and
the assertion of an axis of forces on CoM dynamics that
makes total Centroidal Dynamics linear (even on angular
momentum).

The aim of our work, our first contribution, is to build
and evaluate this kind of generic motion generation pipeline
for a TALOS humanoid robot. We test all the pipeline
from the motion planner to the stabilizer block on simulation.

The second contribution of this paper lies in the connection
of visual features in this workflow. We decided to use visual
tasks in image plan as input of the Whole Body Controller.
This choice was motivated by the fact that visual features are
directly embedded in the controller that can locally manage
modifications of the motion accordingly to those features.
Moreover the chosen controller can cope with the non-
linearities produced by the projection in the image plan on all
the time horizon (contrary to [10] that first order linearizes
projections around the first point of the trajectory). Indeed,
to tackle multicontact objective and non-linearities of the
dynamics such as angular momentum equations, we decided

to use Differential Dynamic Programming (DDP) solver that
is an Optimal Control algorithm managing non-linearities on
state function. It was described in [11]. More recently, it
has been used successfully for the DRC in [12], and also
proposed for humanoid robots in [13]. In [14], the DDP is
used to generate whole body motions (corresponding to the
fourth subpart previously mentioned).

In this work we report our first tests in integrating a fast
multicontact planner used to set a DDP problem which in
turns provides reference trajectories to a local whole body
instantaneous controller (stabilizer block). It was tested in
dynamical simulation (Gazebo/ODE) on the TALOS hu-
manoid robot. In section II we briefly explain how the multi-
contact planner works. In Section III we give some reminders
about DDP algorithm and visual tasks elements to show
how it can be integrated. Experiments and results are shown
respectively in Section IV and V on a TALOS robot with
multicontact and visual tasks.

II. MULTICONTACT PLANNER

As shown in figure 3, the multicontact planner takes as
input a model of the environment and the robot and a high
level description of a locomotion task: an initial and final
pose for the origin of the robot. Optionally some additional
constrains may be specified, such as a velocity bounds or
a set of initial or final contact positions. The output of this
planner is a dynamically consistent and kinematically valid
(i.e. which respects collisions with the environment, self-
collision and joints limits) joint trajectory.

The connection between the blocks of the multicontact
planner is automatic and does not require any manual inter-
vention. The only required expertise is to set the values of
the different parameters (cost function weights, constraints,
gains ... ) used by the various blocks, this step should only be
done once per robot and does not depend on the environment
nor the task given to the motion planner.

The following paragraphs describe briefly each method of
the architecture and refer the interested reader to the papers
introducing these methods.
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Fig. 3: Multicontact motion planner architecture. All the blocks are implemented in C++ with a Python API, except the
wholebody motion generator implemented in Python. The communication between the blocks is made with a dedicated data
structure, in Python. The green block is solved by the DDP detailed in section III.

A. Guide path

The first block of the figure 3 produces a rough guide
trajectory for the root of the robot. The method RB-RRT was
first proposed in [15] and then extended to a kinodynamic
version in [16]. This method plan a trajectory for the center
of a simplified model of the robot, using a heuristic based
on the reachability space of each limb. The goal of this
method is to plan a trajectory such that the robot can go from
the starting configuration to the goal configuration without
collision while maintaining contact with the environment
using limbs.

B. Contact sequence

The contact generation method presented in [15] produces
a sequence of whole body configurations in contact along
the guide previously planned, such that there is only one
contact change between two adjacent configurations. The
feasibility of the motion between two configurations of the
sequence is guaranteed by solving a convex reformulation
of the multicontact centroidal dynamic trajectory generation
problem [17].

C. Centroidal trajectory

The centroidal trajectory is generated with the method
proposed in [18]. This method takes as input the sequence of
contacts and produces a centroidal trajectory satisfying the
centroidal dynamic constraints for the given contact points
and minimizing a tailored cost function. This method can
generate centroidal trajectory for multicontact scenario in
real-time thanks to a convex relaxation of the problem.

D. Wholebody motion generation

From a contact sequence and a reference centroidal trajec-
tory and end-effectors trajectories, this block should produce
a wholebody trajectory. This trajectory must satisfy the dy-
namic constraints applied to the robot and leads to a feasible

motion (i.e. the robot does not fall during the execution of
the motion).

