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Lukáš Holı́k ¨ Radu Iosif ¨ Adam Rogalewicz ¨
Tomáš Vojnar

Received: date / Accepted: date

Abstract A generic register automaton is a finite automaton equipped with variables (which
may be viewed as counters or, more generally, registers) ranging over infinite data domains.
A trace of a generic register automaton is an alternating sequence of alphabet symbols and
values taken by the variables during an execution of the automaton. The problem addressed
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1 Introduction

Many results in formal languages and automata theory rely on the assumption that the alpha-
bet over which languages are defined is finite. The finite alphabet hypothesis is crucial for
the existence of determinization, complementation and decidability of language inclusion
problems for the language acceptor class under consideration. However, this assumption
prevents the use of automata as models of real-time systems or infinite-state programs. In
general, traditional attempts to generalize classical finite-state automata to infinite alpha-
bets, such as timed automata [2] or finite-memory register automata [24] face the comple-
ment closure problem: there exists automata for which the complement language cannot be
recognized by automata in the same class. This prevents encoding language inclusion prob-
lems LpAq Ď LpBq as the emptiness of the language LpAqXLpBq, because the complement
LpBq of the language LpBq cannot be computed within the class of A and B. Moreover,
the language inclusion problem is proved to be undecidable, in general, for timed [2] and
finite-memory [24] automata, unless severe restrictions are applied.

In this paper, we consider a generalization of finite-state automata, by adding finitely
many variables that range over an infinite data domain and whose values are part of the
language of the automaton. We address the trace inclusion problem between (i) a network
of generic register automata1 A “ xA1, . . . ,ANy that communicate via a set of input events
ΣA and a set of shared variables xA , ranging over an infinite data domain, and (ii) a generic
register automaton B whose set of variables xB is a subset of xA and whose set of input events
is ΣB . Here, by a trace, we understand an alternating sequence of valuations of the variables
from the set xB and input events from the set ΣA XΣB, starting and ending with a valuation.
Typically, the automata network A models the implementation of a concurrent system and
B is a specification of the set of good behaviors of the system. Then, a positive answer to
the above inclusion problem means that the behavior of the implementation conforms to the
specification, which is a natural verification problem.

Consider, for instance, the network xA1, . . . ,ANy of generic register automata equipped
with the integer-valued variables x and v shown in Fig. 1–left. The automata synchronize on
the init symbol and interleave their a1,...,N actions. Each automaton Ai increases the shared
variable x and writes its identifier i into the shared variable v as long as the value of x
is in the interval rpi´1q∆, i∆´1s, and it is inactive outside this interval, where ∆ ě 1 is an
unbounded parameter of the network. A possible specification for this network might require
that each firing sequence is of the form init a˚1,...,N a2 a˚2,...,N . . .ai a˚i for some 1ď iď N, and
that v is increased only on the first occurrence of the events a2, . . . ,ai, in this order. This
condition is encoded by the automaton B (Fig. 1–right). Observe that only the v variable is
shared between the network xA1, . . . ,ANy and the specification automaton B—we say that v
is observable in this case. An example of a trace, for ∆ “ 2 and N ě 3, is: pv “ 0q init pv “
1q a1 pv “ 1q a1 pv “ 1q a2 pv “ 2q a2 pv “ 2q a3 pv “ 3q. Our problem is to check that
this, and all other traces of the network, are included in the language of the specification
automaton, called the observer. The trace inclusion problem has multiple applications, e.g.:

– Decision procedures for logics describing array structures within imperative programs
[18,17] that use a translation of array formulae to integer counter automata which en-
code the set of array models of a formula. The expressiveness of such logics is currently
limited by the undecidability of the emptiness (reachability) problem for counter au-
tomata. If we give up on decidability, we can reduce an entailment between two array

1 Generic register automata were called data automata in our preliminary work [22]. We have decided to
change the name in order to avoid confusion with some other formalisms.
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Fig. 1 An instance of the trace inclusion problem.

formulae to the trace inclusion of two integer counter automata, and use the method
presented in this paper as a semi-decision procedure. To corroborate this claim, we have
applied our trace inclusion method to several verification conditions for programs with
unbounded arrays of integers [8].

– Timed automata and regular specifications of timed languages [2] can be both rep-
resented by finite automata extended with real-valued variables [15]. The verification
problem boils down to the trace inclusion of two real-valued generic register automata.
In this context, our method has been tested on several timed verification problems, in-
cluding communication protocols and boolean circuits [32].

