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Dendritic cells (DC), which are involved in orchestrating early immune responses against

pathogens, are dysregulated in their function by HIV infection. This dysregulation likely

contributes to tip the balance toward viral persistence. Different DC subpopulations,

including classical (cDCs) and plasmacytoid (pDCs) dendritic cells, are subjected to

concomitant inflammatory and immunoregulatory events during HIV infection, which

hampers the precise characterization of their regulation through classical approaches.

Here, we carried out mass cytometry analysis of blood samples from early HIV-infected

patients that were longitudinally collected before and after 1 year of effective combination

antiretroviral therapy (cART). Blood samples from HIV controller patients who naturally

control the infection were also included. Our data revealed that plasma HIV RNA level

was positively associated with a loss of cDC and pDC subpopulations that display

high expression of LILR immunomodulatory receptors. Conversely, specific monocyte

populations co-expressing high levels of HLA-I, 3 immunomodulatory receptors, CD64,

LILRA2, and LILRB4, and the restriction factor CD317 (also known as BST2/Tetherin),

were more abundant in early HIV-infection. Finally, our analysis revealed that the blood

of HIV controller patients contained in a higher abundance a particular subtype of

CD1c+ cDCs, characterized by elevated co-expression of CD32b inhibitory receptor and

HLA-DR antigen-presentation molecules. Overall, this study unravels the modifications

induced in DC and monocyte subpopulations in different HIV+ conditions, and provides

a better comprehension of the immune regulation/dysregulation mechanisms induced

during this viral infection.

Keywords: LILRB1 (ILT2), LILRB2 (ILT4), LILRA4 (ILT7), CD32 (FcgRII), CD38, immune checkpoints, primary HIV

infection, elite controllers

INTRODUCTION

HIV infection is characterized by the dysregulation of immune responses leading to viral
persistence and disease progression (1–3). During the last few decades, most studies of HIV
pathogenesis have focused on T-cell immune responses. Nevertheless, dendritic cells (DCs)
including, classical (cDCs) and plasmacytoid (pDCs) cells, play a pivotal role in the early defenses
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against viruses by bridging innate and adaptive immune
responses (4, 5). After viral sensing, cDCs rapidly mature and
migrate toward secondary lymphoid organs to stimulate T-
cell responses. Several studies indicate that in HIV or SIV
infections, cDCs are prone to apoptosis and demonstrate
attenuated capacities of antigen presentation and cytokine
production leading to inefficient T-cell proliferation (1, 6–8).
Ex vivo analysis of cDCs from HIV-infected patients illustrates
phenotypic changes induced early during infection and that are
associated with cDC dysregulation (9, 10). Further studies in
rhesus macaques identify dysregulation of cDCs induced in early
SIV infection as a predictive marker of disease progression (11).
These studies suggest a critical role for cDCs in the regulation of
early immune responses, where deficiencies in functions tip the
balance of disease outcomes toward viral persistence.

Because pDCs show unique capacities to regulate immune
responses and viral replication through massive production of
type I interferon (IFN), their role in HIV and SIV infection
has also been investigated. pDCs from chronically HIV-infected
patients show dysregulated immunophenotypic attributes (12).
In vitro experiments indicate that HIV attenuates the production
of type I-IFNs mediated by pDCs (13). Moreover, during early
SIV infection, pDCs rapidly move toward lymph nodes, are
subjected to apoptosis and renewal, and only a small fraction
of these cells produce type-I-IFNs (14, 15). These data suggest
that SIV infection induces heterogeneous functional capacities
among pDCs.

Massive monocyte turnover is induced during SIV and HIV
infection and has been directly linked to disease progression (3,
14). In addition, microbial translocation induces overactivation
of monocytes, which in turn participate in the inflammatory
events associated with viral persistence (3, 15). Finally, the
production of soluble CD14 and CD163, which reflects
monocyte/macrophage activation, has been associated with HIV
mortality in primary and chronic infection (3, 15–17).

Even though these studies indicate that DC and monocyte
subpopulations are dysregulated in HIV infection, a precise
view of their dysregulation mechanisms at the molecular level
is difficult to decipher through classical approaches. In this
respect, HIV infection induces concomitant inflammatory
and immunoregulatory events, which can differentially
influence cell maturation/activation phenotype within the
same populations due to proximity and/or exposure to different
stimuli (virus and host mediators). Phenotypic heterogeneity
among subpopulations may be further enhanced by perturbation
of hematopoiesis and egress of less differentiated DCs from bone
marrow to replenish dying cells as has been explored in SIV
infection (18, 19).

In this study, we carried out a mass cytometry analysis to
unravel the heterogeneity and dynamics of myeloid cell subsets
occurring from the acute phase of HIV infection to the control
of viral replication through successful combination antiretroviral
therapy (cART). For this purpose, we collected samples from
primary HIV-infected patients longitudinally, prior to and after
1 year of effective cART. Samples from elite controllers, who
naturally control HIV replication in the absence of treatment,
were also included as well as control samples from healthy

donors. Interestingly, myeloid cells from elite controllers were
previously shown to display enhanced functions and a specific
expression profile of Leukocyte Immunoglobulin-Like Receptors
(LILRs), a family of receptors that play important roles in the
regulation of myeloid cell maturation and functions (20–22).
In this regard, LILRs could represent key markers that account
for DC-associated regulation/dysregulation mechanisms (23).
Therefore, markers for the most well-characterized LILRs were
included in our mass cytometry panel.

