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Abstract

In this paper, we propose an analysis method for the so-called grid orientation e�ect (GOE)
in the numerical simulation of two-phase �ows in porous media. The GOE, which occurs when
using coupled �nite volume schemes on structured grids, is well known to engineers. Several
attempts, most of which are of empirical nature, have been put forward in order to alleviate
this undesirable phenomenon. Here, our approach relies on a more rigorous notion of angular
error for all directions, which in turn enables us �via integration and minimization� to
single out the �least anisotropic� scheme within a given family of schemes depending on some
tuning parameter(s). Numerical test problems testify to the improvement brought by the new
construction. grid orientation e�ect; reservoir simulation; �nite volume schemes; nine-point
scheme.

1 Introduction

In oil reservoir simulation, engineers are often faced with a phenomenon called grid orientation
e�ect (GOE). This unpleasant e�ect arises when coupled �nite volume schemes are used on struc-
tured grids in order to simulate the thrust of a viscous �uid (heavy oil) by a less viscous one
(water), which is typical of an injection scenario for enhanced oil recovery. The GOE gives rise to
a more or less marked distortion of the computed solution whereas, in particular, the exact solution
is radial, as illustrated in Figure 1. As a consequence, the simulation of predicted production of a
well also depends on the grid orientation and may not be accurate.

1.1 A simpli�ed model of two-phase �ow in porous media

We �rst present the model under consideration in this paper, which is a simpli�ed version of the
isotherm Dead Oil [17] corresponding to an oil and water mixture without capillary pressure and
gravity. Let Ω ⊂ R2 be a bounded open connected domain with a regular boundary. The two-phase
�ow is characterized by the common pressure p(x, t) > 0 and the water saturation s(x, t) ∈ [0, 1],
where x = (x, y) ∈ Ω and t ≥ 0 are respectively space and time variables. These quantities of
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interest solve

u = −κλ(s)∇p, (1.1a)

div(u) = q, (1.1b)

φ∂ts+ div(f(s)u) = qw, (1.1c)

where the total velocity u(x, t) is given by the Darcy-[24] law (1.1a), and

λ(s) =
κr,w(s)

µw
+

κr,o(1− s)
µo

(1.2)

is the total mobility. From now on, equation (1.1b) is referred to as the pressure equation, since it
gives −div(κλ(s)∇p) = q when combined with (1.1a). The symbol κ stands for the permeability
tensor, restricted here to be a scalar. The water relative permeability κr,w(s) is an increasing
function of s, while the oil relative permeability κr,o(1− s) is a decreasing function of s. Moreover,
the two scalars µw > 0 and µo > 0 denote the water and oil viscosities. The quantity φ(x) ∈ [0, 1]
represents the (known) porosity of the medium. Without loss of generality, we impose φ ≡ 1 in
the present work.

The water fractional �ow f(s) in (1.1c) is de�ned as

f(s) =
κr,w(s)/µw

κr,w(s)/µw + κr,o(1− s)/µo
, (1.3)

where we have set κr,w(s) = κ]r,w κ∗r,w(s) and κr,o(1− s) = κ]r,o κ
∗
r,o(1− s). The normalized relative

permeabilities κ∗r,w(s) and κ∗r,o(1 − s) are assumed to be in [0, 1], while κ]r,w and κ]r,o are given
dimensionless constants. Examples of explicit values for κr,w(s) and κr,o(1 − s) can be found in
[5]. The water fractional �ow f is a smooth positive and non-decreasing function of s, i.e., f ≥ 0
and f ′ ≥ 0 for s ∈ [0, 1]. It can be put under the reduced form

f(s) =
Mκ∗r,w(s)

Mκ∗r,w(s) + κ∗r,o(1− s)
, where M =

µoκ
]
r,w

µwκ
]
r,o

(1.4)

is the mobility ratio between the displacing water and the displaced oil. It can be shown [7] that
M measures, in some sense, the sti�ness of the problem. Indeed, as soon as M is larger than
some critical threshold, the system (1.1) turns out to be unstable and thus ampli�es the numerical
errors. In such a context, the errors due to the GOE may become prevailing.

In the right-hand sides in (1.1), the quantities q and qw are source terms expressing the produced
or injected total and water �ow in the domain. Equipped with appropriate boundary and initial
conditions, model (1.1) is usually discretized in time by the IMPES strategy [1].The pressure p is
�rst solved implicitly by some �nite volume discretization in space of the pressure equation (1.1b).
Next, the saturation s is then updated explicitly by some �nite volume discretization in space of
the saturation equation (1.1c).

1.2 Review of literature on the GOE

Over structured grids, the simplest scheme for the pressure equation (1.1b) is the so-called �ve-
point scheme, which we abbreviate to 5P. In the �nite-volume world [14], the 5P scheme is also
known as the TPFA (Two-Point Flux Approximation) scheme. For a Cartesian mesh, [1] and [32]
demonstrated that the GOE of the �ve-point scheme dominates the numerical solution of (1.1)
under adverse the mobility ratio, i.e., when M is above some critical threshold. Such failure is
displayed in the right panel of Figure 1, where we clearly see that the injected �uid is in advance
along the axes of the grid but is late along the diagonals of the grid. Moreover, re�ning the mesh
does not signi�cantly reduce the GOE [4].

In an attempt to alleviate the GOE, [33] advocated a nine-point (9P) scheme obtained by
superimposing two 5P schemes associated with two square grids rotated by π/4 relative to each
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Figure 1: Grid orientation e�ect. Left: M = 0.8; right: M = 200.

other. By involving diagonal neighbors into the stencil, the resulting scheme signi�cantly reduces
the GOE over square meshes and met an instant success. Two generalizations of the Yanosik-
McCracken scheme to rectangular meshes were then proposed by [29] and by [8]. The di�erence
between these two versions lies in the weighting heuristic for the diagonal cells. For this weighting,
[13] put forward a more rigorous error analysis leading to a new 9P scheme. Since then, the
9P philosophy has been extended to other porous two-phase models, for example to account for
dispersion [19, 30]. The objectionable aspect of these works is that the error analysis �whenever
available� is only concerned with the pressure, while the quantity of interest is the saturation.
Improving on a previous work by [11] and relying on an analysis of the saturation equation, [15]
designed another 9P scheme over square meshes. This methodology is more satisfactory from the
theoretical standpoint. However, since the basic idea is to request that the di�usion matrix of the
equivalent equation be invariant by a π/4-rotation, the extension to rectangular meshes does not
seem obvious.

In the above-mentioned approaches, the numerical �uxes of the pressure equation (1.1b) are �rst
altered (in structure and values) by taking diagonal cells into the pressure stencil. The modi�cation
of the numerical �uxes for the saturation stencil follow suit as an automatic consequence of normal
upwinding (see �2 for more details). A natural alternative, investigated by [20, 21, 22] is to
focus on more sophisticated discretizations of the saturation equation. This brings out a lot of
connections with �genuinely� multidimensional transport schemes for linear advection [9, 28, 12, 2].
Unfortunately, multidimensional advection schemes need exact or highly accurate velocity �elds,
which cannot be achieved if no e�ort is dedicated to the pressure equation.

1.3 Objectives and outline of this paper

To our knowledge, the work by [15] �along with [31] for miscible �ows� is the �rst contribution
to the GOE issue in which the saturation equation plays a major role and in which the idea of a
�good� parameter is highlighted. In the present work, we wish to carry out a mathematical analysis
over rectangular meshes of various coupled �nite volume schemes for (1.1) where a few degrees of
freedom are available. Our ultimate goal is to de�ne the �best� choice that would minimize the
GOE in a quantitative sense to be clari�ed.

In �2, we consider two families of schemes for (1.1) containing tuning parameters. The �rst
one, de�ned in �2.1 and called 9P1s, has a scalar tuning parameter θ that allows several �historical�
schemes such as [33, 29, 8, 13] to appear as special cases of a uni�ed framework. The second one,
de�ned in �2.2 and called 9P2s, has two scalar tuning parameters θ = (θx, θy), a novelty that we
introduce in order to further reduce the GOE.

In �3, we tackle the problem of optimizing these tuning parameters. The same strategy, �rst
laid out in 3.1 for simplicity, is applied to the 9P1s family in 3.2 and to the 9P2s family in 3.3. By
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resorting to Taylor expansion and/or Fourier analysis under simplifying assumptions, we succeed
in assigning a measure of the angular error to each direction in space. Then, by minimizing the
integrated squared di�erence between this angular error and some ideal behaviour, we are in a
position to determine the optimal parameters for each scheme. These optimal values coincide with
some formerly proposed values in the literature. Finally, numerical experiments in �4 corroborate
our theoretical developments on two test problems.

2 Coupled �nite volume schemes with tuning parameters

System (1.1) is usually discretized in time using the IMPES technique [1] where the pressure p is
solved implicitly in a �rst step and the saturation s is solved explicitly (at least for the convection
part) in a second step. Using a semi-discrete formulation, the IMPES scheme reads

un+1 = −κλ(sn)∇pn+1, (2.1a)

div(un+1) = qn+1, (2.1b)

∆t−1(sn+1 − sn) + div(f(sn)un+1) = qn+1
w , (2.1c)

where the time-step ∆t > 0 must be restricted by a CFL-like condition [27].
Regarding the discretization in space of the two divergence operators in (2.1), there are two

�nite volume schemes, one for the pressure equation (2.1b) and another one for the saturation
equation (2.1c). The latter is deduced to the former by normal upwinding. In this section, we
describe two discretizations in space, namely: (i) in �2.1.2, the 9P1s scheme which makes use of
one scalar parameter; (ii) in �2.2.2, the 9P2s scheme which makes use of two scalar parameters.
For each method, we �rst present the discretization of the pressure equation (2.1a)�(2.1b) before
exposing the discretization of the saturation equation (2.1c).

The domain Ω is divided into uniform rectangular cells

Ki,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2)

of side lengths (xi+1/2−xi−1/2, yj+1/2−yj−1/2) = (∆x,∆y) ∈ (R+
∗ )2. We denote by xi,j = (xi, yj)

the center of the cell Ki,j . We restrict ourselves to rectangular meshes since they are widely used
in most reservoir simulation software.

