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Abstract: 

Many research programs have been carried out aiming to understand the fission products behaviour 

during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear 

fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders 

an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as 

an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products 

was submitted to an annealing test up to 1700 °C in reducing atmosphere. The sample was 

characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, 

SOLEIL Synchrotron. It was found that, despite the absence of volatile FP in SIMFUEL samples, the 

overall behaviour of several fission products like Mo, Ba, Pd and Ru was similar to that observed 

experimentally in irradiated fuels and also consistent with thermodynamic estimations. 

Highlights: 

-A new approach to study fission products behaviours in severe accidents conditions is proposed: the 

use of model materials, chemically representative of irradiated nuclear fuels, coupled with powerful 

characterisation techniques such as X-ray Absorption Spectroscopy. 

-SIMFUEL samples were submitted to annealing test in conditions representative to a first stage of 

nuclear severe accidents. The initial elements distribution and the phases’ evolution as a 

consequence of the test are in agreement to those observed for irradiated nuclear fuels. 

-XAS analyses were performed on molybdenum, ruthenium, barium and zirconium in a UO2 matrix at 

low concentrations, representative of irradiated nuclear fuels. 

-Under the experimental conditions studied, it was observed a partial release of barium and the 

almost complete release of palladium. 
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1. Introduction: 

Severe Accidents (SA) in nuclear power plants may involve the release of radioactive elements such 

as Fission Products (FP) into the atmosphere. This was the case during the three major nuclear severe 

accidents in history: Three Mile Island (TMI) in 1979, Chernobyl in 1986 and more recently Fukushima 

Dai-Ichi in 2011. The releases during the TMI accident were not very significant while they were quite 

important during the Chernobyl and Fukushima accidents. Particularly for this last one, and according 

to simulations [1], the reactors cooling systems was damaged, leading to the boiling of the cooling 

fluid and subsequent gradual exposure of the core in reactors 1, 2 and 3. As temperatures arose due 

to the lack of heat evacuation, steam was generated leading to the oxidation of the rods cladding and 

consequent hydrogen production. The release of FP often takes place in these conditions: an 

atmosphere with a varying composition of steam and H2 and continuously increasing temperature. 

Many in-pile [2]–[13] and off-pile [8], [14]–[20] tests have been performed since the TMI-2 accident, 

aiming to understand both FP behaviour and the quantification of the active materials released from 

the core (the so-called source-term) in case of vessel failure. Off-pile tests were performed using a 

separate effect approach by modifying a single parameter between tests, and aimed principally to 

study FP release. On the contrary, in-pile tests consisted in reproducing whole reactors at reduced 

scale and submitting them to SA sequences. The latter approach aimed at studying the interaction of 

FP with structural materials and their transport into secondary circuits. Despite the great research 

done on the subject some uncertainties remain regarding to the behaviour of several FP such as: 

barium, caesium, molybdenum and ruthenium. To be able to predict the chemical evolution of FP 

during a severe accident is mandatory for the development of accurate mechanistic models for 

source-term estimation. 

Most of these in-pile and off-pile experimental programs used irradiated fuel samples [8], which in 

some tests were re-irradiated in order to recreate the initial short-lived FP inventory. This required 

time and implied many risks and difficulties. On the contrary, only one of them, the SACHA 

experimental program, used model materials [21] in their tests. These materials, called SIMFUEL, 

were prepared by adding stable FP oxides during the UO2 pellet manufacturing process. The main 

advantage of SIMFUEL is the reduced radiological risk, due only to the natural uranium radioactivity 

since all other component are stable, leading to important reductions of the costs of manipulation, 

characterization, etc. Nevertheless, SIMFUELS present a main limitation which is the impossibility of 

reproducing effects directly associated to irradiation, such as the HBS (High Burn-up Structure) and 

FP solubility phenomena [22]. The present work aims to demonstrate that, despite their limitations, 

SIMFUELS are an alternative to irradiated fuel in the SA study. Since FP release cannot be measured 

directly by gamma-spectrometry as it was generally the case for irradiated fuels [23] due to the lack 

of radioactive species, we propose a different approach: the identification of the chemical phases 

produced and destroyed during the accidental sequence. By determining these phases, the 

behaviour observed for FP through the different experimental programs could be better understood. 