Our data reveal an association between a high level of HIV
RNA and a loss in the blood of cDC and pDC clusters that
highly expressed specific members of LILR family. In contrast,
early HIV infection was positively associated with clusters of
monocytes displaying high expression of HLA-I ligands, CD64,
LILRA2, LILRB4 immunoregulatory receptors and restriction
factor CD317 (also known as BST2 or tetherin), a ligand of
LILRA4. Finally, a subtype of cDCs defined by high expression
of CD32b and HLA-DR was more abundant in elite controllers
than in other conditions. Altogether, our results provide a unique
view of the diversity and various phenotypic changes induced
in DCs and monocytes during early HIV infection, before and
after effective cART, but also in patients that naturally control
HIV infection. Overall, this study reveals new insights on the
mechanisms driving the dysregulation of early myeloid immune
responses, which may account for inefficient adaptive immune
responses and viral persistence.

RESULTS

Phenotypical Characterization of Dendritic
Cell and Monocyte Populations Among
Patient Samples
To characterize the phenotypic diversity of DC and monocyte
subsets in HIV primary and controlled infections, we developed a
mass-cytometry panel of 29 markers mainly dedicated to myeloid
cells (Table S1). We applied this panel to PBMCs from three
groups of individuals. The first group included six patients who
were longitudinally sampled during the primary phase of HIV
infection, as previously described (24), before (primary HIV)
and after 1 year of combination antiretroviral therapy (HIV
cART). The second group was composed of six HIV-infected
elite controller patients (HIV controllers) that naturally control
viral replication. Finally, the third group encompassed six healthy
subjects (Healthy). Clinical characteristics of these groups are
shown in Table 1. These groups allow us to question the changes
in the dynamics, diversification, and regulatory events among
DCs and monocytes during both primary infection and potential
normalization on cART, and in HIV controllers.

The mass cytometry panel was designed to detect lineage,
migration and adhesion markers, as well as activation and
inhibitory immunoreceptors known to play an important role
in myeloid cell functions and maturation (Figure 1). After
the acquisition of all samples by mass-cytometry, we applied
a first step of manual gating strategy to exclude lymphocyte
subsets, followed by the positive selection of cell populations
expressing HLA-DR (Figure S1) to select DCs and other myeloid
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TABLE 1 | Summary of patient and subject clinical parameters.

Primary HIV

(n = 6)

HIV cART

(n = 6)

HIV controllers

(n = 6)

Healthy

(n = 6)

Age

median (min-max), in years

34

(24–47)

35

(25–48)

39

(25–49)

35

(25–45)

Gender M M M M

Days since HIV-1

diagnosis

median (min-max), in days

28

(18–29)

361

(290–372)

1,825

(1,825–7,300)

N/A

Treatment Naive cART Naive Naive

RNA HIV load at

diagnosis

median (min-max), in log10
copies/ml of plasma

6.67

(5.47–7.26)

1

(1–1.63)

1.54

(1.43–1.69)

N/A

CD4 T-cell count

median (min-max), in 103

cells/µl of blood

470

(258–669)

843

(570–1,247)

827

(652–1,180)

856

(634–1,412)

Eighteen Caucasian men were involved in this study to constitute four groups of conditions. These groups are composed of six primary HIV-infected patients before treatment (primary
HIV) and after 1 year of combination antiretroviral therapy (HIV cART), six elite controllers (HIV controllers), and six healthy subjects (Healthy). The gender and median patient age, days
since HIV-1 diagnosis, RNA viral load, and CD4+ T-cell count are indicated for each group. cART, combination antiretroviral therapy; N/A, not applicable; M, male.

FIGURE 1 | Mass-cytometry panel. Mass-cytometry panel of 29 cell parameters used to characterize myeloid cell population diversity in PBMC samples. Markers

used to select leukocytes and exclude lymphocytes from the analysis are indicated in gray. Markers used for SPADE clustering of myeloid cells are indicated in blue.

Markers used for the phenotypic characterization of myeloid cells are indicated in blue or black.

cells. We next characterized the simultaneous expression of
markers from our panel on these myeloid cells. For this purpose,
we used the Spanning-tree Progression Analysis of Density-
normalized Events (SPADE) clustering algorithm to identify
myeloid cell clusters having similar expressions for selected
markers regardless of their sample cell origin (25, 26). A
categorical heatmap was generated using hierarchical clustering
to visualize more easily the respective relative marker expression
of each myeloid cell cluster identified (Figure 2A). The overall
phenotype distribution of all clusters was visualized in Figure S2.
For each cluster, the correlation with plasma RNA viral load
and its variation in abundance across patient groups was also
analyzed (Figures 2B,C).

Based on the cell cluster dendrogram, 12 families of cell
clusters were defined (Figure 2A). A tSNE representation
generated to represent the similarities between cell cluster
phenotypes confirmed the segregation of cell cluster families
defined by the heatmap dendrogram (Figure S3). Seven cluster
families exhibited a monocyte phenotype (HLA-DR+, CD14+)
and 4 cluster families exhibited a cDC phenotype (CD14−,
CD11c+, HLADR+). Among the 4 cluster families with a
cDC phenotype, one family highly expressed CD123, CD86,
and CD16. Finally, a family of cell clusters corresponding to
the phenotype of pDC (CD14−, CD11clow, CD123+, CD4+,
HLADR+) was defined. A total of 76 cell clusters were associated
with the monocyte families, whereas cDC and pDC families
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FIGURE 2 | Phenotypic landscape, variation in cell abundance and association with HIV-infection of myeloid cell clusters from HIV-infected and healthy donor