When developing a method for checking the inclusion between trace languages of au-
tomata extended with variables ranging over infinite data domains, the first problem is the
lack of determinization and/or complementation results. In fact, certain classes of infinite
state systems, such as finite-memory (register) [24] or timed automata [2], cannot be deter-
minized and are provably not closed under complement. This is the case due to the fact that
the values of the variables (registers, clocks) in such models of automata are not observable
in the recognized language, that is determined by a series of internal computations.

However, if we allow the values of all variables of a generic register automaton to be
part of its trace language, we obtain a determinization result, which generalizes the classical
subset construction by taking into account the data valuations. Building on this first result,
we define the complement of a trace language as an effectively computable generic register
automaton. Thus, we can reduce the trace inclusion problem to the emptiness of a generic
register product automaton LpAˆBq “ H, just as in the finite alphabet case. However, the
reduction of the trace inclusion to the emptiness problem crucially relies on the fact that the
variables xB of the right-hand side generic register automaton B (the one being determinized)
are also controlled by the left-hand side automaton A, in other words, that B has no hidden
variables. It is still an open problem whether and in which circumstances this reduction can
be achieved in the presence of hidden variables.

The language emptiness problem for generic register automata is, in general, undecid-
able [28]. Nevertheless, several semi-algorithms and tools for this problem, better known
as the reachability problem, have been developed [3,20,25,16]. Among those, the tech-
nique of lazy predicate abstraction [20] combined with counterexample-driven refinement
using interpolants [25] has been shown to be particularly successful in proving emptiness of
infinite-state systems. Moreover, this technique shares similar aspects with antichain-based
algorithms for language inclusion in the case of a finite alphabet [33,1]. An important sim-
ilarity is that both techniques use partial orders over the set of symbolic states, to prune the
search space, by storing only incomparable such states. In other words, the successors of a
covered state (in the sense of the partial order) are never explored, because any counterex-
ample that could potentially arise from that state, can also be discovered by expanding the
state that covers it.
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Even if the trace inclusion problem can be reduced, under some conditions, to the empti-
ness of a counter automaton for which practical semi-algorithms exist, building the entire
product counter automaton before checking its emptiness is usually not feasible. This is be-
cause the size of the product automaton is exponentially larger than the sum of the sizes
of A and B, even when the trace alphabet is finite. Having, moreover, an infinite alpha-
bet adds to the size of the product automaton, obtained by a generalization of the classical
subset construction, used for determinization, in the finite alphabet case. Altogether, this
prevents us from directly applying state-of-the-art methods and tool for checking emptiness
of counter automata, or equivalently, nondeterministic integer programs, such as constrained
Horn clause solvers [5].

To tackle this problem, we developed a semi-algorithm that builds the product automa-
ton on-the-fly, while checking its emptiness. We achieve practical efficiency by combining
the principle of antichain-based language inclusion algorithms [33,1] with the interpolant-
based abstraction refinement semi-algorithm [25], via a general notion of language-based
subsumption relation. This semi-algorithm has been first presented in our work [22]. Com-
pared with that work, this paper includes more details and also proofs of the results.

Moreover, here we introduce a notion of data simulations, i.e., simulation relations on
generic register automata, inspired by [27], and provide an algorithm to compute them.
Further, we show how data simulations can be integrated into our trace inclusion semi-
algorithm in order to improve its performance as done previously in the context of classical
finite-alphabet automata [1].

We have implemented the trace inclusion semi-algorithm as well as its combination with
data simulations in a prototype tool INCLUDER2 and carried out a number of experiments,
involving hardware, real-time systems, and array logic problems. The advantage of having
a trace inclusion semi-algorithm is that we can write small automata-like specifications of
the sets of good traces, instead of using, generally more complex, specifications of sets of
erroneous behaviors.

1.1 An Overview of the Approach

We introduce the reader to our trace inclusion method by means of an example. Let us con-
sider the network of generic register automata xA1,A2y and the generic register automaton B
from Fig. 1. We prove that, for any value of ∆, any trace of the network xA1,A2y, obtained
as an interleaving of the actions of A1 and A2, is also a trace of the observer B. To this end,
our procedure will fire increasingly longer sequences of input events, in search for a coun-
terexample trace. We keep a set of predicates associated with each state pxq1,q2y,Pq of the
product automaton where qi is a state of Ai and P is a set of states of B. These predicates3

are formulae that define over-approximations of the data values reached simultaneously by
the network, when Ai is in the state qi, and by the observer B, in every state from P.