In our previous work, this problem was solved with a Task
Space Inverse Dynamics method implemented in TSID 1. In
this paper, we propose to solve this problem with a DDP
algorithm as detailed in section III.

E. Trajectory validation

As the solver used for the wholebody motion generation
does not include hard constraints on the (self-)collision
neither on the joints limits of the robot, the trajectory need
to be validated a posteriori. For that purpose we use the tools
provided by the Humanoid Path Planner framework [19], the
collisions are verified with the collision library FCL [20].

If the produced trajectory is not kinematically valid be-
cause of one of the moving limbs, the reference trajectory
of the end effector is automatically and iteratively modified
until a valid motion is found [21]. In the rare case where
no kinematically valid motion can be found at this step,
the complete framework is started again. Thanks to the
probabilistic nature of the guide and contact planning, a
different solution will be found.

III. DDP AND VISUAL TASKS

In this section we describe our visual tasks based approach
under multicontact events based on DDP. For that, we first
introduce our DDP algorithm tailored to mutiphase rigid dy-
namics [14]. And later, we explain the visual task formulation
within our multicontact DDP. This work is based on the
DDP solver implemented in Crocoddyl [22], which computes
efficiently the rigid body dynamics and its derivatives using
Pinocchio [23].

A. Differential dynamic programming

DDP belongs to the family of Optimal Control (OC) and
Trajectory Optimization (TO) [11]. It locally approximates

1https://github.com/stack-of-tasks/tsid



the optimal flow (feedback gains), and as a consequence, the
OC problem is split into simpler and smaller subproblems
(sparse structure). The DDP promises to handle whole-body
MPC on a humanoid thanks to its sparse structure [13].
However, the main drawback lies on the fact that it poorly
handles constraints. [24] manages to implement constrained
DDP, increasing the computation time due to quadratic
programs used in inner loops instead of matrix inversions.

Let us consider a generic multicontact OC problem as
follows:

X∗,U∗ = arg min
X,U

lT (xN ) +

T−1∑
k=0

lk(xk,uk)

s. t. x0 = x̃0, (1)
xk+1 = fk(xk,uk),

where T is the given horizon, the state x = (q,v) lies in a
Lie manifold with q ∈ SE(3) × Rnj and v ∈ TxQ, x̃0 is
the initial condition, the system is underactuated u = (0, τ )
with τ the torque commands, the discrete dynamics fk(·) de-
scribes different contact phases, and lk(xk,uk) describes the
different tasks (or running costs) and X = {x0,x1, · · · ,xT }
and U = {u0,u1, · · · ,uT−1} are the sequences of states and
controls along the defined horizon. Note that both – cost and
dynamics – are often time varying functions.

DDP breaks the dynamic problem into simpler subprob-
lems thanks to the “Bellman’s principle of optimality”.
Indeed, moving backward in time, the approximated value
function V (·) can be found by minimizing the local policy
for a given time k (problem formulated and all data relative
to that time form a node), i.e.

Vk(δxk) = min
δuk

lk(δxk, δuk) + Vk+1(fk(δxk, δuk)), (2)

and this is locally approximated by a quadratic function (as
a Gauss-Newton approximation) as follows:

δu∗k(δxk) = (3)

arg min
δuk

1

2

 1
δxk
δuk

T  0 qTxk
qTuk

qxk
qxxk

qxuk

quk
qTxuk

quuk

 1
δxk
δuk

 ,
where δx = x̄	 x is the deviation with respect to the local
linearization x̄ and belongs to the tangential space (∈ TxQ),
and the Jacobian and Hessian of the Hamiltonian are defined
as:

qxk
= lxk

+ fTxk
Vxk+1

,

quk
= luk

+ fTuk
Vxk+1

,

qxxk
= lxxk

+ fTxk
Vxxk+1

fxk
, (4)

qxuk
= lxuk

+ fTxk
Vxxk+1

fuk
,

quuk
= luuk

+ fTuk
Vxxk+1

fuk
.