samples. (A) Heatmap showing relative marker expression for myeloid cell clusters. The mean of the median expression of each marker was determined and classified

using a five-tiered color scale ranging from white (not expressed) to dark red (highly expressed), according to their relative ranges of expression (5th−95th percentile)

throughout the dataset. Clustering markers are shown in blue. Hierarchical clustering of both the cell clusters and clustering markers were performed and represented

using dendrograms. Based on the cluster dendrogram, several cluster families were identified and represented in blue for monocyte families, red for cDC families and

green for pDC family. (B) Chart summarizing clusters having cell abundance correlated with HIV RNA load (Correlated Clusters). Clusters positively correlated are

indicated with a “+,” whereas clusters negatively correlated are indicated with a “–.” (C) Chart summarizing the clusters showing significantly differences of cell

abundances between the biological conditions (Differentially Abundant Clusters). For each identified DACs, red arrows indicate an increase of the cell cluster

abundance, whereas green arrows indicate a decrease of the cell cluster abundance.

consisted of 23 and 4 cell clusters, respectively. Cell abundance
of each cluster was represented in Figure S4.

These results indicate that monocytes and DCs in the dataset
include heterogeneous and discrete cell subpopulations carrying
a specific combination of markers that may reflect a divergence
in functions or differentiation that could be associated with
HIV infection.

Primary HIV-Infection Induces a Significant
Loss of Peripheral cDC2 and pDCs
Previous reports show the loss of DC subpopulations during
early HIV and SIV infection (10, 11). To assess this process
in our dataset, we first analyzed the variations of cell cluster
abundances for the cDC2 (CD1c+ cDC) and pDC families
among the different conditions. The percentage of cells in each
condition relative to the number of cells in the CD45+ parent
population were compared (Figure 3). We observed significant
decreases of the percentages of cDC2 (80% of decline, p= 0.0142)
and pDC (69% of decline, p = 0.00263) in the blood of primary
HIV-infected patients compared to the same patients 1 year after
effective cART. These significant decreases were also observed for

primary HIV-infected patients in comparison to HIV controllers
(85% of cDC2 decline, p = 0.0003 and 66% of pDC decline, p =
0.0022) and to healthy donors (92% of cDC2 decline, p = 0.0065
and 74% of pDC decline, p = 0.0059). Interestingly, our results
also demonstrated significantly higher percentages of cDC2 (p=
0.0302) in the healthy group than in the HIV cART-treated group
(Figure 3A). No significant difference was observed between
these two groups for pDCs (Figure 3B). Concordantly with
previous studies, our dataset demonstrates that primary HIV-
infection induces a profound decline of peripheral cDC2s and
pDCs abundance that seems to be partially recovered under
cART, but to a lesser extent for cDC2s.

Elevated Plasma HIV Load Is Associated
With Modifications in the Abundance of
Specific Dendritic Cell and Monocyte
Subpopulations
We next investigated if the abundance of specific myeloid cell
subsets was associated with HIV RNA levels across HIV+ and
healthy samples.
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FIGURE 3 | Percentages of cDC2 and pDC among CD45+ cells from HIV-infected patients and healthy donors. (A,B) Percentage analyses of cDC2 (left panel) and

pDC (right panel) relative to CD45+ cells among conditions. Percentages were compared among primary HIV-infected patients before (Primary HIV, red circles) and

after 1 year of cART (HIV cART, pink squares), HIV-infected elite controller patients (HIV controllers, blue rhombus), and healthy donors (Healthy, green triangles).

Statistical differences between conditions were calculated using a two-tailed unpaired Welch’s t-test with a p-value threshold of 0.05.

FIGURE 4 | Association analysis of myeloid cell cluster abundances with HIV RNA levels and phenotypic characterization. (A) Two-dimensional chart representing the

correlation between myeloid cell clusters abundances and the total HIV RNA. Correlations were identified based on the number of cells associated with each cluster

relative to the number of cells in the CD45+ parent population. Each dot in the representation corresponds to a cell cluster. The size of the dot is proportional to the

number of cells of the whole dataset associated with the cluster. Significantly positively (right) or negatively (left) correlated clusters are indicated in red with a Pearson

correlation coefficient >0.65 and a p < 0.05. The Pearson correlation coefficient is represented on the X-axis and the associated p-value, shown as −log10, on the

Y-axis. (B) Heatmap representation showing the phenotype of the clusters positively and negatively correlated with HIV RNA levels. The relative marker expression for

each cluster was indicated by a five-tiered color scale ranging from white (not expressed) to dark red (highly expressed). Clustering markers are indicated in blue.

Using cluster dendrogram and CD14, CD11c, and CD123 expression level, clusters were annotated as monocyte, cDC or pDC.