 This approach consists in submitting SIMFUEL samples to annealing tests in conditions 

representative to intermediate stages of a SA. The chemical phases’ evolution would then be 

determined by adequate characterisation techniques such as X-ray Absorption Spectroscopy (XAS). 

This characterisation technique is yet unavailable for large samples of irradiated fuel, hence the 

interest of proving that model materials are an alternative. 
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The key features about the approach discussed in this paper are: 

   -Representativeness of SIMFUEL samples to an “initial state”, considered to be a normal state of 

operation of a PWR irradiated fuel, 

   -The aptitude of the experimental process to reproduce key phenomena observed during SA, 

   -Representativeness of a sample to an intermediate stage of a SA (1700°C under reducing 

atmosphere), 

   -The critical evaluation of the characterisation methods, particularly XAS: to characterize FP 

chemical state, when present in a complex matrix of UO2 doped with many other FP. Firstly, the 

actual knowledge on FP behaviour during SA scenario is resumed along with the remaining 

uncertainties and hypotheses. Secondly, in the methods and materials section, SIMFUEL samples are 

described, as well as the different characterisation methods used. Thirdly, the results obtained 

before and after the annealing sequence are presented. These results are discussed giving place to 

the conclusion on how SIMFUEL can be used for the study of SA. 

 

2. Scientific context 

One of the main lessons from research programs, particularly from the VERCORS series program 

performed by the CEA from 1983 to 2002 [18]–[20], is the classification of the different FP into four 

categories according to their volatility degree. Each group presented similar characteristics during 

tests, in terms of final released fraction and its dependence on the oxygen partial pressure (PO2). 

These four categories are: 

-Volatile FP: Xe, Kr, Cs, I, Te, Sb, Ag, Cd and Rb, which are the first FP to be released and may be 

completely released at high temperatures. 

-Semi Volatile FP: Ba, Mo, Tc, Rh and Pd, which final released fractions and release kinetics depend 

strongly on the surrounding atmosphere (PO2). 

-Low Volatile FP: Ru, Ce, Sr, Y, Eu, Nb and La, which present generally low releases but are also 

dependent on the PO2. 

-Non-Volatile FP: Zr, Nd and Pr, which releases were always below 1%. 

Thanks to direct gamma-spectrometry it was also possible to determinate FP release kinetics. The 

releases measured for Mo, Cs and Ba from a UO2 fuel during the VERCORS 4 test are illustrated in 

Figure 1, adapted from [19]. This test was carried out in reducing conditions and temperature up to 

2300°C. As observed, the FP behaviour was quite complex: their release kinetics presented a 

succession of plateaus and ramps which depended on the test conditions. These plateaus and ramps 

could be associated to the creation and destruction of chemical phases which control the release of 

FP under specific conditions. Nevertheless, scenario codes for source-term estimation such as the 

ASTEC Code [24], [25] normally assume that volatile FP such as iodine and caesium behave as gases 

and that their release is purely diffusive. As for Ba and Mo, some reactions are considered but the 

intermediary compounds have never been observed experimentally. Though not presented in Figure 

1, ruthenium presents a particular behaviour. Indeed, this FP, classified as low-volatile, exhibited high 

release rates under very oxidizing conditions. It has been attributed to the formation of volatile Ru 

oxides such as RuO2, RuO3 or RuO4. 
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Figure 1: Mo
99

, Cs
137

 and Ba
140

 release kinetics during VERCORS 4 test 

A mechanism aiming to explain the releases observed for these FP (Ba, Cs, Mo and Ru) during the 

VERCORS series programs (VERCORS, VERCORS RT and VERCORS HT) has been proposed [26]. This 

mechanism, presented in a simplified way in Figure 2, proposes an initial state based mainly on 

irradiated fuels characterisations performed by Kleykamp [27], [28]. Besides the fuel matrix (UO2), 

this initial state considers two additional main phases both in form of micrometric precipitates: a 

metallic phase composed by Mo, Pd, Ru, Rh and Tc, and an oxide phase with perovskite structure 

depicted as (Ba, Cs, Sr)(Mo, Pu, Zr, U, RE)O3, where RE stands for Rare Earths. According to this 

mechanism, reactions between these FP and other structural materials would take place at different 

temperatures, which would also be strongly influenced by the PO2, since it would displace the 

chemical equilibrium towards reagents or products. In order to validate the approach proposed in 

this paper, the mechanism detailed above and new thermodynamic calculations are taken as 

reference to verify whether the behaviour of SIMFUEL in SA conditions is coherent or not to what has 

been observed for irradiated fuels. 
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Figure 2: Release mechanism proposed for Cs, Ba, Mo and Ru 