2.1 The 9P1s scheme

The 9P1s family includes several classic schemes in a uni�ed formulation.

2.1.1 9P1s for pressure

Let us �rst assume that the coe�cient of ∇p is uniform in space, that is,

κλ(s) ≡ 1. (2.2)

The semi-discretized pressure equation (2.1a)�(2.1b) then boils down to −∆p = q, where we have
omitted the superscript n+ 1 for the sake of clarity. Our objective is to combine the 1-D discrete
Laplace operators per direction

(−∆x
hp)i,j =

−pi−1,j + 2pi,j − pi+1,j

∆x2
, (−∆y

hp)i,j =
−pi,j−1 + 2pi,j − pi,j+1

∆y2
, (2.3)

into a 2-D discrete Laplace operator with a �more isotropic� behavior. The combination we consider
is

(−∆θ
hp)i,j = θ(−∆x

hp)i,j+1 + (1− 2θ)(−∆x
hp)i,j + θ(−∆x

hp)i,j−1

+ θ(−∆y
hp)i+1,j + (1− 2θ)(−∆y

hp)i,j + θ(−∆y
hp)i−1,j , (2.4)
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where the tuning parameter θ is restricted to [0, 1/2] in order to ensure that each directional
combination is convex. The fully expanded stencil of −∆θ

h reads

(−∆θ
hp)i,j =− αpi−1,j+1 − βypi,j+1 − αpi+1,j

− βxpi−1,j + (4α+ 2βx + 2βy)pi,j + βxpi+1,j

− αpi−1,j−1 − βypi,j−1 − αpi+1,j−1,

with

α = θ

(
1

∆x2
+

1

∆y2

)
, βx =

2θ

∆y2
− 1− 2θ

∆x2
, βy =

2θ

∆x2
− 1− 2θ

∆y2
.

For θ = 0, −∆θ
h degenerates to the standard 5P scheme, also known as TPFA (Two-Point Flux

Approximation) in the �nite volume world. For θ = 1/6, −∆θ
h can be derived from the Q1 �nite

element method on the dual rectangular mesh. For θ = 1/12, −∆θ
h coincides with the Yanosik-Ding

9P scheme [33, 13], although these authors do not present it in this way. The parameter θ is not
aimed at increasing the order of accuracy for the approximation. Rather, it is aimed at changing
the spatial distribution of error, as shown by the forthcoming statement.

Theorem 2.1. If p is a smooth function of x and if ∆x,∆y are small enough, then

(−∆θ
hp)i,j = (−∆p)(xi,j)−

[
1
12∆x2 ∂xxxxp+ 1

12∆y2 ∂yyyyp(xi,j) + θ(∆x2 + ∆y2) ∂xxyyp
]
(xi,j)

+O(∆x4) +O(∆y4) +O(∆x2∆y2). (2.5)

Proof. Starting from the basic 1-D properties

(−∆x
hp)i,j = −∂2

xxp(xi,j)− 1
12∆x2 ∂xxxxp(xi,j) +O(∆x4),

(−∆y
hp)i,j = −∂2

yyp(xi,j)− 1
12∆y2 ∂yyyyp(xi,j) +O(∆y4),

we carry out Taylor expansions around xi,j by brute force and the proof is completed.

For a square mesh (∆x = ∆y = h), Theorem 2.1 implies

(−∆θ
hp)i,j = (−∆p)(xi,j)− 1

12h
2
[
∂xxxxp+ ∂yyyyp+ 24θ ∂xxyyp

]
(xi,j) +O(h4).

Therefore, as soon as θ = 1/12,

(−∆θ
hp)i,j = (−∆p)(xi,j)− 1

12h
2 ∆∆p(xi,j) +O(h4). (2.6)

If p is radial, its bi-Laplacian ∆∆p is also radial. It follows from (2.6) that the error between
−∆θ

hp and −∆p is then radial, which re�ects the desired isotropic behavior. [33] and [13] did not
use the same argument but arrived at the same scheme. In �3.1, we will demonstrate that even for
a rectangular mesh (∆x 6= ∆y), the �optimal� parameter remains θ = 1/12 in a sense that will be
made rigorous.

Ki,jKi−1,j

Ki,j−1

Ki,j+1

Ki+1,j

Ki+1,j−1

Ki+1,j+1Ki−1,j+1

Ki−1,j−1

∆x

∆y

∆x

∆y

Figure 2: Nine-point stencil (left) and orientation of numerical �uxes (right).
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In order to extend the discretization to the general case κλ(s) 6≡ 1, let us reformulate −∆θ
h

in the �nite volume language. Multiplying the stencil (2.4) by the measure ∆x∆y of a cell and
rearranging the right-hand side, we obtain the discrete �ux balance

∆x∆y(−∆θ
hp)i,j = F θi+1/2,j − F

θ
i−1/2,j + F θi,j+1/2 − F

θ
i,j−1/2

+ F θ↗i+1/2,j+1/2 − F
θ↗
i−1/2,j−1/2 + F θ↖i−1/2,j+1/2 − F

θ↖
i+1/2,j−1/2, (2.7)

where we have set

F θi+1/2,j = [z − 2θ(z + z−1)](pi,j − pi+1,j), (2.8a)

F θi,j+1/2 = [z−1 − 2θ(z + z−1)](pi,j − pi,j+1), (2.8b)

F θ↗i+1/2,j+1/2 = θ(z + z−1) (pi,j − pi+1,j+1), (2.8c)

F θ↖i−1/2,j+1/2 = θ(z + z−1) (pi,j − pi−1,j+1), (2.8d)

using the ratio between the mesh sizes

z =
∆y

∆x
. (2.9)

The selected orientation of the eight numerical �uxes involved in (2.7) is displayed in Figure 2.
The arrows ↗ and ↖ indicate the direction in which the �ux takes a positive value.

The reformulation (2.7)�(2.8) naturally suggests the scheme

F θi+1/2,j − F
θ
i−1/2,j + F θi,j+1/2 − F

θ
i,j−1/2

+ F θ↗i+1/2,j+1/2 − F
θ↗
i−1/2,j−1/2 + F θ↖i−1/2,j+1/2 − F

θ↖
i+1/2,j−1/2 = ∆x∆y qi,j (2.10)

for the pressure equation (2.1b) in the general case κλ(s) 6≡ 1, where the numerical �uxes

F θi+1/2,j = κλ̃(sni,j , s
n
i+1,j)[z − 2θ(z + z−1)](pn+1

i,j − p
n+1
i+1,j), (2.11a)

F θi,j+1/2 = κλ̃(sni,j , s
n
i,j+1)[z−1 − 2θ(z + z−1)](pn+1

i,j − p
n+1
i,j+1), (2.11b)

F θ↗i+1/2,j+1/2 = κλ̃(sni,j , s
n
i+1,j+1)θ(z + z−1) (pn+1

i,j − p
n+1
i+1,j+1), (2.11c)

F θ↖i−1/2,j+1/2 = κλ̃(sni,j , s
n
i−1,j+1)θ(z + z−1) (pn+1

i,j − p
n+1
i−1,j+1), (2.11d)

are now de�ned by the harmonic mean λ̃(sL, sR) = 2λ(sL)λ(sR)/[λ(sL) + λ(sR)] [14].
Since the factors z − 2θ(z + z−1) and z−1 − 2θ(z + z−1) appear in the �uxes (2.8a)�(2.8b), it

is advisable to impose the restriction

0 ≤ θ ≤ min(1, z2)

1 + z2
=: θM , (2.12)

so that the 9P1s horizontal and vertical �uxes (2.8a)�(2.8b) have the same signs as their 5P
counterparts z(pi,j − pi+1,j) and z

−1(pi,j − pi,j+1).

2.1.2 9P1s for saturation

Once the pressure �eld is computed, the saturation equation (2.1c) can be discretized with a scheme
having a similar nine-point and eight-�ux structure. More speci�cally,

∆x∆y∆t−1(sn+1
i,j − s

n
i,j) +Gθi+1/2,j −G

θ
i−1/2,j +Gθi,j+1/2 −G

θ
i,j−1/2 (2.13)

+Gθ↗i+1/2,j+1/2 −G
θ↗
i−1/2,j−1/2 +Gθ↖i−1/2,j+1/2 −G

θ↖
i+1/2,j−1/2 = ∆x∆y qw;i,j ,

6



where the �uxes are upwinded according to [16] as

Gθi+1/2,j = f(sni,j)[F
θ
i+1/2,j ]

+ + f(sni+1,j)[F
θ
i+1/2,j ]

−, (2.14a)

Gθi,j+1/2 = f(sni,j)[F
θ
i,j+1/2]+ + f(sni,j+1)[F θi,j+1/2]−, (2.14b)

Gθ↗i+1/2,j+1/2 = f(sni,j)[F
θ↗
i+1/2,j+1/2]+ + f(sni+1,j+1)[F θ↗i+1/2,j+1/2]−, (2.14c)

Gθ↖i−1/2,j+1/2 = f(sni,j)[F
θ↖
i−1/2,j+1/2]+ + f(sni−1,j+1)[F θ↖i−1/2,j+1/2]−, (2.14d)

where [F ]+ = max(F, 0) and [F ]− = min(F, 0) are respectively the positive and negative parts of
F . The term qw;i,j expresses the source term which is set to zero from now on.

The scheme (2.13)�(2.14) must be supplemented by a CFL-like condition so as to guarantee
the maximum principle for the saturation, at least in regions where both source terms vanish. For
this purpose, let us introduce

σ(sL, sR) =

{
f ′(sL) if sL = sR,
f(sR)−f(sL)

sR−sL otherwise;

and the quantities

σi+1/2,j = σ(sni,j , s
n
i+1,j), σi+1/2,j+1/2 = σ(sni,j , s

n
i+1,j+1),

σi,j+1/2 = σ(sni,j , s
n
i,j+1), σi−1/2,j+1/2 = σ(sni,j , s

n
i−1,j+1),

which are all non-negative since f is an non-decreasing function. For each cell Ki,j , let

〉σF θ〈i,j=− σi+1/2,j [F
θ
i+1/2,j ]

− + σi−1/2,j [F
θ
i−1/2,j ]

+ − σi,j+1/2[F θi,j+1/2]− + σi,j−1/2[F θi,j−1/2]+

− σi+1/2,j+1/2[F θ↗i+1/2,j+1/2]− + σi−1/2,j−1/2[F θ↗i−1/2,j−1/2]+

− σi−1/2,j+1/2[F θ↖i−1/2,j+1/2]− + σi+1/2,j−1/2[F θ↖i+1/2,j−1/2]+

be its total incoming �ux.