We obtain the local policy by solving the Quadratic Pro-
gramming (QP) (3) as:

δu∗k(δxk) = kk + Kkδxk (5)

where kk = −q−1uuk
quk

and Kk = −q−1uuk
quxk

δx are the
feedforward and feedback terms, respectively. And for the
next node, we update the quadratic approximation of the
value function by injecting δu∗k expression into (3):

∆V (i) = −1

2
quk

q−1uuk
quk

Vxk
= qxk

− quk
q−1uuk

quxk
(6)

Vxxk
= qxxk

− quxk
q−1uuk

quxk

This backward pass allows us to compute the search
direction during the numerical optimization. Then DDP runs
a nonlinear rollout (a.k.a. forward pass) of the dynamics to
try the computed direction along a step length α, i.e.

x̂0 = x̃0

ûk = uk + αkk + Kk(x̂k 	 xk) (7)
x̂k+1 = fk(x̂k, ûk)

in which we perform a typical backtracking line search by
trying first the full step (α = 1).

The DDP solver iterates on these two phases – backward
and forward passes – until convergence to the result (gradient
approximately equals zero).

B. Handling tasks

A task is usually formulated as a regulator:

htaskk(xk,uk) = sdtask − stask(xk,uk), (8)

where sdtask and stask(xk,uk) are the desired and the current
feature vectors, respectively. As one wants to regulate each
feature to the origin (i.e. limt→+∞ h(x,u) = 0), the task at
each node is implemented as a penalty:

lk(xk,uk) =
∑

j∈tasks

wjk‖hjk(xk,uk)‖2, (9)

with wjk the weight assigned at time k to task j. Note that
the DDP requires the derivative of the regulator functions,
which are needed to compute the Jacobians and Hessians of
the cost functions.

In our case we have the following tasks ⊆
{CoM,RHSE(3), RFSE(3), LFSE(3), EE

eeName
SE(3) , V T}: 1)

the CoM tracking computed by the centroidal TO [18]
(CoM ), 2) the SE(3) tracking of the right-hand pose
(RHSE(3)), 3) the SE(3) tracking of the right- and left-
feet pose (RFSE(3), LFSE(3)), 4) the impact end-effector
velocity (EEeeNameSE(3) ), and 5) the visual task expressed in
the image plane (V T ).

C. Handling dynamical constraints

Although the DDP does not handle constraints, it is
possible to analytically derive the forward dynamics under
rigid contact constraints (or holonomic constraints) and to
penalize deviation from the contact forces [14] provided by
the centroidal TO [18]. The numerical optimization problem



of this dynamics can be formulated by using the Gauss
principle of least squares:

v̇ = arg min
a

1

2
‖v̇ − v̇free‖M

s. t. Jcv̇ + J̇cv = 0, (10)

where Mv̇free = τ b is the unconstrained robot dynamics,
M ∈ Rnj×nj is the joint-space inertia matrix, τ b =
Sτ − b ∈ Rnj is the force-bias vector that accounts for
the control τ , the Coriolis and gravitational effects b, S is
the selection matrix of the actuated joint coordinates and
Jc = (Jc1 · · ·Jcf ) is a stack of f contact Jacobians. The
analytical solution of this QP as the form:[

M JTc
Jc 0

] [
ν̇
−λ

]
=

[
Sτ − b

J̇cv

]
, (11)

where λ are the stack of contact forces, a.k.a. as the dual
variables of (10). To take into account the dual variable in the
resolution of the problem, dynamic equation is augmented as
follows:

xk+1 = f(xk,uk),

λk = g(xk,uk), (12)

where g(·) is the dual solution of (11).
Since the main principles underlying DDP are exposed in

this paragraph, visual tasks equations are briefly presented
in the next paragraph in order to derive its integration and
implementation.

D. Visual tasks

As the DDP algorithm needs residuals (or regulators)
and derivatives of the tasks, this paragraph describes the
formulation of the visual task and its derivatives.

Given the type of sensor / camera, the formulation of a vi-
sual task can differ. If the sensor provides depth information,
the approach is called Point-Based Visual Servoing (PBVS).
The formulation of that kind of task lies in SE(3) space. If
the camera does not provide depth information (or if that
data is not trustful due to errors, bias, noise), one will use
the Image Based Visual Servoing (IBVS). This approach is
detailed here.

