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Abstract  22	

The Rhone river represents the most important source of freshwater, nutrients and 23	

organic matter to the northwestern (NW) Mediterranean Sea and riverine input markedly affects 24	

biogeochemistry and ecosystem functioning in the estuarine and coastal zone. Structures of low 25	

salinity waters (LSW) originating near the river plume can also be transported along the 26	

continental shelf and offshore. The objective of the present study was to investigate the influence 27	

of LSW distant from their source, focusing on dissolved organic matter (DOM) and related 28	

microbial processes during two annual cycles (2007 and 2008) at a time series site characterized 29	

by the regular occurrence of LSW in spring (Microbial Observatory Laboratoire Arago). We 30	

observed enhanced bacterial heterotrophic production and community respiration and specific 31	

DOM features within these LSW, concurrently with low net community production. Our results 32	

suggest that LSW represent a mechanism of labile DOM supply, thereby sustaining enhanced 33	

heterotrophic microbial metabolism.  34	

 35	

1 Introduction  36	

Riverine input represent approximately 40% of fresh water entering the ocean (Dagg et al., 37	

2004), and thereby plays a key role in linking terrestrial and marine environments. Rivers deliver 38	

a large amount of inorganic nutrients to the adjacent coastal area, stimulating rates of primary 39	

production and associated food web processes (Frame and Lessard, 2009, Iriarte et al., 2012, Liu 40	

et al., 2004). Riverine discharge also transports terrigenous particulate (POM) and dissolved 41	

organic matter (DOM), mainly from terrestrial vegetation, to the coastal ocean (Bianchi et al., 42	

2004, Medeiros et al., 2017, Opsahl and Benner, 1997). DOM from freshwater input of the 30 43	

major rivers, accounts for 90,2 Tg dissolved organic carbon (DOC) per year (Raymond and 44	
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Spencer, 2015) which represents ~36% of the global DOC flux to the ocean (250 Tg DOC-C yr-45	

1; Hedges et al., 1997). The fraction of terrigenous organic matter that is removed in the coastal 46	

ocean is not well quantified due to multiple biotic and abiotic processes involved, and the spatio-47	

temporal heterogeneity of river-influenced ocean margins (Bianchi et al. 2011.). In large river 48	

systems, such as for example the Mississippi-Atchafalaya river, biological mineralization results 49	

in the removal of about 40% of terrestrial DOM in shelf waters (Fichot and Benner 2014). 50	

Export of terrigenous DOC from the Amazon river varies on a seasonal scale and accounts for 51	

50% to 76% (Medeiros et al. 2015).  How riverine input of nutrients and organic matter affect 52	

marine ecosystems has been investigated in a range of estuarine and coastal environments (Cole 53	

et al., 2007, Dagg et al., 2004 and reference therein). The influence of terrestrial input at varying 54	

distances from shore is, however, far less understood. 55	

The Mediterranean Sea is a mid-latitude semi-enclosed sea, divided in an eastern extreme 56	

oligotrophic basin (<0.1 µg Chlorophyll a L-1) and a moderately-oligotrophic western basin (0.1 57	

to 3 µg Chlorophyll a L-1) (Bosc et al., 2004), mainly due to P-limitation (Krom et al., 1991, 58	

McGill, 1965). The Rhone River discharge represents the most important freshwater source to 59	

the Mediterranean Sea (Naudin and Cauwet, 1997). The average runoff of 1750 m3 s-1 varies 60	

strongly with season and is highest during the frequent precipitation events in spring and autumn 61	

(Ludwig et al., 2009, Naudin and Cauwet, 1997). The Rhone River represents an important 62	

source of inorganic and organic matter of continental origin to the Mediterranean Sea (de 63	

Madron et al., 2011). Increased inorganic and organic nutrient concentrations are reported near 64	

the Rhone river freshwater plume in shelf waters (100m depth, up to about 20 nautical miles 65	

offshore) in the Gulf of Lion (Diaz et al. 2008, Sempéré et al., 2000) and the associated 66	

enhanced biological activity in the estuary and adjacent waters has been documented during 67	
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several previous field studies (Christaki et al., 2009, Joux et al., 2009, Lefevre et al., 1997, Pujo-68	