We found 20 clusters significantly correlated (CCs) with
plasma viral load (Figure 4A). These clusters were split into
two groups based on the positive or negative correlation of
their cell abundance with HIV RNA load (Figure 4B). On
the one hand, nine clusters that were positively correlated

with viral load were exclusively monocyte populations. On the
other hand, eleven clusters that negatively correlated with viral
load included monocyte and DC populations. The monocyte
clusters that positively correlated with viral load were mainly
characterized by strong expression of CD64 and HLA-I. These
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FIGURE 5 | Characterization of myeloid cell clusters showing significant differences in cell abundance for primary HIV condition. (A) Graph showing the cell

abundance of the clusters #116, #4, #132, #50, #34, and #71 relative to myeloid cells for all samples, and heatmap representation illustrating the phenotype of these

clusters. These six clusters were significantly more abundant under primary HIV (red circles) compared to HIV cART (pink squares), HIV controllers (blue rhombus), and

Healthy (green triangles) conditions. (B) Graph showing the cell abundance of the clusters #70, #13, #92, #9, #21, #47, #52, #11, #107, #58, #78, #17, #61, #51,

and #56 relative to myeloid cells for all samples, and heatmap representation illustrating the phenotype of these clusters. These 15 clusters were significantly less

abundant under primary HIV (red circles) compared to HIV cART (pink squares), HIV controllers (blue rhombus), and Healthy (green triangles) conditions. These

clusters were also significantly less abundant under HIV cART condition compared to HIV controllers condition. In the abundance graph representations, for each

condition, the mean cell abundance is indicated (black lines). Statistical differences between conditions were calculated using a two-tailed unpaired Welch’s t-test with
a p-value threshold of 0.05. For heatmap representations, the relative marker expression for each cluster was indicated by a five-tiered color scale ranging from white

(not expressed) to dark red (highly expressed). Clustering markers are indicated in blue. Using cluster dendrogram and CD14, CD11c, and CD123 expression level,

clusters were annotated as monocyte, cDC or pDC. Clusters positively correlated with HIV RNA levels are indicated with a “+” while clusters negatively correlated are

indicated with a “–”.

clusters also displayed high expression of HIV restriction factor
CD317, and the immunomodulatory receptors LILRA2 and
LILRB4. It is important to note that among them, only some
clusters, displayed a medium or high-level expression of CD38 (a
transmembrane glycoprotein involved in myeloid cell adhesion,
activation, and metabolism). Among the dendritic cell clusters
that negatively correlated with the viral load, pDC cluster #51
(R = −0.65) demonstrated a strong expression of LILRA4 and
LILRB4. Furthermore, cDC clusters #61 (R = −0.59), #58 (R =

−0.66), and #78 (R = −0.60) expressed high levels of LILRB2
inhibitory receptor. Meanwhile, the seven monocyte clusters
that negatively correlated with viral load expressed moderated
levels of HLA-I, CD64, CD317, LILRA2, LILRB4, and CD38,
in contrast to the other monocyte clusters that were positively
correlated with HIV RNA. Interestingly, the negatively correlated
monocyte clusters #13 and #70 displayed a medium and high
expression of LILRB2, respectively, with high coexpression of
CX3CR1 and CD33.
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FIGURE 6 | Characterization of a myeloid cell cluster specifically and significantly more abundant in HIV controller patients. Graph showing the cell abundance of the

cluster #39 relative to myeloid cells for all samples, and heatmap representation illustrating the phenotype of this cluster. Cluster #39 was significantly more abundant

in HIV controllers (blue rhombus) compared to primary HIV (red circles), HIV cART (pink squares), and Healthy (green triangles) conditions. This cluster was also

significantly more abundant in Healthy donors compared to primary HIV infected patients. In the abundance graph representations, for each condition, the mean cell

abundance is indicated (black lines). Statistical differences between conditions were calculated using a two-tailed unpaired Welch’s t-test with a p-value threshold of

0.05. For heatmap representation, the relative marker expression for cluster #39 was indicated by a five-tiered color scale ranging from white (not expressed) to dark

red (highly expressed). Clustering markers are indicated in blue. Using cluster CD14, CD11c, and CD123 expression level, cluster #39 was annotated as cDC.

Our data show that an increase in HIV viral load was
associated with the specific loss of discrete DC populations
in blood. These populations included pDC clusters that were
characterized by high expression of LILRA4 and LILRB4, but also
cDCs highly expressing LILRB2. Conversely, specific subsets of
monocytes strongly expressing HLA-I, CD64, CD317, LILRA2,
LILRB4, and for some of them, CD38, seemed to be enriched
when viral load increased.

Primary HIV-Infected Patients and HIV
Controllers Display Differentially Abundant
Clusters
We then aimed to identify myeloid cell clusters undergoing
contraction or expansion within the different patient groups.
These clusters were named Differentially Abundant Clusters
(DACs) and were summarized in Figure 2C. We first identified
clusters having different cell abundances between healthy and
each HIV+ conditions (Figures S5A–C). We found that DACs
were mainly enriched in healthy condition. This may indicate
expression level modification of surface markers or a loss
in the blood of specific myeloid cell subsets in HIV-infected
patients even under cART or natural control, compared to
healthy donors. We then identified clusters with differences in
cell abundances for the comparisons between all HIV+ groups
(Figures S5D–F). The comparison between HIV controllers and
primary HIV samples displayed the greatest number of DACs,
with 43 out of 52 being more abundant in samples from HIV
controllers (Figure S5F). Conversely, the comparison between
samples from HIV controllers and HIV-infected patients once

under cART displayed the lowest number of DACs, with only 2
DACs more abundant in HIV controllers (Figure S5D). These
changes may indicate important differences in myeloid cell
dynamics between primary HIV+ and HIV-controller patients,
whereas the myeloid cell dynamics between cART treated HIV+

and HIV-controller patients is more similar.
We next analyzed the phenotype and abundance of all DACs

that were significantly more abundant in primary HIV+ patients
when compared to the other conditions (HIV cART, HIV
controllers, and Healthy; Figure 5A). We found that six DACs,
clusters #116, #4, #132, #50, #34, and #71, were more abundant
in primary HIV+ samples and displayed monocyte phenotypes.
Interestingly, these six clusters were positively correlated with
plasma viral load (Figure 4). These results confirmed that
individuals in the primary HIV infection state had a higher
abundance of monocytes that strongly expressed HLA-I, CD64,
CD317, LILRA2, and LILRB4, with some subpopulations also
expressing mid- to high- levels of CD38.