3. Methods and materials 

3.1. Samples Characteristics 

SIMFUEL samples were acquired from the Chalk River Laboratories, Canada. Samples contain 11 

stable FP: Mo, Ru, Rh, Pd, Ba, Zr, Ce, Sr, Y, La and Nd; in concentrations representative to a 

76 GWd.t-1 Burn-up UO2 irradiated fuel. The concentration of each FP is presented in Table 1.  

 

 

Table 1: SIMFUEL samples composition 

According to [22], samples preparation was as follows: high-purity oxides (BaCO3, CeO2, La2O3, MoO3, 

SrO, Y2O3, ZrO2, RhO3, PdO, RuO2, Nd2O3, 99.999% purity) were dry-mixed with UO2 powder, and then 

submitted to high-energy, wet, stirred-ball milling, in order to achieve an uniform dispersion. After 

spray drying, the oxides mix was submitted to conventional pre-compaction, granulation, pressing 

and a final sintering stage at 1923 K for 2 hours under flowing hydrogen. Under these conditions, an 

oxygen potential equal to -500 KJ.mol-1 was attained. 

The resulting samples have a density equal to about 97 % of theoretical density of UO2 and fuel 

grains with a mean size of 12 µm.  

Samples are 500 µm thick, polished quarter discs made from 10 mm diameter discs. 

3.2. Experimental loop and test conditions 

The annealing test was performed in the DURANCE experimental loop located at the Bernard 

François laboratory at the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), 

Cadarache, France. The experimental loop, presented in Figure 3, consists in an induction furnace 

with a crucible made of metallic molybdenum where samples are placed. The furnace is followed by 

Samples Composition (at. %) 

Ba Ce La Mo Sr Y Zr Rh Pd Ru Nd 

0.26 0.61 0.20 0.51 0.13 0.06 0.60 0.03 0.42 0.64 0.91 
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an online gas chromatograph and a storage containment for released gases. One of the main 

features of the loop is the possibility of measuring the PO2 in the inlet gas, thanks to a MicroPoas 

probe (GENAIR) which is maintained at 675°C. Temperature is measured in the following way: a 

thermocouple is placed below the crucible, not in direct contact. Pure copper and tin filaments, with 

perfectly known fusion temperatures are placed into furnace. By knowing their fusion temperature 

and the temperature measured by the thermocouple when it happens, a proportionality constant 

can be obtained. This constant is then used to fix the target temperatures in the controller. 

 

Figure 3: DURANCE experimental loop 

The annealing sequence, representative of an intermediate state of nuclear severe accident, 

consisted on a temperature ramp up to 1973 K, maintained for 1 h under reducing atmosphere 

(flowing Ar + 4% H2). Under these conditions, an oxygen potential of -630 kJ.molO2
-1 was obtained. 

These conditions were chosen in order to verify two hypotheses about Ba and Mo behaviour.  As 

proposed in the mechanism, BaZrO3 is destroyed in reducing conditions around 2100 K. The 

evolution of the partial pressure of Ba(g) is presented in Figure 4, estimated using FactSage™ 6.3 

software, considering similar conditions to the test, but in a closed system. According to these 

results, BaZrO3 is decomposed into ZrO2 and BaO above 1500 °C. An open system, with flowing gas, 

would accelerate this reaction. Regarding to Mo, the adopted conditions would allow to study the 

evolution of the Mo-Ru-Pd ternary (the three main constituents of white inclusions) in severe 

accident conditions. 
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Figure 4: PBa(g) estimated evolution 

3.3. Characterization Methods 

3.3.1. Scanning Electron Microscope 

Scanning Electron Microscopy (SEM) was performed using a Philips XL30 FEG instrument, equipped 

with an EDAX-EDS system allowing us to determinate the distribution and content of FP using Energy 