Pay et al., 2006).  69	

The hydrodynamics of the Rhone river plume are governed by atmospheric conditions, 70	

discharge volume and larger scale water mass circulation. When south-easterly winds 71	

predominate, the plume remains close to the coast, while north-westerly winds result in the 72	

extension of the Rhone rive plume in a south-western direction (Demarcq and Wald, 1984). 73	

Intrusions of Rhone river water were detected in 5-20% of a 4-year bi-monthly survey in the Bay 74	

of Marseille (Fraysse et al., 2014), indicating that these events are frequent phenomena in the 75	

coastal Mediterranean Sea. Diluted structures with low salinity waters (LSW) detached from the 76	

Rhone river plume can be transferred to open waters (Barrier et al., 2016, Diaz et al., 2008, 77	

Nencioli et al., 2011, Petrenko et al., 2017). Under conditions of north-westerly winds and in 78	

combination with a persistent slope current along the shelf break of the Gulf of Lion (Northern 79	

Current;(Raimbault and de Madron, 2003)), these LSW can be directed south-west (Fig. 1). The 80	

transit of these buoyant water masses can last up to 3 weeks, and they can be transported over 81	

relatively long distances (Diaz et al., 2008), rendering the Gulf of Lion an appropriate site for the 82	

investigation of cross-shelf exchange (Petrenko et al., 2017). 83	

The objective of the present study was to investigate whether these structures, referred to 84	

as lower salinity waters (LSW), represent a supply of biologically labile DOM to the offshore 85	

NW Mediterranean Sea. We addressed this question by observations at the time-series site 86	

MOLA (Microbial Observatory of the Laboratoire Arago) that is characterized by the recurrence 87	

of LSW at surface in spring (Fig. 1). The combined investigation of the temporal changes in 88	

environmental characteristics and microbial processes at Station MOLA provided insight on how 89	
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freshwater input through these physical features could affect biogeochemistry in the offshore 90	

Mediterranean Sea.  91	

a b 

	

 

	

 

c 

Fig. 1. Spatial and temporal distribution of salinity in the Gulf of Lion (NW Mediterranean Sea).  

Upper panels: Mean monthly surface salinity (4 km x 4 km) for February 2008 (left panel/a) and 

June 2008 (right panel/b) (February and May 2007 are shown in S1). Surface salinity 

distributions are provided by a circulation model overlaid with current speed and directions 

(yellow arrows), derived from altimetry for the date of sampling at Station MOLA (indicated by 

a white dot). Black lines represent isobaths (500 m, 1000 m and 2000 m). The white line denotes 

salinity of 37.85. Lower panel (c). Temporal changes of in situ salinity at Station MOLA 
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measured during the years 2007 and 2008.  Star indicates Banyuls sur mer. 

2 Material and Methods 92	

 93	

2.1.  Regional hydrology and seasonality  94	

Station MOLA is located on the edge of the continental shelf at the south-western 95	

boundary of the Gulf of Lion (42.454ºN and 3.688ºE) (bottom depth 600m) in the NW 96	

Mediterranean Sea (Fig.1). Surface waters of this site are influenced by a northern liguro-97	

provencal current (Raimbault and de Madron, 2003) related to water masses from the Gulf of 98	

Lion and the Rhone river. The climatological mean over the past 15 years reveals that the 99	

presence of low salinity water (LSW) is a recurrent feature during spring periods at station 100	

MOLA (Fig. S2). On a seasonal cycle, Station MOLA is characterized by vertical mixing 101	

during winter leading to the input of inorganic nutrients to surface waters (~1 µM NO3
-+ NO2

-102	

, ~0.05 µM PO4
3-) (Table S1) that sustain the spring phytoplankton bloom. During the two 103	

years considered here, maximum concentrations of Chlorophyll a (Chl a; 0.75 and 0.85 µg L-104	