We then focused on DACs that were less abundant in primary
HIV+ patients than in all other conditions (Figure 5B). These
clusters included: monocyte clusters #70, #13, #21, #47, #52,
#11, and #107; cDC clusters #58, #78, and #61; and pDC
cluster #51. These 11 clusters were previously identified as
negatively correlated with viral load. The four remaining DACs
less abundant in primary HIV+ samples displayed monocyte
phenotypes (clusters #92 and #9), and cDC phenotypes (clusters
#17, and #56). Furthermore, cDC clusters #58, #78, #17, and #61
strongly expressed LILRB2 immunoreceptor, with clusters #17
and #61 also expressing CD123, CD86, and CD16. Cluster #56
did not express LILRB2, but strongly expressed CD1c. The pDC
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cluster #51, which was also found correlated with HIV RNA in
Figure 4, strongly expressed LILRA4 and LILRB4. It is interesting
to note that all the DACs that were less abundant in primary
HIV condition had a weaker expression of HLA-I, CD64, CD317,
LILRA2, and LILRB4 compared to clusters more abundant in the
same condition (Figure 5A). In addition, none of these DACs
expressed a medium or high-level of CD38.

One DAC was shown to be more abundant in HIV controllers
compared to other HIV+ and healthy conditions (Figure 6). This
DAC, cluster #39, displayed a CD1c+ cDC phenotype strongly
expressing inhibitory receptor CD32b (low-affinity receptor
for IgG also known as FcγRIIB) and HLA-DR. Furthermore,
this cluster expressed moderate levels of CD32a (activatory
counterpart of CD32b), CD4 and CD33. Using a Kolmogorov–
Smirnov distance (KS) test to quantify the differences in marker
expression between this cluster and all CD1c+ cDC subsets
(Figure S6), we identified CD32b as the marker with the highest
difference (KS = 0.7672). In addition, when we quantified the
differences in marker expression between this cluster and the
other CD32b+ CD1c+ cDC clusters (Figure S7), CD32b was the
second most distant marker (KS = 0.5021). Thus, high CD32b
expression was specific to this CD1c+ cDC subset found enriched
in the blood of HIV controllers.

Altogether, we found that a modification in the balance of
monocyte and DC subpopulations is induced from the early
stages of HIV infection. Monocytes with a strong expression of
HLA-I, CD64, CD317, LILRA2, LILRB4, and CD38 were most
prominent in primary HIV+ patients when compared to cART,
HIV controllers and healthy donors. In addition, primary HIV+

patients had significantly fewer pDCs that expressed high levels
of LILRA4 and LILRB4. Moreover, they had considerably less
LILRB2hi cDCs. Finally, we discovered a unique CD1c+ CD32bhi

HLA-DRhi cDC cluster that was specifically enriched in HIV
elite controllers.

DISCUSSION

DCs and monocytes play an important role in the initiation
of immune responses against HIV. However, the study of their
regulation and dynamics during early HIV infection is hindered
by late disease diagnosis. Moreover, early immune responses
against HIV induce complex concomitant inflammatory and
immunoregulatory events that can be difficult to decipher
through classical approaches. In this regard, we carried out a
mass cytometry analysis to characterize phenotypic heterogeneity
among myeloid cell subpopulations under various conditions of
HIV infection.

Our high dimensional analysis illustrates that specific DC
and monocyte subpopulations found in peripheral blood are
differentially affected by HIV infection. After mapping the
different phenotypes of DC and monocyte subsets from PBMC
samples, we highlighted a global loss of cDC2s and pDCs
under primary HIV-infection in the blood. No DC clusters were
enriched during primary infection, suggesting that this decrease
could result from cell death rather than phenotypic changes (7,
10, 11). However, it is also well-established that cDCs and pDCs

rapidly migrate toward peripheral lymph nodes after HIV or SIV
infection to elicit adaptive immune response (27, 28). Therefore,
the loss of DC subsets observed in primary HIV infection might
result from various physiological mechanisms.

We also investigated the abundance variation of myeloid
cell clusters among the different conditions and determined
their association with HIV RNA level. We found that specific
monocyte clusters were enriched in primary HIV-infected
patients and/or positively correlated with the plasma viral load.
These subpopulations of monocytes expressed high levels of
HLA-I and CD64. In the context of viral infection, HLA-
I molecules present peptides derived from intracellular viral
proteins to CD8+ T lymphocytes to activate their cytolytic
activity (29). CD64 is a high-affinity Fc receptor for IgG,
which allows for immune complex internalization driving
cross-presentation of viral epitopes on HLA-I (30). Thus, it
seems consistent that monocytes positively correlated with
the viral load exhibit strong co-expression of HLA-I and
CD64. Increased HLA-I and CD64 expressions by monocytes
were previously reported in acute and chronic HIV-infection,
respectively (8, 31). However, our data demonstrate further
the strong expression of CD317, LILRA2, and LILRB4 for
these subsets, and for some subclusters, a medium or high-
level expression of CD38. In agreement with our data, the
HIV-restriction factor CD317 was previously shown to be up-
regulated at the surface of monocytes and CD4+ T-cells during
acute HIV/SIV infection (32, 33). The activating immune-
receptor LILRA2 is expressed by monocytes and neutrophils
and recognizes bacterially cleaved immunoglobulin, leading to
the activation of signaling pathways and subsequent immune
responses (34). However, LILRA2 can selectively modulate LPS-
mediated cytokine production by monocytes, and could inhibit
CD64-dependent phagocytosis (35). Finally, increased expression
of LILRB4 was shown to induce tolerogenic monocytes and
cDCs (8, 36–38). Previous studies have also demonstrated that
LILRB4 interaction with CD64 is a potent inhibitor of monocyte
activation, and CD64-mediated clathrin-dependent endocytosis
and phagocytosis (39, 40). Thus, expression of these molecules
could explain the dysregulated ability of phagocytosis and
cytokine production observed in monocytes from HIV+ patients
(41). The up-regulation of inhibitory receptors on immune cells
could also constitute a retro control mechanism to dampen
chronic inflammation.