Dispersive X-ray Spectroscopy (EDS) methods. Acceleration tension was set to 15 kV. The X-ray lines 

used to analyse the sample are the L1 ones except to uranium and oxygen for which M1 and K1 

have been respectively collected. Image analysis was performed using the analySIS pro 5.0 software, 

from Olympus Soft Imaging Solutions. Samples were not polished before SEM observations. X-ray 

maps and the concentration of each element in the matrix and precipitates were obtained. Regarding 

to X-ray maps, black represents the absence of the studied element. Image analysis allowed to 

measure the ECD (Equivalent Circle Diameter) of precipitates as well as their surface contribution 

(the surface percent occupied by precipitates, regarding to the total analysed surface). 

3.3.2. X-ray Absorption Spectroscopy 

Due to its ability to reveal information at the molecular level such as coordination geometry and 

oxidation states, X-ray Absorption Spectroscopy (XAS) experiments were performed on several 

interesting elements such as Mo, Ru, Ba and Zr.  The measurements were carried out at the MARS 

beam-line, SOLEIL synchrotron radiation facility (France) [29], under top-up 430 mA ring mode. The 

photon energy was scanned from 17.6 to 22.4 keV (Mo, Zr and Ru K-edges) and from 5.1 to 5.4 keV 

(Ba L3-edge) using the Si(220) double-crystal monochromator (DCM) which allows a mean photon 

flux of about 2x1011 ph.s-1 at 17.5 keV. In the case of Ba experiment, a helium bag was used in order 

to limit the X-rays absorption and scattering phenomena during their path through air between the 

sample and the detector. 

Calibration was done using the K-edge excitation energies of Zr (17.998 keV), Mo (20.000 keV), Ru 

(22.117 keV) and Ti (4.966 keV) metallic foils. The monochromatic beam was focused to 350 x 350 

µm2 (Horizontal x Vertical Full Width at Half Maximum).  
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As FP are diluted elements in a heavy matrix, the fluorescence mode has been adopted. The XAS 

spectra have been collected with a Vortex-90-EX silicon drift detector. 

The ATHENA software [30] was used for normalizing XAS spectra oscillations from the raw absorption 

data and correcting the self-absorption phenomena. Pre-edge removal and normalization was 

achieved using linear functions. The post-edge line for XANES spectra was taken using the position 30 

eV and 150 eV relatively to edge position E0. The E0 values and the white line maximum of each 

spectrum were taken as the first inflection point and the first zero-crossing of its first derivative. 

4. Results 

4.1. SEM-EDS 

SEM images of the SIMFUEL sample before (T0 sample) and after test (AT sample) are presented in 

Figure 5. For both samples, the UO2 matrix and two other phases in form of small precipitates, which 

differ in shape and colour, were observed. Particularly for the AT sample, the presence of white 

precipitates and the revelation of grain boundaries are observed as a consequence of the test. The 

latter is quite common as result of annealing tests [31]. 

  
Figure 5: SEM image of the sample before (T0, left) and after (AT, right) annealing treatment 

Further characterisation by SEM-EDS has allowed to locate FP into three different groups. Lanthanum 

and neodymium in the first one along with uranium and oxygen; molybdenum, palladium, rhodium 

and ruthenium in the second one and lastly barium, zirconium, strontium, cerium and yttrium in the 

third one. Each group presented a similar distribution in the sample and are thus analysed together. 

A similar distribution has been observed in irradiated fuels: Precipitates containing Mo, Ru, Rh, Pd 

and Tc, called White inclusions, and precipitates containing Ba, Zr, U and O among others, usually 

called Perovskite or grey phase [27]. 