The first input event is init, on which A1 and A2 synchronize, moving together from the
initial state xq1

0,q
2
0y to xq1

1,q
2
1y. In response, B can chose to either (i) move from tp0u to

tp1u, matching the only transition rule from p0, or (ii) does not match the transition rule
and move to the empty set. In the first case, the values of v match the relation of the rule
p0

init,v1“1
ÝÝÝÝÑ p1, while in the second case, these values match the negated relation  pv1 “ 1q.

2 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/
3 Note that there is not a fixed set of predefined predicates. New predicates are discovered during refine-

ment phase.
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Fig. 2 A sample run of the proposed semi-algorithm.

The second case is impossible because the action of the network requires x1 “ 0^ v1 “ 1.
The only successor state is thus pxq1

1,q
2
1y,tp1uq in Fig. 2 (a). Since no predicates are initially

available at this state, the best over-approximation of the set of reachable data valuations is
the universal set, denoted as J.

The second input event is a1, on which A1 moves from q1
1 back to itself, while A2 makes

an idle step because no transition with a1 is enabled from q2
1. Again, B has the choice be-

tween moving from tp1u either to H or tp1u. Let us consider the first case, in which the
successor state is pxq1

1,q
2
1y,H,Jq. Since q1

1 and q2
1 are final states of A1 and A2, respectively,

and no final state of B is present in H, we say that the state is accepting. If the accepting
state (in dashed boxes in Fig. 2) is reachable according to the transition constraints along
the input sequence init.a1, we have found a counterexample trace that is in the language of
xA1,A2y but not in the language of B.

To verify the reachability of the accepting state, we check the satisfiability of the path
formula corresponding to the composition of the transition constraints θ1 ” x1 “ 0^ v1 “ 1
(init) and θ2 ” 0 ď x ă ∆^ x1 “ x` 1^ v1 “ 1^ pv1 “ vq (a1) in Fig. 2 (a). The formula
θ1^θ2 is unsatisfiable, and the proof of infeasibility provides the interpolant xv“ 1y. This
formula is an explanation for the infeasibility of the path because it is implied by the con-
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straint θ1 and it is unsatisfiable in conjunction with the constraint θ2. By associating the new
predicate v “ 1 with the state pxq1

1,q
2
1y,tp1uq, we ensure that the same spurious path will

never be explored again.
We delete the spurious counterexample and recompute the states along the input se-

quence init.a1 with the new predicate. In this case, pxq1
1,q

2
1y,Hq is unreachable, and the

outcome is pxq1
1,q

2
1y,tp1u,v “ 1q. However, this state was first encountered after the se-

quence init, so there is no need to store a second occurrence of this state in the tree. We say
that the node init.a1 is subsumed by init, and indicate this by a dashed arrow in Fig. 2 (b).

We continue with a2 from the state pxq1
1,q

2
1y,tp1u,v“ 1q. In this case, A1 makes an idle

step and A2 moves from q2
1 to itself. In response, B has the choice between moving from

tp1u to either (i) tp1u with the constraint v1 “ v, (ii) tp2u with the constraint v1 “ v` 1,
(iii) tp1, p2u with the constraint v1 “ v^ v1 “ v` 1 (this constraint is unsatisfiable, hence
this case is discarded), (iv) H for data values that satisfy  pv1 “ vq^ pv1 “ v` 1q. The
first and the last cases are also discarded because the value of v after init constrained to 1
and the A2 imposes further the constraint v1 “ 2 and v“ 1^v1 “ 2^v1 “ vÑK for the first
case and v “ 1^ v1 “ 2^ pv1 “ vq^ pv1 “ v` 1q Ñ K. Hence, the only a2-successor of
pxq1

1,q
2
1y,tp1u,v“ 1q is pxq1

1,q
2
1y,tp2u,Jq, in Fig. 2 (b).