Proposition 2.1. If qi,j = qw;i,j = 0 at some cell Ki,j and

∆t

∆x∆y
〉σF θ〈i,j ≤ 1, (2.15)

then sn+1
i,j is a convex combination of sni,j and its eight neighboring saturations at time n.

Proof. Multiplying the pressure balance (2.10) by f(sni,j), subtracting the product from the satu-
ration balance (2.13), splitting F = [F ]+ + [F ]− for each �ux and involving the σ's, we manage to
express sn+1

i,j as a combination of sni,j and its eight neighbours, the coe�cients of which depend on
the data. We refer the readers to [3] for more details.

From this Proposition, we deduce the stability condition to be imposed as

∆t

∆x∆y
max
i,j
〉σF θ〈i,j ≤ 1. (2.16)

We postpone the error analysis to �3.2, where we will see that the approximation in saturation
remains of �rst-order with respect to (∆x,∆y). The parameter θ does not improve the order of
accuracy. It is simply aimed at reshaping the error distribution in space.

2.2 The 9P2s scheme

We wish to push further the generalization of 9P schemes by considering two tuning parameters
instead of one. After all, since we have two privileged directions x, y, two grid-steps ∆x,∆y, it
seems natural to have θx, θy in the de�nition of the scheme. Besides, it is expected that having
two degrees of freedom at our disposal will help us �ght the GOE more e�ciently. The di�culty,
however, lies in preserving the �nite-volume �ux balances when introducing a second parameter.
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2.2.1 9P2s for pressure

As in �2.1.1, let us start with the uniform case (2.2). To discretize pressure equation −∆p = q,
we combine the 1-D discrete Laplace operators (2.3) into a 2-D discrete Laplace operator. The
combination takes the form

(−∆θ
hp)i,j = θx(−∆x

hp)i,j+1 + (1− 2θx)(−∆x
hp)i,j + θx(−∆x

hp)i,j−1

+ θy(−∆y
hp)i+1,j + (1− 2θy)(−∆y

hp)i,j + θy(−∆y
hp)i−1,j , (2.17)

where θ = (θx, θy) is a pair of tuning parameters, ones per direction. The fully expanded stencil
of (−∆θ

hp) reads

(−∆θ
hp)i,j =− αpi−1,j+1 − βypi,j+1 − αpi+1,j (2.18)

− βxpi−1,j + (4α+ 2βx + 2βy)pi,j − βxpi+1,j (2.19)

− αpi−1,j−1 − βypi,j−1 − αpi+1,j−1 (2.20)

with

α =
θx

∆x2
+

θy
∆y2

, βx =
2θy
∆y2

− 1− 2θx
∆x2

, βy =
2θx
∆x2

− 1− 2θy
∆y2

.

Theorem 2.2. If p is a smooth function of x and if ∆x, ∆y are small enough, then

(−∆θ
hp)i,j = (−∆p)(xi,j)−

[
1
12∆x2 ∂xxxxp+ 1

12∆y2 ∂yyyyp+ (θx∆x2 + θy∆y2) ∂xxyyp
]
(xi,j)

+O(∆x4) +O(∆y4) +O(∆x2∆y2). (2.21)

Proof. The proof follows along the same lines as in Theorem 2.1.

At this stage, it appears that only the combination θx∆x2 +θy∆y2 matters for the second-order
accuracy. Later we will prescribe other rules to determine θx and θx separately. For the moment,
we observe that over a square mesh (∆x = ∆y = h), the best choice is θx + θy = 1/6. Indeed,
as argued in 2.1.1, the error is then − 1

12h
2∆∆p. If p is radial, then the bi-Laplacian ∆∆p is also

radial, which ensures isotropy.
To deal with the variable coe�cient case κλ(s) 6≡ 1, we �rst need to reformulate −∆θ

h as a �nite
volume scheme. Multiplying the stencil (2.17) by the measure ∆x∆y of a cell and reorganizing
various terms, we end up with the �ux balance

∆x∆y(−∆θ
hp)i,j = F̃ θi+1/2,j − F̃

θ
i−1/2,j + F̃ θi,j+1/2 − F̃

θ
i,j−1/2

+ F̃ θ↗i+1/2,j+1/2 − F̃
θ↗
i−1/2,j−1/2 + F̃ θ↖i−1/2,j+1/2 − F̃

θ↖
i+1/2,j−1/2, (2.22)

where

F̃ θi+1/2,j = (1− 4θx)Fi+1/2,j , F̃ θi−1/2,j = (1− 4θx)Fi−1/2,j , (2.23a)

F̃ θi,j+1/2 = (1− 4θy)Fi,j+1/2, F̃ θi,j−1/2 = (1− 4θy)Fi,j−1/2, (2.23b)

F̃ θ↗i+1/2,j+1/2 = θyFi,j+1/2 + θxFi+1/2,j+1 + θxFi+1/2,j + θyFi+1,j+1/2, (2.23c)

F̃ θ↗i−1/2,j−1/2 = θyFi−1,j−1/2 + θxFi−1/2,j + θxFi−1/2,j−1 + θyFi,j−1/2, (2.23d)

F̃ θ↖i−1/2,j+1/2 = θyFi,j+1/2 − θxFi−1/2,j+1 − θxFi−1/2,j + θyFi−1,j+1/2, (2.23e)

F̃ θ↖i+1/2,j−1/2 = θyFi+1,j−1/2 − θxFi+1/2,j − θxFi+1/2,j−1 + θyFi,j−1/2, (2.23f)

and
Fi+1/2,j = z (pi,j − pi+1,j), Fi,j+1/2 = z−1 (pi,j − pi,j+1), (2.24)

are the 5P �uxes of the uniform case. We recall that z = ∆y/∆x is the ratio between the grid
spacings. For a more detailed derivation of (2.23), see [23, �5.1]. In this construction, each diagonal
�ux is made up of two horizontal �uxes and two vertical �uxes, corresponding to the possible paths
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between a cell and any diagonal cell. It is also worth noting that, for θx = θy = θ, although the
discrete Laplacian (2.17) is identical to (2.4), the de�nition of �uxes (2.23)�(2.24) is not identical
to (2.8). This has a tremendous impact on the discretization of the saturation equation and makes
the 9P2s family very di�erent from the 9P1s one.

The reformulation (2.22) naturally suggests the scheme

F̃ θi+1/2,j − F̃
θ
i−1/2,j + F̃ θi,j+1/2 − F̃

θ
i,j−1/2

+ F̃ θ↗i+1/2,j+1/2 − F̃
θ↗
i−1/2,j−1/2 + F̃ θ↖i−1/2,j+1/2 − F̃

θ↖
i+1/2,j−1/2 = ∆x∆y qi,j (2.25)

for the pressure equation (1.1b) in the general case κλ(s) 6≡ 1, where the �uxes are de�ned by
relations (2.23) but in which we have plugged the non-uniform 5P �uxes

Fi+1/2,j = κλ̃(sni,j , s
n
i+1,j) z (pn+1

i,j − p
n+1
i+1,j), Fi,j+1/2 = κλ̃(sni,j , s

n
i,j+1) z−1 (pn+1

i,j − p
n+1
i,j+1).

(2.26)
Since the factors 1 − 4θx and 1 − 4θy appear in the �uxes (2.23a)�(2.23b), it is advisable to

impose the restriction
0 ≤ θx, θy ≤ 1

4 (2.27)

so that the 9P2s horizontal and vertical �uxes (2.23a)�(2.23b) have the same sign as their 5P
counterparts Fi+1/2,j and Fi,j+1/2.

2.2.2 9P2s for saturation

Once the pressure �eld is computed, the saturation equation (1.1c) can be discretized with a scheme
having a similar nine-point and eight-�ux structure. More speci�cally,

∆x∆y∆t−1(sn+1
i,j − s

n
i,j) + G̃θi+1/2,j − G̃

θ
i−1/2,j + G̃θi,j+1/2 − G̃

θ
i,j−1/2 (2.28)

+ G̃θ↗i+1/2,j+1/2 − G̃
θ↗
i−1/2,j−1/2 + G̃θ↖i−1/2,j+1/2 − G̃

θ↖
i+1/2,j−1/2 = ∆x∆y qw;i,j ,

with the upwinded �uxes

G̃θi+1/2,j = f(sni,j) [F̃ θi+1/2,j ]
+ + f(sni+1,j) [F̃ θi+1/2,j ]

−, (2.29a)

G̃θi,j+1/2 = f(sni,j) [F̃ θi,j+1/2]+ + f(sni,j+1) [F̃ θi,j+1/2]−, (2.29b)

G̃θ↗i+1/2,j+1/2 = f(sni,j) [F̃ θ↗i+1/2,j+1/2]+ + f(sni+1,j+1) [F̃ θ↗i+1/2,j+1/2]−, (2.29c)

G̃θ↖i−1/2,j+1/2 = f(sni,j) [F̃ θ↖i−1/2,j+1/2]+ + f(sni−1,j+1) [F̃ θ↖i−1/2,j+1/2]−. (2.29d)

As in �2.1.2, the scheme is also supplemented by a CFL-like condition so as to guarantee the
maximum principle for the saturation, at least in regions where both source terms vanish. Let

〉σF̃ θ〈i,j = σi−1/2,j [F̃
θ
i−1/2,j ]

+ − σi+1/2,j [F̃
θ
i+1/2,j ]

−

+ σi,j−1/2[F̃ θi,j−1/2]+ − σi,j+1/2[F̃ θi,j+1/2]−

+ σi−1/2,j−1/2[F̃ θ↗i−1/2,j−1/2]+ − σi+1/2,j+1/2[F̃ θ↗i+1/2,j+1/2]−

+ σi+1/2,j−1/2[F̃ θ↖i+1/2,j−1/2]+ − σi−1/2,j+1/2[F̃ θ↖i−1/2,j+1/2]−

be the total incoming �ux of cell Ki,j .