4.1.1. UO2 matrix:  

U, O and Nd X-ray maps for both samples are presented in Figures 6. La X-ray maps were similar to 

those of Nd and so they are not presented here. According to these results U, O, La and Nd are 

evenly distributed in the matrix, both before and after the test. It is observed that O is not present in 

the white precipitates observed in Figure 6. The concentration of each element in the UO2 matrix is 

presented in Table 2. According to them, other elements such as Zr and Ce are also present in the 

matrix. 
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T0 AT 

  
U 

  
Nd 

  
O 

Figure 6: U, Nd and O X-ray Maps 
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Element 
Concentration (at.%) 

T0 AT 

O 68.9±0.5 69.0±1.0 

Sr 0.0±0.0 0.2±0.0 

Y 0.3±0.2 0.1±0.0 

Zr 0.4±0.1 0.3±0.2 

Mo 0.1±0.1 0.1±0.1 

Ru 0.2±0.0 0.2±0.0 

Rh 0.1±0.0 0.1±0.0 

Pd 0.1±0.1 0.1±0.0 

Ba 0.2±0.0 0.1±0.1 

La 0.3±0.1 0.2±0.2 

Ce 0.4±0.0 0.3±0.1 

Nd 0.3±0.1 0.4±0.1 

U 29.2±0.3 29.4±0.9 
Table 2: Elements concentration in the UO2 matrix 

4.1.2. White inclusions: 

Mo, Ru and Pd X-ray maps are presented in Figure 7. Rh X-ray map are similar to those of Mo and Ru, 

and so they are not presented here. The composition of these precipitates is presented in Table 3. 

Some important differences were found after the annealing test. The first one is the apparition of a 

second phase richer in molybdenum. Indeed, according to the quantitative analyses before the test, 

the Mo/Ru ratio was similar in all precipitates and equal to 0.76. After the test, most precipitates of 

size superior to 1.5 µm (designed as phase β) exhibited a Mo/Ru ratio of 6.0±1.4 while the smaller 

ones (designed as phase ε) a Mo/Ru ratio equal to 1.0±0.0, as observed in Table 4. Similar 

precipitates are described in the Mo-Ru system studied in [32].It was also observed that the surface 

contribution of white inclusions to the total analysed surface increased around 45%, and that the 

equivalent circle diameter (ECD) of these metallic precipitates decreased about 50%. 

The second main difference is that that palladium disappeared almost completely from these 

precipitates after the test: The Pd mean concentration in the T0 sample is 24.5 at%, while after the 

test it was reduced to 0.1 and 0.8 at% in β the ε and precipitates, respectively. Similarly to barium, 

palladium volatilization has been estimated using FactSage. The evolution of Pd partial pressure for a 

closed system but under the same annealing test conditions is presented in Figure 8. According to 

this, an important quantity of Pd is in equilibrium with the gas phase, which in an open system would 

be carried away by the flowing gas. 
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T0 AT 

  
Mo 

  
Ru 

  
Pd 

Figure 7: X-ray Maps for Mo, Ru, Rh and Pd 

Element 

Concentration (at.%) 

T0 
AT 

phase β phase ε 

Mo 32.4±1.0 85.0±2.9 49.4±1.3 

Ru 42.6±0.8 14.8±2.9 49.3±1.1 

Rh 0.4±0.5 0.0±0.1 0.6±0.5 

Pd 24.5±1.0 0.1±0.2 0.8±0.4 
Table 3: White inclusions chemical composition 
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Sample Surface contribution (%) ECD (µm) Mo/Ru ratio 

T0 1.88 2.45 0.8±0.0 

AT 2.73 1.26 
β =6.0±1.4 
ε =1.0±0.0 

Table 4: Characteristics of white inclusion precipitates, before and after test 

 
Figure 8: Estimation of palladium volatilization under tests conditions 

4.1.3. Grey phase: 

Ba, Zr, Sr, Y and Ce were also observed to form precipitates. Ba and Zr X-ray maps are presented in 

Figure 9. Sr, Y and Ce X-ray maps are similar to those of Ba and Zr, and so they are not presented 

here. The quantitative analysis of these precipitates, presented in Table 5, indicate that O and U are 

also present. 