Let us first consider the desired features sd and the
actual features s. These last ones could refer to perceived
information from camera or calculated by a simulator. The
features can be points of interests, moments or more complex
visual features. For sake of simplicity this study consider the
simpler case of points.

The error of the task is then:

e = s− sd (13)

In our case, sd is considered as fixed, not depending on the
time. The error e is also considered as the residual of the
cost l defined by:

l =
1

2
‖e‖2 (14)

The model commonly used is a first order motion model:

ė = Levc (15)

where vc is the velocity of the camera in the camera
frame, and Le is the interaction matrix. This matrix can be
considered as the features Jacobian. By differentiating the
position of one feature in the 3D space, [25] has shown Le
can be written as follow:

Le =

[−1
Z 0 x

Z xy −(1 + x2) y
0 −1

Z
y
Z 1 + y2 −xy −x

]
(16)

Now, let us call Jc the Jacobian of the camera in the camera
frame, and q̇ the joint-space velocity. Combining the well
known expression vc = Jcq̇ with (15), we find:

ė = LeJcq̇ (17)

Contrary to the common visual servoing command law
that enforces the exponential decrease by writing this re-
lation: ė = −λe, DDP needs the derivative of the task
with respect to the state x and the control u as expressed
in (4). As mentioned earlier, the state is composed by the
robot configuration q and its joint-space velocity q̇, and its
Jacobians are:

∂e

∂x
=
[
02×nj

LeJc
]

(18)

∂e

∂u
= 02×nj−6 (19)

The Hessian of the visual task (i.e. lxx, lxu and luu) are
equal to zero. Expressing visual task in the DDP formalism
constitues the main theoretical contribution of this work.

IV. SIMULATIONS AND EXPERIMENTS

In this section we describe the situation of the robot and
the tasks it has to manage, the software architecture used
to generate appropriate motion and the results obtained in
simulation.

A. Simulation setup

In our setup, TALOS begins in an initial double support
standing configuration. It should make a step which is
equivalent to walking motion and reach a contact surface
(like a table) to create a third contact in order to bend
sufficiently while maintaining balance to be able to see a
target in its field of view. Then, keeping the three contacts,
it should use visual tasks of the target to make it correspond
to predefined desired features positions in the image plane.
The main goal here is to be able to see an object and make
it fit with reference while the posture needs a third (or more)
contact. Concerning the visual features, the 3D reference
used in simulation are supposed to be given by an external
SLAM component.

Figure 4 shows the output of the contact planner: a
sequence of three configurations in contact, with one contact
change between each configuration.

In Crocoddyl, for each time step the dynamics and the
cost of the problem are redefined so that tasks can be
independently managed following a predetermined time line
given from the previous stages, namely the contact planner
and the centroidal trajectory generation method. In that way,
our time line is divided as follows:



(a) (b) (c)
Fig. 4: Sequence of configurations in contact produced by
the contact planner. In (a) and (b) only the two feet are in
contact, in (c) both feet and the right hand are in contact.

• First phase set of tasks : {CoM}. A first phase to
make the robot center of mass go down and on the
right to be above the next foot of support. The CoM
trajectory is followed through a task added in the cost
function (through Lagrangian relaxation). The posture
is regularized around the initial position (figure 4-a).
Contacts are enforced on both feet in Eq.11.

• Second phase set of tasks :
{CoM,LFSE(3), RHSE(3)}. The second phase
enforces only the right foot on the ground while
a task is provided on the position of the left foot
(SE(3) task). This task is roughly constructed by
interpolating the position of the foot between initial
and final positions, with an offset of 10cm along the
vertical axis. We see here that even if the reference
for the foot position suffers from discontinuities, the
DDP can provide feasible foot trajectories for the foot.
For collision avoidance reasons, a SE(3) task for the
hand with relatively low weight is provided (staying
at the same place). The last point of this phase is
one time step before the contact creation between the
flying feet and the ground. Here the set of tasks is
{CoM,RFSE(3), RHSE(3), EE

LF
se(3)}. It is augmented

by an impact model that enforces again the double
contact of the feet and manages the different tasks
weights to improve the contact. For example, regulation
and SE(3) task weights are increased, EEse(3) task
for the flying foot is provided with a high cost on
null velocity reference. From this point, the position is
regulated around the second configuration given by the
planner (figure 4-b).