Proposition 2.2. If qi,j = qw;i,j = 0 at some cell Ki,j and

∆t

∆x∆y
〉σF̃ θ〈i,j ≤ 1, (2.30)

then sn+1
i,j is a convex combination of sni,j and its eight neighbouring saturations at time n.

Proof. Similar to that of Proposition 2.1.

From this we infer a stability condition similar to (2.16). Again, we postpone the error analysis
to �3.3, where we will see that the approximation in saturation remains of �rst-order.

9



3 Optimization of the parameters

The main issue of this paper is to correctly design the parameters θ in order to decrease as much
as possible the anisotropy of the numerical error when the exact solution is radial. Note that this
is not equivalent to minimizing the numerical error itself. Once again, we emphasize that the order
of the numerical error remains unchanged. In fact, only its distribution in space will change. To
this end:

1. Firstly, we need to quantify the anisotropy of the numerical error along each direction. This
can be achieved by using Fourier analysis under the simplifying assumption of constant
coe�cients and velocities.

2. Secondly, we need to introduce an ideal behaviour of the angular error that we declare to be
the �least anisotropic� one. There might be some degree of arbitrariness in this choice, but
we will try to suggest the most natural one.

3. Finally, we need to minimize to total discrepancy (over all directions) between the angular
error corresponding to the scheme and that of the expected ideal one. Most of the time, we
will be able to determine the exact solution of this minimization problem.

In �3.1, we are interested in minimizing the anisotropy of the error in pressure by correctly adjusting
the parameter θ of the 9P1s scheme of �2.1.1. In �3.2, we also endeavour to adjust the parameter
θ, but this time in an attempt to alleviate the anisotropy of the error in saturation when employing
the 9P1s scheme of �2.1.2. In �3.3, the same analysis on the saturation error will be achieved on
the pair θ = (θx, θy) of the 9P2s scheme of �2.2.2.

3.1 Optimization of 9P1s based on pressure

We illustrate the above procedure by focusing on the pressure equation −div(κλ(s)p) = q. In order
to perform the Fourier analysis, we assume an in�nite domain and the hypotheses κλ(s) ≡ 1 and
q ≡ 0. By inserting into the exact and approximate operators −∆ and −∆θ

h the exponential form

pi,j = eI(ik∆x+j`∆y), (3.1)

where the imaginary number I satis�es I2 = −1 and k = (k, `) ∈ R2 is the wave vector, we end
up with the multiplicative relations

(−∆p)i,j = F [−∆](k)pi,j , (−∆θ
hp)i,j = F [−∆θ

h](k)pi,j . (3.2)

The factors F [−∆](k) and F [−∆θ
h](k) do not depend on (i, j) and are called respectively exact

and approximate symbols of the Laplacian. Let

E θ
∆x,∆y(k) = F [−∆θ

h](k)−F [−∆](k) (3.3)

be the error between the two symbols. This error depends not only on ∆x,∆y, θ but also on the
direction of the wave vector k. Let

γ = arctan
`

k

be the angle between the horizontal axis and the wave vector.

Lemma 3.1. If ∆x,∆y are small enough, then

E θ
∆x,∆y(k) =− |k|4

{
[ 1
12 − θ](∆x

2 + ∆y2) sin4 γ + [− 1
6∆x2 + θ(∆x2 + ∆y2)] sin2 γ + 1

12∆x2
}

+O(∆x4,∆y4,∆x2∆y2). (3.4)

Proof. It is straightforward to show that the exact symbol is

F [−∆](k) = |k|2 = k2 + `2. (3.5)
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By construction of the 9P1s approximation −∆θ
h, the approximate symbol is given by

F [−∆θ
h](k) =

[
∆x−2(−e−Ik∆x + 2− eIk∆x)eI`∆y + ∆y−2(−eI`∆y + 2− e−I`∆y)e−Ik∆x

]
· θ

+
[
∆x−2(−e−Ik∆x + 2− eIk∆x) + ∆y−2(−eI`∆y + 2− e−I`∆y)

]
· (1− 2θ)

+
[
∆x−2(−e−Ik∆x + 2− eIk∆x)e−I`∆y + ∆y−2(−eI`∆y + 2− e−I`∆y)eIk∆x

]
· θ.

Thanks to the trigonometric identity −e−Iς + 2− eIς = 4 sin2(ς/2), we obtain

F [−∆θ
h](k) = 4 sin2(k∆x/2)

1− 4θ sin2(`∆y/2)

∆x2
+ 4 sin2(`∆y/2)

1− 4θ sin2(k∆x/2)

∆y2
. (3.6)

Now, assuming that |k|∆x� 1 and |`|∆y � 1, we can use the Taylor expansion

sin2 ϑ

ϑ2
= 1− ϑ2

3
+O(ϑ4)

in order to end up with

F [−∆θ
h](k) = |k|2 −

[
1
12∆x2k4 + 1

12∆y2`4 + θ(∆x2 + ∆y2)`2k2
]

+O(∆x4,∆y4,∆x2∆y2).

Since k = |k| cos γ and ` = |k| sin γ, the above equation combined with (3.5) gives (3.4).

In the right-hand side of (3.4), the bracket in factor of |k|4 depends only on the angle γ. Hence,
it is natural to raise it to the status of a de�nition.

Definition 3.1. The quantity

Ẽ θ
∆x,∆y(γ) =

[
1
12 − θ

]
(∆x2 + ∆y2) sin4 γ +

[
− 1

6∆x2 + θ(∆x2 + ∆y2)
]

sin2 γ + 1
12∆x2 (3.7)

is said to be the angular error in pressure along the direction γ associated with the nine-point
scheme.

Let us set
S = sin2 γ ∈ [0, 1]. (3.8)

We observe that Ẽ θ
∆x,∆y is a quadratic polynomial with respect to S. From now on, with a slight

abuse of notation, the numerical error Ẽ θ
∆x,∆y is now as a function of S and reads

Ẽ θ
∆x,∆y(S) =

[
1
12 − θ

]
(∆x2 + ∆y2)S2 +

[
− 1

6∆x2 + θ(∆x2 + ∆y2)
]
S + 1

12∆x2. (3.9)

We remark that for all θ,

Ẽ θ
∆x,∆y(S = 0) = 1

12∆x2 and Ẽ θ
∆x,∆y(S = 1) = 1

12∆y2. (3.10)

This implies that the angular errors along the direction of the axes cannot be modi�ed by the
tuning parameter θ. As a consequence, with ∆x 6= ∆y, there is always a residual anisotropy
between the x-direction and the y-direction that cannot be removed. However, we are o�ered the
freedom to select an �ideal� transition from S = 0 to S = 1. We claim that the straight line

Ẽ ?
∆x,∆y(S) = 1

12

[
(∆y2 −∆x2)S + ∆x2

]
. (3.11)

can be regarded as the least anisotropic choice. Indeed, among all functions Ẽ : [0, 1] → R with

end values Ẽ (0) = ∆x2/12 and Ẽ (1) = ∆y2/12, the a�ne function achieves the minimum of the

functional W (Ẽ ) =
∫ 1

0
|Ẽ ′(S)|2 dS which measures the total squared variations of Ẽ .

Equipped with these preliminary notions, we propose to seek the optimal parameter θ∗ to
minimize the total anisotropy, de�ned as the L2(0, 1)-distance between Ẽ θ

∆x,∆y and Ẽ ?
∆x,∆y. In

other words,

θ∗ = arg min
θ∈[0,1/2]

∫ 1

0

|Ẽ θ
∆x,∆y(S)− Ẽ ?

∆x,∆y(S)|2 dS. (3.12)
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Theorem 3.1. The unique minimizer of (3.12) is

θ∗ =
1

12
. (3.13)

Proof. It su�ces to note that as soon as θ = 1/12, Ẽ
θ=1/12
∆x,∆y ≡ Ẽ ?

∆x,∆y. Then, the value of the

objective function ‖Ẽ θ
∆x,∆y − Ẽ ?

∆x,∆y‖2L2(0,1) vanishes. On the other hand, this is the only value of

θ such that Ẽ θ
∆x,∆y ≡ Ẽ ?

∆x,∆y.

The value θ∗ = 1/12 was already mentioned by [13] but only for square meshes (∆x = ∆y).
For rectangular meshes (∆x 6= ∆y), we expect the anisotropy error to be reasonably small. In

Figure 3, a few curves Ẽ θ
∆x,∆y are plotted as functions of s for various values of θ. Note that for

the 5P scheme (θ = 0), the red curves appear to be very far from the optimal behaviour for both
a square mesh (where the ideal error is represented by the green horizontal line) and a rectangular
mesh (where the ideal error is represented by the green straight line).
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2.10-4

3.10-4

4.10-4
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E
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1.10-4

2.10-4
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Figure 3: Angular error associated with the nine-point scheme S 7→ Ẽ θ
∆x,∆y(S) for various θ.

3.2 Optimization of 9P1s based on saturation

It could be argued that, despite numerous previous works, the error in pressure considered in �3.1
is not the good quantity to look at. After all, engineers are more interested in the saturation front
and therefore it is the error in saturation that should be made more isotropic for a radial solution.
Such an analysis was pioneered by [15] for a special scheme in a square mesh. Here, following a
di�erent approach, we carry out the analysis for the scheme (2.13)�(2.14) in a rectangular mesh.