After the test, an increased number of precipitates was observed but also an important reduction in 

their ECD and the surface contribution of these precipitates, as displayed in Table 6. Quantitative 

analyses indicate that the Ba/Zr ratio in the remaining precipitates decreased 18%. 
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T0 AT 

  
Ba 

  
Zr 

Figure 9: Ba and Zr X-rays maps 

Element 
Concentration (at.%) 

T0 AT 

O 66.1±0.7 70.3±7.4 

Sr 2.3±0.3 2.5±1.5 

Y 0.2±0.2 0.1±0.1 

Zr 12.3±1.3 12.8±3.6 

Ba 12.3±1.0 11.1±3.2 

Ce 0.2±0.1 0.0±0.1 

U 6.7±2.3 3.3±0.9 
Table 5: Grey phase chemical composition 

Sample Surface contribution (%) ECD (µm) Ba/Zr ratio 

T0 0.64 2.45 1.0±0.1 

AT 0.29 0.83 0.8±0.2 

Table 6: Characteristics of the precipitates containing Ba and Zr before and after test 

4.2. X-ray Absorption Spectroscopy 

4.2.1. XANES at the Mo and Ru K-edge 

Molybdenum and ruthenium XANES (X-ray Absorption Near Edge Structure) spectra are presented in 

Figure 10. In this figure, the main features observed on SIMFUEL sample spectra are indicated with 

dashed vertical lines. The edge energy E0 and the white line positions of each spectrum are reported 

in Table 7. 
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Figure 10: Mo (left) and Ru (right) K-edge XANES spectra measured on SIMFUEL samples and references. The energy 

position of the main features from SIMFUEL spectra are indicated with vertical dashed line. 

Sample 
Mo K-edge 

Sample 
Ru K-edge 

E0 (eV) White line (eV) E0 (eV) White line (eV) 

Mo 20,000 20,016.1±0.8 Ru 22,117 22,134.9±0.8 

MoO2 20,004.3±0.8 20,027.4±0.8 RuO2 22,124.3±0.8 22,140.1±0.8 

MoO3 20,004.3±0.8 20,026.7±0.8 - - - 

T0 sample 20,000.1±0.8 20,017.5±0.8 T0 sample 22,117.4±0.8 22,135.9±0.8 

AT sample 20,000.1±0.8 20,016.1±0.8 AT sample 22,117.2±0.8 22,135.9±0.8 
Table 7: Edge energy and white line position of the samples and references spectra collected at the Mo and Ru K-edges. 

As observed, the Mo K–edge spectra of SIMFUEL samples are slightly modified by the annealing 

process, contrary to the Ru K-edge ones. Indeed, as reported in Table 7, the white line position of Mo 

XANES is shifted by 1.0±0.8 eV to lower energy after annealing compared to T0 sample. 

4.2.2. XANES at the Zr K-edge  and Ba L3-edge  

Barium and zirconium XANES spectra are presented in Figure 11. In this figure, the main features 

observed on SIMFUEL sample spectra are indicated with dashed vertical lines. The edge energy E0 

and the white line positions of each spectrum are reported in Table 8. 

  
Figure 11: Ba L3-edge (left) and Zr K-edge (right) XANES spectra measured on SIMFUEL samples and references (shifted 

vertically for better illustration). The energy position and the white lines are indicated with vertical dashed line. 
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Sample 
Zr K-edge 

Sample 
Ba L3-edge 

E0 (eV) White line (eV) E0 (eV) White line (eV) 

Zr 17,998 18,013.8±0.8 BaO 5,250.3±0.5 5,251.8±0.5 

Tetragonal 
ZrO2 

18,012.5±0.8 18,018.1±0.8 - - - 

Sm2Zr2O7 18,013.3±0.8 18,019.0+0.8    

T0 18,010.7±0.8 18,015.5±0.8 T0  5,250.4±0.5 5,252.0±0.5 

AT  18,010.6±0.8 18,015.5±0.8 AT 5,250.5±0.5 5,251.1±05 
Table 8: Edge energy and white line position of the samples and references spectra collected at the Ba L3-edge and Zr K-

edge. 

As observed, both Ba and Zr spectra are not strongly modified by annealing process. The edge energy 

position is similar for both samples within the experimental errors, indicating that the Ba and Zr 

oxidation state do not change before and after annealing. Particularly for Zr, spectra indicate a local 

environment close to that of the pyrochlore Sm2Zr2O7 [33]. This local environment is characteristic of 

the perovskite structure as well. 

5. Discussion 

Regarding to the SIMFUEL UO2 matrix, the chemical composition and evolution observed are 

consistent with experimental observations on irradiated fuels. La and Nd were observed to be 

completely dissolved in the matrix which is consistent with observations for the given Burn-up [28] 

[31]. Indeed, nor La or Nd signals are detected in the precipitates observed in Figures 6. Zr was 

detected in the matrix. This could be partially attributed to the solution of  La2Zr2O7, which is 

predicted by own thermodynamics or to ZrO2 which is also highly soluble in UO2 [28]. 