• Third tasks set is {CoM,RHSE(3)}. Third phase is
made similarly as the first one. We only bring a new
SE(3) task for the right hand, referenced by an inter-
polation between the hand position at the beginning of
this phase and the contact point position provided by the
contact-planner. The final point is managed as creation
contact point like previously, enforcing three contacts.
At this point, tasks set is {CoM,RHSE(3), EE

RH
se(3)}.

• Fourth tasks set is {CoM}. Final phase is regulated
around the next position from the contact planner (figure
4-c). CoM task is kept and the three contacts enforced.

The final point is regulated around the last planner
position and includes the visual task. For this point,
the tasks set is {CoM,V T}. Even if V T seems to
appear late in the time line, it does not make a no-
ticeable difference in the resulting motion. The DDP
propagates the image plane based non-linear visual error
on previous time steps, hence the motion is smooth and
the task is solved up to the concurrent tasks solutions.
The visual task is made from targets that are 3D space
points and projected on the image plane of the camera
by a pin-hole model. We need at least four points to
avoid multiple possible solutions to place the camera
with respect to the points and the references. In figure
1 the green balls are the references, the blue ones are
how they are positioned at the end of the motion.

The DDP algorithm is shown to converge on tasks ex-
pressing a walking pattern with null initialization of the
problem (command and state over the time line). But in
our case, the impact on the hand and the three contacts
enforced did not allow to find a convergence without any
good initialization (warm-start). The motion found is made
iteratively by warm-starting the previous parts of the motion
and letting null initialization for the next. For instance, in our
case, the motion until the flying foot touching the ground
was generated by solving the first phase alone with null
initial guess, until time t = TfootTakeOff , and then solve the
problem for first and second phases together, warm-starting
from t = 0 to t = TfootTakeOff with previous solution while
initialization from t = TfootTakeOff to t = TfootLanding
was null. Another heuristic was used to help the solver to
converge: the posture regulation weight has been set higher
during the complete sequence convergence research, then
turned lower to avoid high velocity motion during phase
transitions.

Unfortunately, collision avoidance is currently not imple-
mented in the DDP algorithm. To generate a motion able to
be tried on the robot, we check the bound limits violation
and self-collision for each time step, as shown in figure
3 with the block ”Trajectory validator”. However, if we
find out that the motion produced by the DDP violates one
of these constraints, we cannot directly add the constraint
to the formulation of the problem in order to produce a
valid motion. We have an iterative heuristic to avoid this
issue: knowing that the reference configurations given by
the planner are valid and away from these bounds, we
increase the weight of the postural task for the corresponding
joints. In case of joint limit violation, we increase only
the weight corresponding for that joint in the postural task
(regularization task). If a self-collision appears, all the joints
of the kinematics chain from that body to the torso are
involved.

To that point, DDP algorithm generates the references for
the next algorithm blocks: joint trajectories, feet trajectories
and dynamic whole body CoM trajectory. To be consistent
with the next section, we have to notice here that the CoM
reference trajectory taking as input in the DDP algorithm is
discretized at 100Hz. The output is then naturally discretized



at 100Hz too. The next block of code needs 1kHz as input,
so then the trajectories are interpolated with a cubic spline,
except joint trajectories that are interpolated in linear manner
after the output. Until this point, all the verifications are
handled in the viewer gepetto-viewer.

B. Control architecture

The motors of the robot are position-controlled. Rather
than just sending the reference joint trajectory to the motors,
we employ a stabilizing control scheme in order to improve
the stability all along the motion. Note that the motion
generated by the DDP alone did not work with the Gazebo
simulator. This stabilization was necessary to make the
simulation successful.

The DDP output is first decomposed into separate kine-
matic tasks, which are then sent to the hierarchical inverse-
kinematics solver, namely the Stack of Tasks [26]. The tasks
are, in decreasing order of priority:
• Pose of each foot
• Center of Mass position
• Upper body posture
• Waist orientation

It is important to notice that the order of priority of the tasks
is crucial, as each task is projected in the null space of the
previous one.