Once again, in order to perform Fourier calculations, in (1.1c), we assume an in�nite domain
and the simplifying hypotheses f(s) ≡ s and q = qw ≡ 0. In addition, we enforce the velocity to be
constant, given by u ≡ t(a, b) where a ≥ 0 and b ≥ 0 are �xed values. According to the upwinding
formulas of s, the scheme (2.13)�(2.14) now writes

sn+1
i,j = sni,j −∆t(∆x∆y)−1

(
sni,j F

θ
i+1/2,j − s

n
i−1,j F

θ
i−1/2,j + sni,j F

θ
i,j+1/2 − s

n
i,j−1 F

θ
i,j−1/2 (3.14)

+ sni,j F
θ↗
i+1/2,j+1/2 − s

n
i−1,j−1 F

θ↗
i−1/2,j−1/2 + sni−1/2,j+1/2 F

θ↖
i−1/2,j+1/2 − s

n
i+1/2,j−1/2 F

θ↖
i+1/2,j−1/2

)
,
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where the �uxes associated with the total velocity u are

F θi±1/2,j = [(1− 2θ)z − 2θz−1]a∆x, F θ↗i±1/2,j±1/2 = θ[z + z−1](a∆x+ b∆y), (3.15a)

F θi,j±1/2 = [(1− 2θ)z−1 − 2θz]b∆y, F θ↖i∓1/2,j±1/2 = θ[z + z−1](a∆x− b∆y), (3.15b)

and the interface saturations are

(sni−1/2,j+1/2, s
n
i+1/2,j−1/2) =

{
(sni−1,j+1, s

n
i,j) if a∆x− b∆y > 0,

(sni,j , s
n
i+1,j−1) otherwise.

(3.16)

To focus on the discretization in space alone, we study the semi-discrete version of scheme (3.14)

∂tsi,j + [(u ·∇s)θh]i,j = 0,

where

[(u ·∇s)θh]i,j = (∆x∆y)−1
(
si,j F

θ
i+1/2,j − si−1,j F

θ
i−1/2,j + si,j F

θ
i,j+1/2 − si,j−1 F

θ
i,j−1/2

+ si,j F
θ↗
i+1/2,j+1/2 − si−1,j−1 F

θ↗
i−1/2,j−1/2 + si−1/2,j+1/2 F

θ↖
i−1/2,j+1/2 − si+1/2,j−1/2 F

θ↖
i+1/2,j−1/2

)
,

with the interface saturations si∓1/2,j±1/2 de�ned in (3.16). By plugging into the exact and ap-

proximate operators u · ∇ and (u · ∇)θh the exponential form

si,j = eI(ik∆x+j`∆y), (3.17)

where k = (k, `) ∈ R2 is the wave vector, we arrive at the multiplicative expressions

(u · ∇s)i,j = F [u · ∇](k)si,j and ((u · ∇s)θh)i,j = F [(u · ∇)θh](k)si,j .

Now, we study the error

E θ
∆x,∆y(u,k) = F [(u · ∇)θh](k)−F [u · ∇](k).

between the exact symbol F [u · ∇] and the approximate symbol F [(u · ∇)θh]. Let

γ = arctan
b

a
, ϕ = arctan

`

k

be the angles made by the horizontal axis with respectively the velocity vector and the wave vector.
For the sake of simplicity in the notations, we introduce

Ω = ϕ− γ, γ∗ = arctan
∆x

∆y
.

Thus Ω is the angle between u and k.

Lemma 3.2. If ∆x,∆y are small enough, then

E θ
∆x,∆y(u,k) = |k|2|u|

(
cos Ω, sin Ω

) [ Ãθ∆x,∆y(γ) B̃θ∆x,∆y(γ)

B̃θ∆x,∆y(γ) C̃θ∆x,∆y(γ)

](
cos Ω
sin Ω

)
+O(∆x2,∆y2,∆x∆y),

(3.18)
where if γ ≤ γ∗,

Ãθ∆x,∆y(γ) = 1
2∆x cos3 γ + 1

2∆y
[
1− 2θ(1 + z2)

]
sin3 γ + 3∆y θ(z + z−1) cos γ sin2 γ, (3.19a)

B̃θ∆x,∆y(γ) = −∆y θ(z + z−1) sin3 γ + 1
2∆y

[
1− 2θ(1 + z2)

]
cos γ sin2 γ

−
[

1
2∆x− 2∆y θ(z + z−1)

]
cos2 γ sin γ, (3.19b)

C̃θ∆x,∆y(γ) = ∆y θ(z + z−1) cos3 γ + 1
2∆y[1− 2θ(1 + z2)] cos2 γ sin γ

+
[

1
2∆x− 2∆y θ(z + z−1)

]
cos γ sin2 γ, (3.19c)
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while if γ ≥ γ∗,

Ãθ∆x,∆y(γ) = 1
2∆y sin3 γ + 1

2∆x
[
1− 2θ(1 + z−2)

]
cos3 γ + 3∆x θ(z + z−1)) sin γ cos2 γ, (3.20a)

B̃θ∆x,∆y(γ) = ∆x θ(z + z−1) cos3 γ − 1
2∆y

[
1− 2θ(1 + z−2)

]
cos2 γ sin γ

+
[

1
2∆y − 2∆x θ(z + z−1)

]
cos γ sin2 γ, (3.20b)

C̃θ∆x,∆y(γ) = ∆x θ(z + z−1) sin3 γ + 1
2∆x

[
1− 2θ(1 + z−2)

]
cos γ sin2 γ

+
[

1
2∆y − 2∆x θ(z + z−1)

]
cos2 γ sin γ. (3.20c)

Proof. It is plain that, for the exact symbol,

F [u · ∇](k) = I k · u = I(ak + b`). (3.21)

For the sake of simplicity in the forthcoming developments, we only consider a∆x− b∆y ≥ 0 while
a∆x − b∆y ≤ 0 turns out to be similar and it is let to the reader. Since a ≥ 0 and b ≥ 0, this is
equivalent to γ ≤ γ∗. From the numerical accumulation term (3.14), the approximate symbol can
be inferred as

F [(u ·∇)θh](k) = (∆x∆y)−1
{ [

(1− 2θ)z − 2θz−1
]
a(1− e−Ik∆x)

+
[
(1− 2θ)z−1 − 2θz

]
b∆y(1− e−I`∆y)

+ θ
[
z + z−1

]
(a∆x+ b∆y)(1− eI(−k∆x−`∆y))

+ θ
[
z + z−1

]
(a∆x− b∆y)(1− eI(−k∆x+`∆y))

}
. (3.22)

From various Taylor expansions for |k|∆x� 1 and |`|∆y � 1, we get

F [(u ·∇)θh](k) = I(ak + b`) + 1
2k

2∆x a+ k`∆y 2bθ(z + z−1) (3.23)

+ 1
2`

2∆y
[
b{1− 2θ(1 + z2)}+ 2aθ(z + z−1)

]
+O(∆x2,∆y2,∆x∆y).

Subtracting (3.21) from this relation, we obtain

E θ
∆x,∆y(u,k) = 1

2k
2∆x a+ k`∆y 2bθ(z + z−1) (3.24)

+ 1
2`

2∆y
{
b
[
1− 2θ(1 + z2)

]
+ 2aθ(z + z−1)

}
+O(∆x2,∆y2,∆x∆y).

Since k = |k| cosϕ, ` = |k| sinϕ, a = |u| cos γ, b = |u| sin γ, the above equation becomes

E θ
∆x,∆y(u,k) = |k|2|u|

(
cosϕ, sinϕ

) [Aθ∆x,∆y(γ) Bθ∆x,∆y(γ)

Bθ∆x,∆y(γ) Cθ∆x,∆y(γ)

](
cosϕ
sinϕ

)
+O(∆x2,∆y2,∆x∆y),

(3.25)
where

Aθ∆x,∆y(γ) = 1
2∆x cos γ, (3.26a)

Bθ∆x,∆y(γ) = ∆y θ(z + z−1) sin γ, (3.26b)

Cθ∆x,∆y(γ) = 1
2∆y

{[
1− 2θ(1 + z2)

]
sin γ + 2θ(z + z−1) cos γ

}
. (3.26c)

Since ϕ = γ + Ω and because of(
cosϕ
sinϕ

)
=

[
cos γ − sin γ
sin γ cos γ

](
cos Ω
sin Ω

)
, (3.27)

we easily have[
Ãθ∆x,∆y(γ) B̃θ∆x,∆y(γ)

B̃θ∆x,∆y(γ) C̃θ∆x,∆y(γ)

]
=

[
cos γ sin γ
− sin γ cos γ

] [
Aθ∆x,∆y(γ) Bθ∆x,∆y(γ)

Bθ∆x,∆y(γ) Cθ∆x,∆y(γ)

] [
cos γ − sin γ
sin γ cos γ

]
,

to obtain the expected relations. For a∆x− b∆y ≤ 0, that is, γ ≥ γ∗, the proof is similar, starting
from the approximate symbol F [(u ·∇)θh]. Furthermore, it can be checked that the matrix entries
(3.19) and (3.20) match with each other when γ = γ∗.
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In the right-hand side of (3.18), the factor of |k|2|u| depends on two angles. This factor involves
a 2 × 2 di�usion matrix whose entries depend on the velocity angle γ and whose action depends
on the angle Ω between the velocity and the wave vector. The �rst diagonal entry Ãθ∆x,∆y(γ) is

called longitudinal error, as it corresponds to Ω = 0. The second diagonal entry C̃θ∆x,∆y(γ) is called
transverse error, as it corresponds to Ω = π/2. The extra diagonal entry is called cross term error.

Definition 3.2. The quantity Ãθ∆x,∆y(γ), de�ned by (3.19a) or (3.20a) according to the sign of
γ − γ∗, is said to be the angular error in saturation along the direction γ associated with the 9P1s
scheme.

The reason why we opt for the longitudinal error Ãθ∆x,∆y(γ) as a measure of the directional
anisotropy is understandable: for a radial solution, the only error that matters for the position of
the front is that of the radial di�usion. Equipped with this longitudinal error, we now state the
optimal parameter θ. To achieve such an issue, once again, we adopt a suitable comparison with
an "ideal error" to be prescribed. First, let us introduce S = sin2 γ ∈ [0, 1] and with some abuse

in the notation, let us consider the longitudinal error Ãθ∆x,∆y as a function of S. To write down
this function, let us introduce the transition value

S∗ = sin2 γ∗ =
tan2 γ∗

1 + tan2 γ∗
=

∆x2

∆x2 + ∆y2
=

1

1 + z2
. (3.28)

Then, if S ≤ S∗,

Ãθ∆x,∆y(S) = 1
2∆x(1− S)3/2 + 1

2∆y
[
1− 2θ(1 + z2)

]
S3/2 + 3∆y θ(z + z−1)(1− S)1/2S,

while if S ≥ S∗

Ãθ∆x,∆y(S) = 1
2∆yS3/2 + 1

2∆x
[
1− 2θ(1 + z−2)

]
(1− S)3/2 + 3∆x θ(z + z−1)(1− S)S1/2.