Mo, Pd, Rh and Ru were found together in metallic precipitates. Such precipitates have been 

observed in irradiated fuels. Indeed, [27] describes metallic precipitates containing Mo, Pd, Rh, Ru 

and Tc and refers to as white inclusions. Only one type of metallic precipitate was observed in the T0 

sample, while two different ones were observed after the annealing test, in the AT sample. Besides, it 

was observed that the number of precipitates and their surface contribution increased after the 

annealing test, though their EDC decreased. 

The absence of palladium after the test would imply a nearly complete release of this element out of 

the sample. Pd has been classified as a semi-volatile FP [15]. It was observed during the VERCORS 

tests that oxidizing atmospheres favoured the release of this FP, in a similar way to the other noble 

metals, Tc and Ru, present in the white inclusions. Nevertheless, palladium is liquid in the studied 

conditions (melting point at 1828.8 K) and, as predicted by thermodynamic calculations, it is present 

in the gaseous phase in equilibrium. The flowing gas would then carry away gaseous species of Pd 

thus favouring the volatilisation of the liquid phase. The separation of the initial metallic phase into 

two different ones could be explained by the apparent release of palladium after the test. According 

to [32], Pd stabilizes the Mo-Ru system, which otherwise would be separated due to a miscibility gap. 

As it is observed in the Mo-Ru binary diagram in [32], below 1200°C two phases coexist: the β and ε 

phases. Nevertheless, the composition of the precipitates observed in sample AT does not match the 

theoretical one. Indeed, phases β and ε should present a Mo content approximately of 90 and 36 at% 

respectively, while the precipitates in the AT sample present a Mo content of 85.0±2.9 and 49.4±1.3 

%at, respectively. This could be due to the cooling rate after the test, which might have been too fast 

for the precipitates to attain chemical equilibrium, or to the stabilization of the phase due the 
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incorporation of Pd and Rh traces. The increased concentration of Mo observed in both precipitates, 

compared to the initial Mo content of the T0 sample precipitates, would indicate the migration of Mo 

from within towards the surface. XANES spectra in Figure 10 indicate that Mo is mainly found in 

metallic state in both samples. The Mo K-edge spectrum is slightly modified by the annealing process, 

contrary to the Ru K-edge one. Indeed, as reported in Table 7, the white line position of Mo XANES is 

shifted by 1.0±0.8 eV to lower energy after annealing, while Ru spectra does not change at all. This 

indicates that the local structure around Mo evolves during annealing, but not the Ru one. This result 

is not surprising because, as indicated in the mechanism presented in Figure 2, Mo is expected to be 

mobile under the MoO2 gaseous form at 1300 K which is below the annealing temperature of 2000 K 

and Ru should be mobile under the RuOx gaseous form at 2600 K which is above the annealing 

temperature. The collected spectra for Mo for both samples could not be completely reproduced by 

linear combination of the metallic and oxide references, which would indicate that more references 

are required: the Mo dissolved in the matrix or the metallic alloy Mo-Ru-Pd-Rh.  

Ba, Ce, Y, Zr and Sr were found to form precipitates as well, containing also O and U. This oxide phase 

presents a perovskite structure and is often depicted as (Ba, Cs, Sr)(U, Pu, Zr, Mo, RE)O3. As Ba, Zr and 

U are the main chemical components of this oxide phase, the lattice parameter would range from 

a=4.39 Å (for BaUO3) to a=4.19 Å (for BaZrO3). The lattice parameter may be further reduced by 

incorporation of BaMoO3, present in oxidizing conditions [22]. According to Kleykamp [27], rare 

earths such as Ce and Y are also present in the grey phase but are only detected in high-burn up 

fuels, which is our case. Though this phase is represented as (Ba, Cs, Sr)( U, Pu, Zr, Mo, RE)O3 no Mo 

was found in our samples. This may be due to the chosen conditions for the annealing tests: The 

corresponding chemical form would be BaMoO3 or BaMoO4 which are, according to thermodynamic 