The dynamic stabilization is based on the Zero Moment
Point (ZMP). We are applying the ZMP control by CoM
acceleration strategy [27] as described in [28]. First, the
current CoM position and velocity are estimated from joint
sensor readings. Then, a commanded ZMP reference is
computed based on the deviation between the desired CoM
and the estimated value. Further feedback is obtained from
the force sensors in order to estimate the current ZMP.
Finally, the CoM reference is corrected so to achieve the
desired ZMP. The stabilizer can be integrated seamlessly in
the hierarchical inverse kinematics architecture, by simply
replacing the desired CoM reference with the adjusted one.

V. RESULTS

We will now describe the results of this work. The DDP
algorithm takes several minutes (the order of magnitude
is 20 minutes) for the sum of all phases, knowing that
the motion lasts almost 9 seconds. The code is currently
written in python and a work to implement a c++ version
is ongoing, we expect an increase of performance from
this future implementation. A first stage of the simulation
was made in a viewer called Gepetto-viewer (figure 1).
The algorithm is based on a weighted optimization process,
so errors of some tasks could remain. For instance, visual
task with the relatively low weight suffers from several
centimeters of errors for all the four points as it can be
seen in figure 1 with big cyan and green spheres in front
of the robot. The trajectories of the center of mass and the
reference are also displayed, only one trajectory is visible
because points are too close to be distinguished. Even if
these two trajectories are very close, they are not perfectly
equivalent for two reasons. Firstly, the task of the CoM

Fig. 5: Left: The robot is touching the table too early. Right:
After a little bound and slide, the hand and the robot reach
desired positions.

struggles against other tasks and regularizations during the
optimization process. Secondly ,the DDP takes the complete
dynamics of the system into account, contrary to the previous
stages. So then, the DDP behaves as a dynamic filter without
another calculation layer like in [1].
Concerning the simulation in a simulator, the motion was
tested in Gazebo in the same way it would be tested on
the real robot: Stack of Tasks controller, stabilizer and ROS
architecture. The environment of simulation is a fixed plan
positioned at 75cm from the ground. As shown in figure 5-
Left, the robot is first touching the table before having a little
leap forward of the right gripper until final stable position
displayed in figure 5-Right. This could be due to the fact that
the stabilizer is not a multicontact stabilizer or by using rigid
contacts in Gazebo. With the input reference configuration
given to the DDP, the results shown in figure 6 indicate that
the forces on the right gripper are around 50N at the end of
the motion with a peak of 250N on the z axis.

VI. CONCLUSION

We have generated a multicontact motion including visual
features. The multicontact planner2 provides a feasible CoM
trajectory to be followed and reference contacts and postures
of phases corresponding to contact changes, used as input for
the DDP algorithm. Allowing to solve non-linear problems,
it computes the complete dynamics of the robot and acts as
a dynamic filter on the previous inputs. It also embeds the
contact formulation directly in the dynamics.

We show how to express the visual task equations in
the DDP formalism, specifically expressing their derivatives
from state and control variables in the image plan. This
allows us to integrate a visual task in the DDP to drive the
motion to the target. The outputs of this algorithm, namely
the joints and end effectors trajectories are then sent to the
stabilizer to be played in a Gazebo simulation through the

2Open source code available at https://github.com/loco-3d/multicontact-
locomotion-planning
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Fig. 6: Blue, orange and green curves are respectively x,
y and z forces on contact hand, got from the simulation.
Bounds are recognizable on z forces going to 0 after first
contact with the table, this is highlighted with the red marker
on simulated iteration number axis. Values are expressed in
Newtons.

Stack of Tasks hierarchical controller. All the elements of the
complete motion generation workflow have been integrated
together in simulation to generate a multicontact motion
integrating visual information. The simulation shows a slight
unexpected sliding of the hand on the table, nonetheless data
show that force peaks are not prohibitive to play such a
motion on the robot. We consider playing this motion on the
real robot with appropriate experimental setup very soon.
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