Once again, we point out that

Ãθ∆x,∆y(S = 0) = 1
2∆x and Ãθ∆x,∆y(S = 1) = 1

2∆y (3.29)

are independent of the parameter θ. Among all functions Ã : [0, 1] → R with end values Ã(0) =

∆x/2 and Ã(1) = ∆y/2, the a�ne function

Ã ?
∆x,∆y(S) = 1

2{(∆y −∆x)S + ∆x} (3.30)

is supposed to be the �least anisotropic� one, in the sense that it achieves the minimum of the

total squared variation W (Ã) =
∫ 1

0
|Ã′(S)|2 dS. Therefore, we advocate to look for the optimal

parameter θ∗ by minimizing the L2(0, 1)-distance between Ãθ∆x,∆y and Ã ?
∆x,∆y, as

θ∗ = arg min
θ∈[0,θM ]

∫ 1

0

|Ãθ∆x,∆y(S)− Ã ?
∆x,∆y(S)|2 dS, (3.31)

where the upperbound θM was set in (2.12).

Theorem 3.2. The unique minimizer of (3.31) is

θ∗ = min

(
θM ,

∫ 1

0
U∆x,∆yV∆x,∆y∫ 1

0
U2

∆x,∆y

)
(3.32)

where

U∆x,∆y(S) =

{
∆y
[
3(z + z−1)(1− S)1/2S − (1 + z2)S3/2

]
if S ≤ S∗,

∆x
[
3(z + z−1)(1− S)S1/2 − (1 + z−2)(1− S)3/2

]
if S ≥ S∗,

(3.33a)

V∆x,∆y(s) = 1
2∆x[(1− S)− (1− S)3/2] + 1

2∆y[S − S3/2]. (3.33b)
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Proof. By de�nition of U∆x,∆y and V∆x,∆y, given by (3.33), we have

Ãθ∆x,∆y(S)− Ã ?
∆x,∆y(S) = θU∆x,∆y(S)− V∆x,∆y(S)

to write

‖Ãθ∆x,∆y − Ã ?
∆x,∆y‖2L2(0,1) = θ2

∫ 1

0

U2
∆x,∆y − 2θ

∫ 1

0

U∆x,∆yV∆x,∆y +

∫ 1

0

V 2
∆x,∆y. (3.34)

To minimize this convex quadratic function in θ over the convex interval [0, 1/2], we can �rst
minimize it over R and then project the solution obtained on the interval. Over R, the function
(3.34) easily gets its minimal value at

θ] =

∫ 1

0
U∆x,∆yV∆x,∆y∫ 1

0
U2

∆x,∆y

.

Moreover, we have U∆x,∆y(S) ≥ 0 and V∆x,∆y(S) ≥ 0 for all S ∈ [0, 1]. Hence, θ] ≥ 0, and the
only projection to be made is θ∗ = min(θM , θ

]). This compltes the proof.

Unfortunately, the exact formulas (3.32)�(3.33) are irrelevant from a practical point of view.
Indeed, the involved integrals must be evaluated by numerical quadrature and the resulting optimal
parameter θ∗ is a highly complicated rational fraction of ∆y/∆x. To devise a more e�ective

procedure, we content ourselves with a suboptimal value θ[ such that the curve of Ãθ
[

∆x,∆y meets

that of Ã ?
∆x,∆y at the transition point S = S∗, where S∗ is de�ned by (3.28).

Theorem 3.3. The suboptimal value θ[ de�ned by

Ãθ
[

∆x,∆y(S∗) = Ã ?
∆x,∆y(S∗).

is given by

θ[ =
1

4

(
∆x+ ∆y√
∆x2 + ∆y2

− 1

)
=

1

4

(
1 + z√
1 + z2

− 1

)
. (3.35)

Proof. For S = S∗ = 1/(1 + z2), we readily have

Ã ?
∆x,∆y(S∗) =

∆x∆y(∆x+ ∆y)

2(∆x2 + ∆y2)
, Ãθ∆x,∆y(S∗) =

1 + 4θ

2

∆x∆y√
∆x2 + ∆y2

,

for all θ. Equality of these two values for θ = θ[ implies (3.35). Moreover, it is straightforward to
verify that θ[ ∈ [0, 1/2] and the proof is completed.

Note that, for a square mesh (∆x = ∆y = h), the suboptimal value degenerates to

θ[ =

√
2− 1

4
≈ 0.103553, (3.36)

which coincides with the parameter recommended by [15]. The analysis of [15] is intimately related
to a square mesh and does not carry over to a rectangular mesh, contrary to ours. Moreover, direct
calculations from (3.19)�(3.20) show that θ = θ[ is the only value such that

Ãθh,h(γ + π/4) = Ãθh,h(γ), B̃θh,h(γ + π/4) = B̃θh,h(γ), C̃θh,h(γ + π/4) = C̃θh,h(γ) (3.37)

for all γ ∈ [0, π/4]. The π/4-invariant property (3.37) of the di�usion matrix was also known by
[15]. However, it emerges from our analysis π/4-invariance does not guarantee strcit optimality,

especially in rectangular meshes. In Figure 4, we display the longitudinal error Ãθ∆x,∆y as a function
of S ∈ [0, 1] for various values of θ. It can be seen that the transition point S∗ moves away from
1/2 for rectangular meshes, but the longitudinal error remains close to the ideal curve.
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Figure 4: Angular error associated with the 9P1s scheme s 7→ Ãθ∆x,∆y for a few values of θ.

3.3 Optimization of 9P2s based on saturation

We now turn to optimizing the 9P2s scheme. Similarly to �3.3, in order to make Fourier analysis
possible, we make the linearity assumptions f(s) = s, q = qw ≡ 0 and u ≡ (a, b), where a ≥ 0 and
b ≥ 0 are constants. The saturation transport (2.28) can then be written as

sn+1
i,j = sni,j −∆t(∆x∆y)−1

(
sni,j F

θ
i+1/2,j − s

n
i−1,j F

θ
i−1/2,j + sni,j F

θ
i,j+1/2 − s

n
i,j−1 F

θ
i,j−1/2 (3.38)

+ sni,j F
θ↗
i+1/2,j+1/2 − s

n
i−1,j−1 F

θ↗
i−1/2,j−1/2 + sni−1/2,j+1/2 F

θ↖
i−1/2,j+1/2 − s

n
i+1/2,j−1/2 F

θ↖
i+1/2,j−1/2

)
,

where the �uxes associated with the total velocity u are

F θi±1/2,j = (1− 4θx)a∆y, F θ↗i±1/2,j±1/2= 2(θxa∆y + θyb∆x), (3.39a)

F θi,j±1/2 = (1− 4θy)b∆x, F θ↖i∓1/2,j±1/2 = 2(θxa∆y − θyb∆x), (3.39b)

the interface saturations are

(sni−1/2,j+1/2, s
n
i+1/2,j−1/2) =

{
(sni−1,j+1, s

n
i,j) if a∆x− b∆y > 0,

(sni,j , s
n
i+1,j−1) otherwise.

(3.40)

To focus on the discretization in space alone, we study the semi-discrete version of scheme (3.38)

∂tsi,j + [(u ·∇s)θh]i,j = 0,

where we have set

[(u ·∇s)θh]i,j = (∆x∆y)−1
(
si,j F

θ
i+1/2,j − si−1,j F

θ
i−1/2,j + si,j F

θ
i,j+1/2 − si,j−1 F

θ
i,j−1/2

+ si,j F
θ↗
i+1/2,j+1/2 − si−1,j−1 F

θ↗
i−1/2,j−1/2 + si−1/2,j+1/2 F

θ↖
i−1/2,j+1/2 − si+1/2,j−1/2 F

θ↖
i+1/2,j−1/2

)
,

with the interface saturations si∓1/2,j±1/2 de�ned in (3.40).
Reusing notations from the Fourier setup of �3.2, with k = (k, `) ∈ R2 the wave vector, we

de�ne the exact symbol F [u · ∇] and the approximate symbol F [(u · ∇)θh](k) by plugging the
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exponential form (3.17) into the corresponding operators. This allows us to de�ne the Fourier
error

E θ∆x,∆y(u,k) = F [(u · ∇)θh(k)−F [u · ∇](k).

for which we seek a Taylor expansion in ∆x, ∆y. This is the purpose of the following statement,
in which we have de�ned the transition angle

γ∗ = arctan
θx ∆y

θy ∆x
.

Lemma 3.3. If ∆x,∆y are small enough, then

E θ∆x,∆y(u,k) = |k|2|u|
(
cos Ω, sin Ω

) [ Ãθ∆x,∆y(γ) B̃θ∆x,∆y(γ)

B̃θ∆x,∆y(γ) C̃θ∆x,∆y(γ)

](
cos Ω
sin Ω

)
+O(∆x2,∆y2,∆x∆y),

(3.41)
where if γ ≤ γ∗,

Ãθ∆x,∆y(γ) = 1
2∆x cos3 γ + 2∆x(2θy + θx z

2) cos γ sin2 γ + 1
2∆y(1− 4θy) sin3 γ, (3.42a)

B̃θ∆x,∆y(γ) = 1
2∆y(1− 4θy) cos γ sin2 γ − 2∆xθy sin3 γ + 1

2∆x(4θy + 4θxz
2 − 1) cos2 γ sin γ,

(3.42b)

C̃θ∆x,∆y(γ) = 2∆x θxz
2 cos3 γ + 1

2∆y(1− 4θy) cos2 γ sin γ + 1
2∆x(1− 8θy) cos γ sin2 γ, (3.42c)

while if γ ≥ γ∗,

Ãθ∆x,∆y(γ) = 1
2∆x(1− 4θx) cos3 γ + 2∆y(2θx + z−2) cos2 γ sin γ + 1

2∆y sin3 γ, (3.43a)

B̃θ∆x,∆y(γ) = − 1
2∆x(1− 4θx) cos2 γ sin γ + 2∆yθx cos3 γ − 1

2 (4θx + 4θyz
−2 − 1) cos2 γ sin γ,

(3.43b)

C̃θ∆x,∆y(γ) = 2∆yθy z
−2 sin3 γ + 1

2∆x(1− 4θx) cos γ sin2 γ + 1
2∆y(1− 8θx) cos2 γ sin γ. (3.43c)

Proof. We provide the proof for a∆yθx − b∆xθy ≥ 0, the other case a∆yθx − b∆xθy ≤ 0 being
similar. Since a ≥ 0 and b ≥ 0, this is equivalent to γ ≤ γ∗. From the numerical accumulation
term (3.38), the approximate symbol can be inferred as

F ([u ·∇]θh)(k) = (∆x∆y)−1
{

(1− 4θx)a∆y (1− e−Ik∆x) + (1− 4θy)b∆x (1− e−I`∆y)

+ 2
[
θxa∆x+ θyb∆x

]
(1− e−Ik∆x−I`∆y)

+ 2
[
θxa∆y − θyb∆x

]
(1− e−Ik∆x+I`∆y)

}
.