estimations, produced in oxidizing conditions.  According to the proposed mechanism barium is 

found as BaZrO3, a compound which is destroyed around 2100K in reducing conditions. Indeed, 

thermodynamic estimations indicate the presence of barium reduced species in equilibrium in the 

gaseous phase. This would explain the reduction in the numbers of precipitates as well as the Ba/Zr 

ratio of the remaining ones after the annealing test. Regarding to XAS results, Ba and Zr spectra 

confirm the oxidations states Ba+2 and Zr+4, as well as a Zr local environment similar to that of the 

perovskite and pyrochlore structures, which could confirm the BaZrO3 chemical form.  As observed, 

the spectra of these two elements are not strongly modified by the annealing process: the edge 

energy position is similar for both samples within the experimental errors, indicating that the Ba and 

Zr oxidation state do not change after the annealing test. It is deduced then that the local structure 

around Ba and Zr does not change significantly after the test, even if the presumed chemical form, 

BaZrO3 is partially destroyed and Ba is released. As observed in XAS experiment, these possible 

modifications are not enough to affect the geometry of the local environment but only the cell 

parameters of the structures. The features different intensities observed between Ba and Zr spectra 

from the samples and those from the oxide and metallic references confirm that these two elements 

are involved in mixed oxides compounds. Indeed, the presence of elements such as Y, Ce, La and U 

would induce steric constraints, distorting the cell parameter of the perovskite structure explaining 

the differences observed. This is in good agreement with SEM experiments.  
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6. Conclusions 

The aim of this work was to demonstrate that SIMFUELS are a good complement to irradiated fuels 

for the study of FP behaviour during nuclear SA, using XAS as the main characterization technique. To 

this end, a SIMFUEL sample doped with 11 FP in concentrations representative to a 76 GWd.t-1 

irradiated fuel was submitted to an annealing test in conditions representative of a severe accident: 

temperature up to 1700°C under reducing atmosphere (flowing Ar + 4% H2). Samples were 

characterized by SEM-EDS and XAS, and the observed chemical evolution compared to experimental 

observations performed in analytical programs such as VERCORS and own thermodynamic 

calculations. 

Results show that the main phases observed in irradiated fuel, other than the fuel matrix, are well 

reproduced in SIMFUELS. These phases are metallic precipitates, also called white inclusions, 

composed of Mo, Pd, Ru and Rh (which in irradiated fuels also contain Tc) and an oxide phase with 

perovskite structure composed by Ba, Zr, Sr, Y and Ce, also called grey phase. The number, size and 

chemical composition of these precipitates were modified as a consequence of the annealing test. 

Particularly for the white inclusions, two different phases were observed after the test, one 

significantly more concentrated in Mo. This element is assumed to have migrated to the surface from 

within the sample. The absence of Pd in the metallic precipitates after the test would imply the 

release of this FP. Regarding to the grey phase precipitates, the reduced ECD and Ba/Zr ratio after the 

annealing test would imply the partial destruction of the respective phase and the release of Ba. 

These observations are consistent with the proposed release mechanisms and thermodynamic 

estimations. 

XANES spectra were collected at the K edge of Mo, Ru and Zr and at the L edge of Ba. Mo and Ru 

spectra indicate that these PF are in metallic state, which is consistent with the proposed mechanism 

and thermodynamics. Ba and Zr spectra indicate that these elements are found as Ba2+ and Zr+4, 

respectively. Moreover, according to Zr spectrum, this element would be in pyrochlore structure. 

These results reinforce the existence of assumed chemical form, BaZrO3.  The main implication of 

these results is that they demonstrate that the chemical state of chemical elements present in a UO2 

matrix can be accurately identified, despite the low concentrations and the many possible interfering 

elements. Therefore, these model materials could be a very important complement to irradiated 

fuels in the study of FP behaviour, particularly when powerful characterization methods such as XAS 

are used. 

The next step in our study is to submit improved SIMFUEL samples to annealing tests, also in 

conditions representative of severe accidents, at different temperatures. Samples will be implanted 

with Cs and Mo using the ion implantation technique, in order to improve their representativeness 

both in composition (presence of a volatile species) and FP distribution in the fuel. 
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