1) (Fig. S3; Table S1) were observed in the upper 40m in March 2007 and February 2008, 105	

respectively (Laghdass et al., 2010). During summer, the water column is thermally stratified 106	

(Fig. S4) and concentrations of inorganic nutrients are low (<0.35 µM NO3
-+ NO2

-, ~ <0.03 107	

µM PO4
3-) in the surface mixed layer (10 to 30m) and Chl a concentrations in surface waters 108	

remain <0.2 µg L-1 (Laghdass et al., 2010) (Table S1).  109	

 110	

2.2. Sample collection  111	

Seawater was sampled between February 2007 and October 2008 on a monthly time 112	

scale except for the autumn-winter period when the sampling frequency was reduced due to 113	
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bad weather conditions. Samples were collected in the upper 150m water column with 12 liter 114	

Niskin bottles mounted on a rosette equipped with a SeaBird SBE 19 CTD. For bacterial 115	

heterotrophic production, and the characterization of dissolved organic matter 8 depths in the 116	

upper 150m were sampled. For the determination of microbial community respiration and net 117	

community production 6 depths in the euphotic layer were sampled (upper 80m).  118	

 119	

2.3. Bacterial heterotrophic production, microbial community respiration and net community 120	

production 121	

     We used (3H) leucine incorporation and the centrifugation method to determine bacterial 122	

heterotrophic production (BP) ( Smith & Azam, 1992). The detailed protocol and data are 123	

reported in (Obernosterer et al., 2008; Laghdass et al., 2010). Bacterial growth rates (BGR) 124	

were determined by dividing BP by cell biomass derived from bacterial abundance. To 125	

convert abundance to biomass, we applied a conversion factor of 12.4 fg C cell-1 (Fukuda et 126	

al. 1998). We measured microbial community respiration (CR) and net community production 127	

(NCP) from changes in the concentration of dissolved oxygen (O2) in 24h light and dark 128	

incubations as described in (Lefèvre et al. 2008). Incubations were performed at 129	

Photosynthetically Active Radiation (PAR) levels of 1%, 4%, 8%, 25%, 50% and 100% of 130	

surface values, using optical density filters (Nickel screens). The outdoor incubators were 131	

connected with a running seawater system to maintain the incubation bottles at the 132	

temperature of the mixed layer. The 1% light depth was below the mixed layer depth during 133	

spring and summer with differences in temperature ranging between 2°C in May-June and up 134	

to 5° in August (Table S1). The measurements at time zero and all incubations were done in 8 135	

replicate 125 mL borosilicate glass bottles. Dissolved O2 concentration was determined by 136	
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spectrophotometric detection of iodine following the Winkler reaction, using a Hitachi U-137	

3010 Spectrophotometer equipped with a sipper system (Labasque et al., 2004). 138	

 139	

2.4. Dissolved organic carbon and total hydrolysable amino acids  140	

     Samples for dissolved organic carbon (DOC) and dissolved total hydrolysable amino 141	

acids (THAA) were filtered through two pre-combusted glass fiber filters (Whatman GF/F 142	

25mm, 0.7 µm nominal pore size). Samples for DOC were acidified (H3PO4, pH 2) and stored 143	

in pre-combusted glass tubes at room temperature in the dark until analysis. DOC was 144	

analyzed by high temperature catalytic oxidation (HTCO) technique (Benner and Strom, 145	

1993) using a Shimadzu TOC-5000 analyzer.  146	

     THAA were analyzed by high performance liquid chromatography (HPLC) after liquid-147	

phase acid hydrolysis according to a recent protocol described by (Escoubeyrou and 148	

Tremblay, 2014). This protocol uses a high volume (100 µL) of undiluted samples injected on 149	

a robust hybrid C18 column. HPLC analyses were performed on an Ultimate 3000 Dionex 150	

system equipped with an autosampler and a fluorescence detector (excitation at 335 nm, 151	

emission at 450 nm). The separation was done with a Phenomenex Gemini C18 column 152	