For |k|∆x� 1 and |`|∆y � 1, Taylor expansions yield

F ([u ·∇]θh)(k) = I(ak + b`) + 1
2∆x ak2 + 1

2∆y
[
b(1− 4θy) + 4aθxz

]
`2 + 4∆x θybk`

+O(∆x2,∆y2,∆x∆y).

Subtracting (3.21) from the above relation gives

E θ(k,u) = 1
2∆x ak2 + 1

2∆y
[
b(1− 4θy) + 4aθxz

]
`2 + 4∆x θybk`+O(∆x2,∆y2,∆x∆y). (3.44)

Substituting k = |k| cosϕ, ` = |k| sinϕ, a = |u| cos γ, b = |u| sin γ into (3.44) results in

E θ∆x,∆y(u,k) = |k|2|u|
(
cosϕ, sinϕ

) [Aθ∆x,∆y(γ) Bθ∆x,∆y(γ)

Bθ∆x,∆y(γ) Cθ∆x,∆y(γ)

](
cosϕ
sinϕ

)
+O(∆x2,∆y2,∆x∆y),

(3.45)
where

Aθ∆x,∆y(γ) = 1
2∆x cos γ, Bθ∆x,∆y(γ) = 2∆xθy sin γ, Cθ∆x,∆y(γ) = 1

2∆y
[
(1−4θy) sin γ+4θxz cos γ

]
.
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By invoking the trigonometric identity (3.27), we are in a position to reformulate equation (3.45)
as (3.41), with[

Ãθ∆x,∆y(γ) B̃θ∆x,∆y(γ)

B̃θ∆x,∆y(γ) C̃θ∆x,∆y(γ)

]
=

[
cos γ sin γ
− sin γ cos γ

] [
Aθ∆x,∆y(γ) Bθ∆x,∆y(γ)

Bθ∆x,∆y(γ) Cθ∆x,∆y(γ)

] [
cos γ − sin γ
sin γ cos γ

]
.

Formulas (3.42) are recovered thanks to straightforward calculations. Note that continuity holds
at the transition angle γ = γ∗ for the matrix entries (3.42) and (3.43).

Once again, it is worth mentioning that the right-hand side of (3.41) depends on the velocity
angle γ and the angle Ω between the velocity and the wave vector. As a consequence, we can
regard Ãθ∆x,∆y(γ) as the longitudinal error, B̃θ∆x,∆y(γ) as the cross-term error and C̃θ∆x,∆y(γ) as
the transverse error.

Definition 3.3. The quantity Ãθ∆x,∆y(γ), de�ned by (3.42a) and (3.43a), is said to be the angular
error in saturation along the direction γ associated with the 9P2s scheme.

The choice of Ãθ∆x,∆y(γ) is justi�ed on the same grounds as in �3.2. Following the same

procedure as in �3.2 and slightly abusing notations, we now consider Ãθ∆x,∆y as a function of

S = sin2 γ. Let us introduce the transition value and the transition value

S∗ = sin2 γ∗ =
ω2

1 + ω2
, where ω = tan γ∗ =

z θx
θy

(3.46)

Then, if S ≤ S∗,

Ãθ∆x,∆y(S) = 1
2∆x(1− S)3/2 + 2∆x(2θy + θxz

2)(1− S)1/2S + 1
2∆y(1− 4θy)S3/2, (3.47a)

while if S ≥ S∗

Ãθ∆x,∆y(S) = 1
2∆x(1− 4θx)(1− S)3/2 + 2∆y(2θx + θyz

−2)(1− S)S1/2 + 1
2∆yS3/2. (3.47b)

Its values at S = 0 and S = 1 do not depend on θ but only on ∆x, ∆y. Indeed,

Ãθ∆x,∆y(S = 0) = 1
2∆x, Ãθ∆x,∆y(S = 1) = 1

2∆y.

As a consequence, it is still possible to keep the function Ã ?
∆x,∆y de�ned in (3.30) as the �ideal�

least anisotropic reference. As before, the expensive exact optimal

θ∗ = arg min
0≤θx,θy≤1/4

∫ 1

0

|Ãθ∆x,∆y(S)− Ã ?
∆x,∆y(S)|2 dS

can be replaced by the suboptimal value θ[ such that the curve of Ãθ
[

∆x,∆y meets that of Ã ?
∆x,∆y

at the transition point S = S∗, i.e.,

Ãθ
[

∆x,∆y(S∗) = Ã ?
∆x,∆y(S∗). (3.48)

This time, contrary to �3.2, the transition value S∗ depends itself on the parameters θ. We can
take advantage of this dependency to move S∗ as much as possible to 1/2. The reason for this is

that the closer S∗ is to 1/2, the better the whole curve Ãθ
[

matches that of Ã ?
∆x,∆y. Let us work

out a solution to this minimization problem in two stages.

Theorem 3.4. If ω = zθ[x/θ
[
y is prescribed at a given value, then the solution of (3.48) is given

by

θ[x(z, ω) =

√
1 + ω2(zω2 + 1)− (1 + zω3)

8zω
, θ[y(z, ω) = θ[x(z, ω) z/ω. (3.49)
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Proof. At the transition value S = S∗ = ω2/(1 + ω2), straightforward calculations show that

Ãθ∆x,∆y(S∗) = 1
2∆x(1 + ω2)−3/2

[
1 + 4(2θy + θxz

2)ω2 + (1− 4θy)zω3
]
,

Ã ?
∆x,∆y(S∗) = 1

2∆x(1 + ω2)−1
[
1 + zω2

]
.

Since θx = ωθy/z, equality of these two values for (θx, θy) = (θ[x, θ
[
y) implies (3.49).

We wish to require ω = 1, so that S∗ = 1/2. Unfortunately, θ[x(z, 1) and θ[y(z, 1) may exceed
1/4 for some z. To comply with (2.27), the idea is to specify ω = ω∗(z) in such a way that ω = 1
for �reasonable� values of z and max(θ[x, θ

[
y) = 1/4 otherwise.

Proposition 3.1. The suboptimal pair θ[ = (θ[x(z, ω∗(z)), θ[y(z, ω∗(z)) satis�es (2.27) for

ω∗(z) =


7
2z if 0 ≤ z ≤ 2/7,

1 if 2/7 ≤ z ≤ 7/2,
2
7z otherwise.

Proof. See [23, �5.3.2]. Calculations rely on the symmetry properties θ[x(z−1, ω−1) = θ[y(z, ω),

θ[y(z−1, ω−1) = θ[x(z, ω) and ω∗(z−1) = [ω∗(z)]−1.

For a square mesh (∆x = ∆y = h), we recover (3.36). In Figure 5, we display Ãθ∆x,∆y as a
function of S ∈ [0, 1] for various values of (θx, θy), with z = 1 in the left panel and z = 0.4 in the
right panel.
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Figure 5: Angular error associated with the 9P2s scheme s 7→ Ãθ∆x,∆y for a few pairs (θx, θy).

4 Numerical results

Two test problems are now supplied in order to demonstrate the e�ectiveness of the methods
designed in �3 for reducing the GOE. problems, the exact solution exhibits a radial symmetry.
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4.1 Radial test case

The �rst problem models an injector well in a homogeneous in�nite domain. Consider the system

u = −λ(s)∇p, (4.1a)

∂ts+ div(f(s)u) = δ 0, (4.1b)

div (u) = δ 0, (4.1c)

in R2 × [0, T ], T = 0.05, with the initial data s(x, t = 0) = 0 in R2. In (4.1), q = qw = δ 0 are
Dirac sources expressing liquid injection at x = 0. The absolute permeability has been assigned
the constant value κ = 1, while the relative permeabilities correspond to the model of [10], that is,

κr,w(s) = s2 and κr,o(1− s) = (1− s)2. (4.2)

As a consequence, the water fractional �ux is

f(s) =
Ms2

Ms2 + (1− s)2
, with M =

µo

µw
. (4.3)

Setting µo = 200 and µw = 1 results in M = 200, which is a highly unfavourable mobility ratio.

Lemma 4.1. Let r = |x| be the distance from the origin and er = x/|x| be the unit radial vector.
The exact solution of (4.1)�(4.3) is given by

u(r, t) = er/2πr (4.4a)

s(r, t) =

{
(f ′)−1

[s∗,1](πr
2/t) if 0 < r2 < f ′(s∗) t/π,

0 otherwise,
(4.4b)

p(r, t) = p0 +
1

2π

∫ r

r0

dς

λ(s(ς, t))ς
, (4.4c)

where s∗ = (1 +M)−1/2 and (r0, p0) ∈ R+
∗ × R are some arbitrary constants.

Proof. See [23, �2.4.1] or [18].

Let us now switch to the �nite computational domain Ω = [−0.5, 0.5]2, over which all of the
equations (4.1)�(4.3) are considered. To mimic the in�nite problem, we further prescribe the
inhomogeneous Neumann boundary condition

−λ(s)∇p · n =
1

2πr
er · n, (4.5)

where n denotes the unit outward normal vector of ∂Ω. In other words, the value of the Neumann
condition is computed from the exact velocity (4.4a). The following geometrical property greatly
helps implementing (4.5), in that it enables one to integrate the outgoing �ux over a boundary
edge.