Conversely, monocyte clusters that were negatively correlated
with viral load, and/or less abundant in primary HIV-infected
patients, did not exhibit high level expression of HLA-I, CD64,
CD317, LILRA2, LILRB4, and CD38. Therefore, these monocyte
subpopulations seemed to be specifically differentiated and/or
contracted under primary HIV infection. Our mass cytometry
panel included CD16 marker to detect inflammatory monocytes.
However, we only detected few clusters of CD16hi cDCs and no
CD16hi monocyte clusters. The attenuation of CD16 staining on
monocytes could result from the freezing procedure of PBMCs
that was shown to modify staining of some FcRs on specific cell
subsets (42).

Among the DC populations characterized in our study, the
clusters of cDCs that highly expressed LILRB2, and a cluster
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of pDCs that highly expressed LILRA4 and LILRB4, were also
less abundant in primary HIV-infected patients. The majority
of these clusters were also negatively correlated with plasma
viral load. Functional studies indicate that cDCs and pDCs show
dysregulated functions in early and chronic HIV/SIV infections.
cDCs have an impaired maturation with reduced capacity for
antigen presentation and cytokine production, whereas pDCs
have reduced capacities to produce type-I IFNs (1, 9, 13, 43–
45). In this respect, HIV infection enhances LILRB2/HLA-I and
LILRA4/CD317 axes leading to the dysregulation of cDC and
pDC functions, respectively (8, 9, 13, 46–49). Moreover, it has
been reported that the strength of the LILRB2/HLA-I interaction
is enhanced by HLA-I presentation of HIV-derived peptides, or
genetic variation of HLA-I haplotypes, and correlates with the
level of cDC dysregulation in HIV-infected patients (46, 47).
Previous studies showed that LILRB2 was up-regulated on cDCs
from blood in the acute phase of HIV and SIV infection (9, 10).
LILRB2 expression was even higher in cDCs from peripheral
lymph nodes than those from peripheral blood during early SIV
infection (10). Therefore, in our study, the loss of LILRB2hi cDC
and LILRA4hi pDC clusters observed in the blood from primary
HIV infected patients could correspond in part to the migration
of these subpopulations toward secondary lymphoid organs.
Consequently, inhibitory impulses induced by the LILRB2/HLA-
I and LILRA4/CD317 axes on cDCs and pDCs that havemigrated
into secondary lymphoid organs during primary HIV infection
may enhance their dysfunctions and impaired the establishment
of an effective adaptive immune response.

We also found that HIV controllers had an enrichment
of a CD1c+ CD32bhi HLA-DRhi cDC cluster. These data are
concordant with the recent discovery of a new CD1chi, CD32bhi

cDC subset, using a single-cell RNA sequencing approach
(50). This cDC subset was a potent stimulator of naive T-
cell proliferation, and was more likely to secrete high levels
of CCL19, IL-8, IL-10, and IL-12b (50). However, further
studies will be necessary to better characterize the function of
this DC subset in the context of HIV infection, in particular
its implication in the mechanisms leading to the natural
control of viral replication in elite controller patients. Since
natural control of HIV infection can occur through various
mechanisms, it will be important to also characterize the
abundance of CD1c+ CD32bhi HLA-DRhi cDCs in additional
elite controller patients, to assess whether this feature is shared
by all elite controllers.

New populations of cDCs, called pre-DCs, were recently
identified in the peripheral blood from healthy donors (51).
These populations can differentiate into cDC1 or cDC2 subsets
in vitro and were proposed to be cDC precursors. However,
the relationship between pre-DCs and HIV infection is still
unknown. Therefore, future mass cytometry studies including
additional dendritic cell markers such as CD141, CD2, Siglec-6,
and Axl will be helpful to better understand the dynamics and
regulation of cDC1 and pre-DC subsets during HIV infection.

In conclusion, our results unravel the diversity and various
phenotypic changes induced in cDCs, pDCs, and monocytes
during early stage, anti-retroviral treatment control, and
naturally controlled HIV infections. These results should be

helpful when trying to better understand the cellular and
molecular basis of the events driving the regulation/dysregulation
of myeloid immune responses involved in the progression or
control of HIV infection.