(250x4.6 mm, 5 µm, 110 Ǻ) and a Security Guard column (4 x 3 mm). We used the Dauwe 153	

Degradation Index (DI, (Dauwe and Middelburg, 1998)) calculated based on the relative 154	

distribution of individual AA and adapted for DOM 	(as reported in Peter et al., 2012, Davis 155	

et al 2009; Kaiser and Benner 2009) as an indicator for the degradation state of DOM. The 156	

original DI was calculated from Principal Component Analysis (PCA) applied to diagenetic 157	

altered sediments were DI = ∑ ((mol% amino acid – average mol % amino acid)/standard 158	
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deviation mol%)* PCA amino acid score) .  159	

 160	

3 Results and Discussion 161	

 162	

To investigate whether LSW revealed a specific biogeochemical signature at Station 163	

MOLA, we compared the depth profiles of microbial heterotrophic activity and of the DOM 164	

characteristics at the dates of the most pronounced salinity anomalies during the observation 165	

period (May 22 2007 and June 9 2008) with those of the annual medians (Fig. 2). 166	
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Fig. 2. Depth profiles of salinity anomaly (blue line), microbial activity and DOM characteristics 

(box plots) at Station MOLA for the year 2008. The black lines across the boxes represent the 

median annual values. The ends of the boxes define the 25th and 75th percentile and the error bars 

represent the 10th and 90th percentiles. Dots represent the individual value for the date for which 

the salinity anomaly is shown (June 9 2008). Results for 2007 are shown in Fig. S5. BP: 

Bacterial heterotrophic production (pmol Leu L-1 h-1), CR: Community Respiration (µM O2 L-1 

d-1), DOC: Dissolved Organic Carbon (µM), THAA: Total Hydrolizable Amino Acids (µM), DI: 

Dauwe Degradation Index. 

 167	

The extent of the salinity anomalies of about -0.3 was similar in both years, but lower 168	

salinity waters were present to 60m in 2007 and constrained to the upper 30m in 2008. The 169	

annual median values of BP varied between 10-20 pmol Leu L-1 h-1 in the upper 60 m water 170	

column and they were below 5 pmol Leu L-1 h-1 ≥ 100 m for both years. During LSW, rates of 171	

BP were 2-4 times higher than the annual medians in the upper 40 m water column, a pattern 172	
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that was particularly pronounced in 2008. Annual medians of CR varied between 0.5 and 1 µmol 173	

O2 L-1 d-1 in the upper 40 m water column and they were < 0.5 µmol O2 L-1 d-1 below this depth. 174	

During LSW in 2008, rates of CR were up to 3-fold higher than the annual median, while 175	

differences were minor in 2007. In addition, bacterial growth rates revealed highest values (0.17 176	

to 0.26 d-1) during the LSW of both years (Table S1). These observations indicate a signature of 177	

enhanced microbial heterotrophic activity within LSW that was more pronounced in 2008 than 178	

in 2007, possibly due to a stronger dilution with surrounding water masses during our first year 179	

of observation. 180	

To link these observations to the characteristics of DOM, we considered bulk DOC, the 181	

concentration of dissolved THAA and the DI (Fig.2). Annual medians of bulk DOC 182	

concentrations varied between 60 µM and 80 µM in the upper 150 m water column. In surface 183	

waters, we did not observed any pronounced differences between the annual medians and LSW. 184	

This is most likely due to the high DOC concentrations in surface waters during summer 185	

observed at our study site (Laghdass et al., 2010). The accumulation of DOC in stratified surface 186	

waters during summer is a recurrent phenomenon reported for Mediterranean waters (Avril, 187	

2002, Romera-Castillo et al., 2010, Sánchez-Pérez et al., 2016) and other oligotrophic oceans 188	