Proposition 4.1. Let A and B be two distinct points in the plane such that the origin O = (0, 0)

does not lie on the segment [AB]. Let n be the unit vector such that (
−→
AB,n) = −π/2. Then,∫

[AB]

1

2πr
er · n =

1

2π
(
−→
OA,
−→
OB),

where angles are oriented and measured in radian.

Proof. See [23, �2.4.1] or [18].
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(a) 5P scheme. (b) 9P1s scheme with θ = 1/12.

(c) 9P1s scheme with θ[. (d) 9P2s scheme with (θ[x, θ
[
y).

Figure 6: Water saturation �elds at T = 0.05 for the radial problem on square mesh using four
di�erent schemes.
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(a) 5P scheme.
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(b) 9P1s scheme with θ = 1
12
.
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(c) 9P1s scheme with θ[.
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(d) 9P2s scheme with (θ[x, θ
[
y).

Figure 7: Water saturation pro�les for the radial problem on square mesh along the diagonal
(green), horizontal (blue) and vertical (yellow) axes.
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(a) 5P scheme. (b) 9P1s scheme with θ = 1
12
.

(c) 9P1s scheme with θ[. (d) 9P2s scheme with (θ[x, θ
[
y).

Figure 8: Water saturation �elds at T = 0.05 for the radial problem on rectangular mesh (∆x =
3∆y) using four di�erent schemes.
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(a) 5P scheme.
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(b) 9P1s scheme with θ = 1
12
.
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(c) 9P1s scheme with θ[.
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(d) 9P2s scheme with (θ[x, θ
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Figure 9: Water saturation pro�les for the radial problem on rectangular mesh (∆x = 3∆y) along
the diagonal (green), horizontal (blue) and vertical (yellow) axes.
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For the Dirac mass in (4.1) to be correctly discretized, its location x = 0 should lie at the
center of a cell. Consequently, because of symmetry, the number of cells in each direction should
be odd. The simulations are run on two uniform grids: a 201× 201 square mesh (Figures 6 and 7)
and a 201 × 601 rectangular mesh (Figures 8 and 9). For each grid, we �rst display snapshots of
s(·, T ) computed by 4 methods: (a) the �ve-point scheme; (b) the 9P1s scheme with θ = 1/12; (c)
the 9P1s scheme with θ[ given by (3.35); (d) the 9P2s scheme with (θx, θy) given by (3.49). Then,
we extract 1-D cross-sections along various directions.

The results with the 9P1s scheme and the 9P2s scheme are at the bottom of Figure 6 for the
snapshot and of Figure 7 for the saturation pro�le. The red color is for the analytical solution,
the green line is the numerical solution on the diagonal of the domain, the blue one represents the
numerical solution on the x-direction and the y-direction is coloured in yellow. Notice that the
analytical solution is only represented once because it is invariant per rotation so it is the same
in each direction of the mesh. Remark that when the nine-point scheme is used on the saturation
equation, a perfect radial solution is obtained on square meshes, that means that the solution is
quasi invariant per rotation. On rectangular mesh, the invariant of the solution is not obtained
neither for the 9P1s scheme (Figure 8b or c) nor for the 9P2s scheme (Figure 8d) although that
the quality of the solution looks better. Compared to the �ve-point scheme results (Figure 8a),
the solution is more radial with our two schemes because of the absence of spikes along the axis
of the mesh. Those spikes are visible on the pro�les of the saturation too (Figures 7 and 9). On
square mesh, it can only be seen the di�usion of the shock whereas the solution is no more radial
in rectangular meshes; the x- and y-directions not being together.

4.2 Five-well test case

The second test case is inspired from [20] where we use �ve wells rather than two. As in the
previous test case, we assume that the reservoir is initially saturated with oil and water enters the
center of the domain by an injection well. To compare the solutions, two square domains are used,
namely,

Ω1 = (−L/2, L/2)2, Ω2 =
{

(x, y) ∈ R2 | |x|+ |y| ≤ L/
√

2
}
,

which are deduced from each other by a rotation of angle π/4. In both domains, the injector well
is located at X = 0, while the producer wells are located at

X1,2,3,4 = (±d/
√

2,±d/
√

2),

for 0 < d < L/2, as shown in Figures 10�11. A simulation is performed for each Ω ∈ {Ω1,Ω2} in
order to approximate the solution of the system

u = −κ(x)λ(s)∇p, in Ω× (0, T ), (4.6a)

div(u) = Qδ0 −
4∑
L=1

QL(s, p)δXL
, in Ω× (0, T ), (4.6b)

∂ts+ div(f(s)u) = Qδ0 −
4∑
L=1

QL(s, p)f(s)δXL
, in Ω× (0, T ), (4.6c)

with the Neumann boundary condition u · n = 0 on ∂Ω and the initial data s(x, 0) = 0. As
producers work with imposed pressure pW , the out�ows QL are modeled by [25, 26] as

QL(s, p) = λ(s)
2πκ(XL)

ln(re/rp,L)
(p− pW (XL)), (4.7)

where pW (XL) is the pressure at the bottom of the well, rp,L is the radius and re ≈ 0.14
√

∆x2 + ∆y2

is the equivalent radius of the cell. The ratio

WPL =
2πκ(XL)

ln(re/rp,L)
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Figure 10: Domain Ω1 : Diagonal grid.
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Figure 11: Domain Ω2 : Parallel grid.
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0

X1

0

X1

Figure 12: Location of injector well 0 and producer well X1. Paths of the numerical �ux for a
diagonal mesh (on the left) and a parallel mesh (on the right).

is called Peaceman well index. Normally, rp,L � re, so as this index is positive.
The permeability κ is now a function of x that takes two constant values, i.e.,

κ(x) =

{
κM if r = ‖x‖ < D,

κm otherwise,
(4.8)

with 0 < κm � κM and 0 < d < D < L/2. Having a low permeability where r > D is aimed at
preventing the �uid from �owing outside the circle of radius D.

The simulations are run with

L = 101m, Nx = Ny = 101, ∆x = ∆y = 1m.

In other words, the two domains Ω1 and Ω2 are discretized with squares (see Figure 12). It is
important to see that, at the discrete level, the relative position of the producer with resepct to
the injector is di�erent for the two domains. Domain Ω1 is called diagonal mesh, because the line
connecting the injector to each producer goes diagonally through the mesh. Domain Ω2 is called
parallel mesh, to the extent that the same line coincides with the main direction of the mesh.

The remaining lengths of the problem are

d = 29.7m, D = 48.5m.

The well parameters are

Q = 5 m3 · d−1, pW(XL) = 50 · 105 Pa, rp,L = 0.05 m.

Permeabilities and �uid viscosities are

κM = 100 mD, κm = 10−4 mD, µw = 1 cP, µo = 100 cP.

The relative permeabilities are taken from [6], that is,

κr,w(s) = s4, κr,o(1− s) = (1− s)2, (4.9)

from which it follows that

f(s) =
Ms4

Ms4 + (1− s)2
.

We simulate a period of T = 200 days.
The numerical results obtained with the di�erent schemes and on the two meshes are shown

in Figures 13 and 14. We observe that the water saturation pro�les obtained using the �ve-point
scheme are very di�erent in the two meshes due to the GOE whereas the ones obained using the
nine-point schemes, presented in this paper, are very similar. These observations can also be done
on the water production rates at the producers that are presented in Figure 15. Indeed, with
the 5P scheme, the curves are not identical between the parallel and the diagonal meshes and
in particular, the breakthrough times do not occur at the same time. However, because of the
symmetry of the problem, we should obtain the same curves between the two meshes and it is
what we observe with the 9P schemes.
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(a) 5P scheme and diagonal mesh. (b) 5P scheme and parallel mesh.

(c) 9P1s scheme with θ = 1/12 and diagonal
mesh.

(d) 9P1s scheme with θ = 1/12 and parallel mesh.

Figure 13: Water saturation �elds at T = 200 days for the �ve-well problem using the 5P scheme
(panels a�b) and 9P1s scheme (panels c�d) with θ = 1

12 .
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(a) 9P1s scheme with θ[ and diagonal mesh. (b) 9P1s scheme with θ[ and parallel mesh.

(c) 9P2s scheme with (θ[x, θ
[
y) and diagonal mesh. (d) 9P2s scheme with (θ[x, θ

[
y) and parallel mesh.

Figure 14: Water saturation �elds at T = 200 days for the �ve-well problem using the 9P1s scheme
with θ[ (panels a�b) and the 9P2s scheme with (θ[x, θ

[
y) (panels c�d).
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(b) 9P1s scheme with θ = 1
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(c) 9P1s scheme with θ[.
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y).

Figure 15: Water production curves for the four producers on the two meshes using the 5P scheme
(a), the 9P1s scheme with θ = 1/12 (b), the 9P1s scheme with θ[ (c) and the 9P2s scheme with
(θ[x, θ

[
y) (d).
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5 Conclusion

The GOE is an unavoidable consequence of discretization on Cartesian grids. However, under
adverse mobility ratios, it is so much ampli�ed that the numerical results produced by the classical
5P scheme become unacceptable for reservoir engineers. In this paper, we have designed a math-
ematical formalism based on Fourier error analysis in order to de�ne a notion of directional error
and to minimize the anisotropy of the computed solutions. Applied to two families of numerical
schemes depending on tuning parameters, our paradigm has given rise to two schemes �9P1s and
9P2s� to remedy the GOE.

The �rst family 9P1s depends on one scalar parameter and provides a uni�ed framework that
includes several well-known schemes. Depending on whether the optimization is carried out with
respect to pressure or saturation, the optimal and suboptimal values for the tuning parameter
happen to be those formerly suggested by various authors in a more or less heuristic way. In this
respect, our approach has brought a rigorous justi�cation to these previous works. The second
family 9P2s depends on two scalar parameters and is, to our knowledge, a novel construction. The
introduction of a second parameter enables us to further reduce the GOE, as testi�ed by the good
results of two numerical tests.

To be of practical interest to real simulations, our approach must of course be broadened to
take into account more sophisticated physics, such as capillary pressure, anisotropic permeability
tensor, gravity e�ect and polymer injection. Another direction for future research would be to
extend the promising ideas of this paper to more complex, non-orthogonal but structured meshes
such as CPG (Corner Point Geometry), where it still makes sense to talk about the GOE.
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