MATERIALS AND METHODS

Study Subjects and Ethics Statements
This study involved six patients with primary HIV-1 infection
estimated, as previously described (17), to have been infected
<30 days before inclusion. These patients were enrolled from
the French ANRS CO6 PRIMO cohort and has approval by
the Ethics Committee of Cochin Hospital. Blood samples were
collected from patients at enrolment, who were antiretroviral
naïve and negative for hepatitis B and C viruses. The six primary
HIV-infected patients were then placed under cART, and blood
samples were collected after 1 year. As previously described
for these individuals (24), after 1 year of cART viral load was
undetectable and CD4+ T cell count was restored (CD4+ T cells
> 500/µl of blood). This study also involved blood samples of six
HIV controller patients from the French ANRS CO21 CODEX.
This cohort was approved by the ethics review committee of Ile
de France VII. HIV controllers were defined as patients infected
by HIV-1 for at least 5 years, who never received cART and
whose last five consecutive plasma HIV RNA values were <400
copies/ml. Finally, blood samples of six healthy subjects were
obtained from the Etablissement Français du Sang (EFS). All
subjects gave written informed consent to participate in the study.

Sample Processing and Storage
As previously described (24), peripheral blood mononuclear cells
(PBMCs) were isolated by Ficoll density gradient centrifugation,
and∼1× 107 PBMCs per sample were cryopreserved at−150◦C.

Antibody Labeling and Cell Staining
To avoid batch variation effects, all samples were stained
with the same batch of antibodies and on the same day. All
samples were acquired in 1 day to avoid instrument signal
fluctuation. Antibodies (listed in Table S1) were either pre-
conjugated from themanufacturer (Fluidigm, San Francisco, CA)
or conjugated in-house with the appropriate metal isotopes as
previously described (24). Cells were thawed and 5.106 PBMCs
were transferred per well. As previously described (24), PBMCs
were incubated with RhodiumDNA-intercalator (Fluidigm), first
stained with the primary surface antibody mix for 1 h, and then
stained with the secondary surface antibodymix for 15min. Next,
samples were resuspended in 1.6% PFA and incubated 20min.
Cells were finally incubated 30min in permeabilization buffer
with 1µM Iridium DNA-intercalator before a 4◦C overnight
incubation in 1.6% PFA with 0.1µM Iridium DNA intercalator.
For acquisition, cells were washed and filtered through a cell
strainer cap of a 5-ml polystyrene round-bottom tube (BD
Biosciences). Normalization beads (Fluidigm) were added to each
sample. Then, samples were acquired using a mass cytometer
(CyTOF-I; Fluidigm) and following the standard procedure
recommended by the manufacturer. An average of 200,264 ±

13,472 events was acquired per sample.
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Data Normalization
Raw cytometry profiles generated by CyTOF-I were normalized
using normalization beads and MatLab Compiler normalizer
software (52).

Manual Gating of CD45+ Myeloid Cells
Normalized events were gated using the Cytobank analysis
platform. First, cells with only one Iridium level were selected
to exclude cell doublets from the analysis. Second, normalization
beads and dead cells were removed by selecting cells negative for
Cerium (Ce140) and Rhodium, respectively. Thirdly, leukocytes
were selected based on the positive expression of CD45. Myeloid
cells were then selected based on the absence of CD3, CD19, and
NKp80, and expression of HLA-DR (Figure S1).

Automatic Identification of Cell Clusters
SPADE algorithm was used to perform automatic identification
of cell clusters (25). We observed large differences in the number
of manually gated myeloid cells in each sample, ranging from
2,255 to 35,658 cells. Consequently, we first down-sampled 2,255
cells from each sample to avoid over-representation of samples
with high number of cells. These uniformly down-sampled events
were up-sampled at the end of the SPADE analysis. The SPADE
clusters were generated using the entire and singular dataset
(24 samples from 18 individuals, including 6 during primary
infection and 1 year later after effective cART). Cells having
similar expression of the 23 selected clustering markers (shown
in blue in Figure 1) were grouped into clusters, regardless of
donor origin. Moreover, SPADE was configured to identify 150
cell clusters (down-sampling of 40%). These parameters were
defined to obtain the highest number of clusters with uniform
phenotypes (26). The SPADE heatmap was generated with the
SPADE clusters using the 23 clustering markers. CD45, CD3,
CD19, andNKp80 were discarded from the SPADE analysis as we
used them to pre-select cells of interest. Both CX3CR1 and CD33
markers were not included in the set of clustering markers due to
their high heterogeneity of expression among samples. However,
CX3CR1 and CD33 were added to the 23 clustering markers on
heatmaps for the phenotypic characterization of myeloid cells.

Phenotypic Characterization of Identified
Cell Clusters
We used the SPADEVizR R-package to perform the phenotypic
categorization of the 150 cell clusters (26). Expression level
of each marker was classified into five categories, which were
defined based on the range of expression (5th−95th percentile)
relative to the myeloid population gate across all samples. The
five uniform categories represent negative, low, medium, high,
and very high levels of marker expression. The categories of
expression were displayed using a color scale, which ranged from
white to dark red. The dendrogram, represented in the heatmap,
was constructed using Euclidian distance and the complete
linkage method.

There were 36 clusters that displayed a lymphoid phenotype
(based on the negative expression of CD33, CD123, CD14, and
LILRB3), which were identified among the total 150 cell clusters
andwere removed from the SPADE analysis to leave onlymyeloid
cell clusters. Additionally, 11myeloid cell clusters with<350 cells

associated were removed from the analysis, as their phenotypes
cannot be assessed accurately. Thus, 103 myeloid cell clusters
were remaining from the 150 SPADE clusters.