(for BATS- (Carlson et al., 2002); for HOTS- (Mopper and Schultz, 1993)). Inorganic nutrient 189	

limitation of heterotrophic microbes has been suggested as the underlying mechanism for the 190	

observed build-up of DOC in stratified surface waters (Thingstad and Rassoulzadegan, 1999). 191	

This idea is supported by short-term (24h) incubation experiments performed at our study site 192	

revealing that labile organic carbon and phosphorus were the main limiting factors of BP during 193	

summer (Laghdass et al. 2012). 194	
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Amino acids represent a quantitatively significant and biologically labile fraction of 195	

DOM, and temporal or spatial changes of this pool can therefore provide insights to 196	

modifications of DOM characteristics (Davis et al., 2009, Kaiser and Benner, 2012). The 197	

concentrations of dissolved THAA varied between 262 and 1027 nM, with higher concentrations 198	

in the upper 40m. Within LSW in 2008, THAA concentrations were up to 2-fold higher than the 199	

annual median, a pattern that was absent in 2007 (Fig. 2 and Fig S5). The contribution of 200	

dissolved THAA to DOC, referred to as the amino acid yield, varied between 1.4-5.6% in the 201	

upper 150 m water column. The depth profiles of the amino acid yields during the LSW events 202	

were similar to those observed for dissolved THAA (data not shown). The DI is a chemical 203	

based indicator of the degradation state of organic matter, based on the relative distribution of 204	

individual amino acids (Dauwe and Middelburg 1998). Over the course of organic matter 205	

degradation, certain amino acids are selectively utilized resulting in a decrease of the DI (Dauwe 206	

et al. 1999). Based on the amino acid composition of marine plankton and sediment organic 207	

matter from varying depth layers, the DI was initially proposed to characterize the degradation 208	

stage of particulate organic matter. Its application has been extended to DOM in a range of 209	

marine (Amon et al., 2001, Davis et al., 2009, Tremblay et al., 2015; Kaiser and Benner 2009) 210	

and freshwater environments (Ylla et al. 2011, Peter et al. 2012), with values ranging from -3 to 211	

+5. The observed decreases in the DI over the course of biodegradation experiments further 212	

suggest this index to reflect changes in DOM bioavailability (Amon et al. 2001; Rochelle-213	

Newall et al. 2004). At Station MOLA, the annual median DI varied between 1 and 1.5 and no 214	

pronounced depth profile was detectable over the 150 m water column. These positive values are 215	

indicative of overall diagenetically fresh DOM (Davis et al., 2009, Kaiser and Benner, 2009, 216	

Peter et al., 2012). In LSW, the DI was noticeably higher in the upper 20m as compared to the 217	
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respective average median values in both years (Fig. 2 and Fig S5). Thus, DOM in the 218	

uppermost water layer of LSW had a different chemical signature that is indicative of more 219	

bioavailable DOM. Complementary to the analyses illustrated in Fig. 2, we carried out a 220	

Principal Component Analysis (PCA) with the combined biogeochemical and microbial 221	

parameters of the two years from surface waters (5m) (Fig. S6). The PCA analysis revealed one 222	

group consisting of samples from May and June from both years being explained by variables of 223	

microbial activity (BP, r = 0.85; CR, r = 0.77; BGR, r = 0.88) and features of DOM (dissolved 224	

THAA concentration, r = 0.48; amino acid yields, r = 0.21; DI, r = 0.52) that were positively 225	

correlated with PC1. By contrast, this group was also explained by salinity, which was 226	

negatively correlated with PC1 (r = -0.81). Taken together, these results suggest that LSW 227	

contains bioavailable DOM that sustains enhanced microbial heterotrophic activity in the 228	

offshore NW Mediterranean Sea.  229	

This observation raises the question of the origin of the DOM within LSW. The LSW 230	

that we observe at Station MOLA most likely originates from the Rhone River and its plume 231	

(Fig. 1). The pronounced pattern observed within LSW could be due to an enrichment in 232	

compounds from recent primary production occurring in the vicinity of the estuary (Diaz et al., 233	

2008) and in small amounts of riverine, terrigenous DOM. Besides these sources that can be 234	

considered allochthonous to our study site, in situ primary production within the LSW could fuel 235	

the observed enhanced microbial activity. To address this question we followed the pattern in 236	

euphotic depth integrated fluxes of net community production (NCP) and CR. Highest fluxes of 237	

NCP were observed in March and April in both years, corresponding to the spring bloom period 238	

(Fig. 3). During the LSW in May and June 2007, NCP was negative and associated with highest 239	

depth-integrated fluxes of CR, illustrating a switch from net autotrophy in March and April to 240	



 14 

net heterotrophy in May and June 2007. During the LSW event in 2008, euphotic layer 241	

integrated fluxes of CR were again enhanced and associated with low positive (June 2008) and 242	

negative (July 2008) fluxes of NCP (Fig. 3). These NCP fluxes indicate low in situ primary 243	

production in LSW. The depletion in nitrate and phosphate in LSW (Table S1) could be the 244	

limiting factor of autotrophic activity, while heterotrophs can utilize these elements in organic 245	

form. These results support the idea that heterotrophic microbial processes are favored as 246	

compared to autotrophic processes within these buoyant water masses, suggesting that external 247	

rather than in situ produced DOM sustains heterotrophic activity. 248	

 249	

 250	

 

Fig. 3. Euphotic depth integrated fluxes of Net Community Production (NCP) and Community 

Respiration (CR) and salinity at 5m depth. Results are shown for 2007 (February 14 to 

December 5) and 2008 (January 29 to October 6).  

Fig	3		
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 251	

Our observations from a time-series site in the NW Mediterranean Sea extend previous studies 252	

within LSW lenses in close vicinity to the Rhone river estuary and they provide insights on how 253	

biological activity in these water masses could change with time and distance from its origin. 254	

Direct measurements and satellite observations report increased autotrophic productivity in 255	

coastal LSW lenses as compared to surrounding marine waters (Auger et al., 2011, Diaz et al., 256	

2008), and the high NCP determined in situ (Joux et al., 2009) suggests net autotrophy of the 257	

system in the vicinity of the estuary. With increasing distance from the plume and time since 258	

formation, inorganic nutrients are depleted and primary production is based on regenerated 259	

nutrients (Diaz et al., 2008). This suggests a scenario where autotrophic processes dominate in 260	

early stages of LSW and heterotrophic processes become more important with distance and time.  261	

Primary production in coastal marine environments and export of terrigenous DOC are 262	

potential sources of organic carbon for the open oligotrophic ocean (Smith and MacKenzie 263	

1987, Bauer and Druffel 1998; Medeiros et al. 2015) and proposed transport mechanisms are 264	

physical features such as for example mesoscale eddies, internal waves or currents. The resulting 265	

spatio-temporal decoupling between the origin of organic matter in the coastal zone and its 266	

respiration in open waters was suggested to explain in part the imbalance between primary 267	

production and respiration in the oligotrophic ocean (Duarte et al. 2013; Williams et al. 2013). 268	

The LSW could represent this linkage in the NW Mediterranean Sea. In addition to recent and in 269	

situ primary production, photochemical transformations of DOM could be an important 270	

mechanism in providing bioavailable substrates in these buoyant surface water masses in 271	

particular when compounds of terrigenous origin are present (Abboudi et al., 2008, Amon and 272	

Benner, 1996, Obernosterer and Herndl, 2000). The combination of a suite of tools including 273	
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satellite-based and autonomous instrumentation offers the possibility for a more detailed 274	

characterization and adapted sampling strategy of these mesoscale features at different locations 275	

in the open ocean. Taken together, our study illustrates the potential of water masses of estuarine 276	

origin to affect biological activity in the offshore oligotrophic ocean. The extension, lifetime and 277	

occurrence of these types of buoyant water masses will govern their impact on marine 278	

biogeochemistry and ecosystem functioning at different scales and distances from shore.  279	

 280	
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