Families of cell clusters were determined using hierarchical
clustering, represented by a dendrogram on the top of the
marker categorical heatmap. Thanks to this clustering method,
cell clusters with similar marker expression profiles were grouped
together in the heatmap. The dendrogram was cut so that
the different cluster families with homogeneous expression
profiles were separated. This resulted in 12 different cluster
families. These cluster families were also represented in a tSNE
representation. The tSNE representation was generated using
the original 23 clustering markers and Barnes-Hut t-Distributed
Stochastic Neighbor Embedding (53), based on a perplexity
parameter of 3. Distances between cell cluster phenotypes were
calculated based on the Manhattan distance.

Identification of Differentially Abundant
Clusters and Correlating Clusters
We used the SPADEVizR R-package to identify differentially
abundant clusters (DACs), and correlated clusters (CCs) (26).
DACs identification was based on the percentage of cells in the
clusters, relative to total myeloid cells by unpaired Student t-
tests (absolute fold-change > 2 and p < 0.05). CCs identification
was based on the percentage of cells in clusters relative to the
total myeloid cells that correlated with HIV RNA levels (absolute
Pearson correlation coefficient > 0.65 and p < 0.05).

Quantification of Cluster #39 Phenotypic
Specificity
Detailed phenotypic characterization of cluster #39 relative to
CD1c+ cDC and CD32b+ CD1c+ cDC clusters was performed
using CytoCompare R-package (54), based on the Kolmogorov-
Smirnov distance, using a threshold of 0.30.

Statistical Analysis of Cluster Abundances
Among Conditions
A two-tailed unpaired Welch’s t-test, with a p-value threshold of
0.05, was used to compare the percentages of cDC2 and pDC
among CD45+ cells and the differences in cluster cell abundance
between each biological condition. All statistical analyses were
performed using GraphPad Prism 7.0 (GraphPad Software).
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Figure S1 | Myeloid gating strategy. “Singlets” were identified using cell length vs.

Ir191-DNA intercalator and calibration beads signal was excluded (cells no beads).

Living leukocytes were identified by selecting Rhodium (Rh103)Di-negative cells,

and then CD45+ cells. Finally, myeloid cells were identified by gating on CD3−,

CD19−, and then NKp80− HLA-DR+ cells.

Figure S2 | Categorization of marker expressions. Marker expression ranges were

used to characterize the phenotypes of identified SPADE clusters. Ranges of

marker expression were obtained after manual gating of myeloid cells and are

presented as arcsine transformed Mean Signal Intensity (MSI) signals. The range

of expression for each marker was defined based on the 5th−95th percentiles of

expression throughout the dataset, and were divided into five categories

represented using a five-tiered color scale ranging from white (not expressed) to

dark red (highly expressed). For each expressed marker of a particular cluster, the

average of the median marker expression level was used to determine the

expression category of that marker. Combined marker ranges define the

phenotype of each cluster. Clustering markers are shown in blue.

Figure S3 | tSNE representation showing the phenotypical similarities between

cell clusters identified by SPADE. Each dot corresponds to a cell cluster and the

dots are positioned in a 2-dimensional space that best represents the

phenotypical proximity between cell clusters. Cell clusters have been colored

based on their associated cell cluster family, blue for monocyte families, red for

cDC families and green for pDC family.

Figure S4 | Cell number in each myeloid SPADE cluster. This representation

shows the number of cells associated with each myeloid cell cluster, regardless of

sample cell origin. Cluster names are indicated on the X-axis and the

corresponding number of cells on the Y-axis. The size of the dots is proportional to

the number of cells in the cluster. Cell clusters are ordered based on the

dendrogram represented in Figure 2.

Figure S5 | Identification of differentially abundant clusters for each biological

condition comparison. (A–C) Volcano plot representations showing Differentially

Abundant Clusters (DACs) in HIV controllers, primary HIV and HIV cART samples

compared to Healthy samples. (D–F) Volcano plot representations showing DACs

in HIV controllers and primary HIV samples compared to HIV cART samples and

HIV controllers compared to primary HIV samples. Each dot in the representation

corresponds to a cell cluster and is proportional in size to the number of cell

associated. Log2 fold-changes are indicated in the X-axis, and the associated

p-values, shown as −log10, are indicated in the Y-axis. DACs were identified using

a paired Student t-test with a p-value threshold of 0.05 and a fold-change cutoff

of 2. Red dots correspond to significantly abundant clusters.

Figure S6 | Marker expression densities showing the phenotypic specificity of

cluster #39 relative to CD1c+ cDC clusters. The expression densities of all

clustering markers, as well as CD33 and CX3CR1 are shown for cluster #39 and

CD1c+ cDC clusters. The marker expression densities for cluster #39 are shown

in blue whereas the marker expression densities for all CD1c+ cDC clusters are

shown in gray. The differences between marker expression densities were

quantified using the Kolmogorov–Smirnov distances (KS) using the entire and

singular dataset.

Figure S7 | Marker expression densities showing the phenotypic specificity of

cluster #39 relative to CD32b+ CD1c+ cDC clusters. The expression densities of

all clustering markers, CD33 and CX3CR1 are shown for cluster #39 and CD32b+

CD1c+ cDC clusters. The marker expression densities for cluster #39 are shown

in blue whereas the marker expression densities for all CD32b+ CD1c+ cDC

clusters are shown in gray. The differences between marker expression densities

were quantified using the Kolmogorov–Smirnov distances (KS) using the entire

and singular dataset.

Table S1 | Overview of the mass cytometry panel. The metal, antigen, clone,

isotype, and supplier are indicated for each antibody. ∗Not used for cell clustering.
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