By firing the event a1 from this state, we reach pxq1
1,q

2
1y,H,v “ 1q, which is, again, ac-

cepting. We check whether the path init.a2.a1 is feasible, which turns out not to be the case.
For efficiency reasons, we find the shortest suffix of this path that can be proved infeasible.
It turns out that the sequence a2.a1 is infeasible starting from the state pxq1

1,q
2
1y,tp1u,v“ 1q,

which is called the pivot. This proof of infeasibility yields the interpolant xv“ 1,∆ă xy, and
a new predicate ∆ă x is associated with pxq1

1,q
2
1y,tp2uq. The refinement phase rebuilds only

the subtree rooted at the pivot state, in Fig. 2 (b).
The procedure then builds the tree in Fig. 2 (c) starting from the pivot node and finds

the accepting state pxq1
1,q

2
1y,H,∆ ă xq as the result of firing the sequence init.a2.a2. This

path is spurious, and the new predicate v“ 2 is associated with the location pxq1
1,q

2
1y,tp2uq.

The pivot node is the same as in Fig. 2 (b), and, by recomputing the subtree rooted at this
node with the new predicates, we obtain the tree in Fig. 2 (d), in which all frontier nodes are
subsumed by their predecessors. Thus, no new event needs to be fired, and the procedure
can stop reporting that the trace inclusion holds.

1.2 Related Work

Extending automata to deal with infinite alphabets is the purpose of the seminal work of
Kaminski and Francez [24], who introduce finite-memory automata that accept languages
over infinite alphabets using a finite set of registers that can be overwritten and compared
for equality with the input. In addition, our model of generic register automata is parametric
in the theory of the data used and allows comparisons between adjacent elements in the
input stream. For instance, generic register automata can easily specify increasing sequences
of integers, which is out of the scope of finite-memory automata. Moreover, the language
inclusion problem is undecidable for finite-memory automata, if the right-hand side has
more than 2 registers, while decidability is proved for at most 2 registers.

The trace inclusion problem has also been addressed in the context of timed automata
[30]. Although the problem LpAq Ď LpBq is undecidable in general [2], decidability is re-
covered when the B automaton has at most one clock, or the only constant appearing in the
clock constraints is zero. These are essentially the only known decidable cases of language
inclusion for timed automata.
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The study of data automata [6,13] usually deals with the complexity of decision prob-
lems in logics describing data languages for simple theories, typically infinite data domains
with equality. Here, we focus on undecidable language inclusion problems between data au-
tomata controlled by generic first-order theories, by providing a semi-algorithm that proves
to be effective, in practice.

Data words have also been considered in the context of symbolic visibly pushdown au-
tomata (SVPA) [12]. Language inclusion is decidable for SVPAs with transition guards from
a decidable theory because SVPAs are closed under complement and the emptiness can be
reduced to a finite number of queries expressible in the underlying theory of guards. De-
cidability comes here at the cost of reducing the expressivity and forbidding comparisons
between adjacent positions in the input — here only comparisons between matching call/re-
turn positions of the input nested words are allowed.

Although trace inclusion cannot be reduced to the emptiness problem of automata from
the same class in linear time, due to the exponential blowup caused by determinization, this
is possible if one considers an alternating automaton model, such as the one introduced in
[23]. This work generalizes from the trace inclusion problems considered in this paper, by
considering unrestricted alternation. As an advantage, one can complement in linear time
without the need for determinization. On the negative side, however, the emptiness check
for alternating automata with variables is heavier than in our case because it relies on the
ability of the SMT solver to answer queries in a combined theory of data and booleans. Due
to this reason, on some test cases, the semi-algorithm [23] performs slower than the trace
inclusion semi-algorithm presented here.

Several works on model checking infinite-state systems against CTL [4] and CTL* [10]
specifications are related to our problem as they check inclusion between the set of compu-
tation trees of an infinite-state system and the set of trees defined by a branching temporal
logic specification. First, the verification of existential CTL formulae [4] is reduced to solv-
ing forall-exists quantified Horn clauses by applying counterexample guided refinement to
discover witnesses for existentially quantified variables. It is however not clear whether and
how Horn clause solvers could be used for trace inclusion, which is a typical linear-time
property, that requires an unbounded number of computation branches to synchronize on
the same input word. To a very limited extent, for alphabets consisting of one symbol, one
can encode the (non-)emptiness of alternating automata as the existence of solutions of a
system of Horn clauses [?, Section 7.2.3]. However this encoding fails for alphabets of size
two or more, let alone for infinite data alphabets. Moreover, we have not encountered a
polynomial-time encoding of trace inclusion as a system of Horn clauses in the existing
literature4.

Finally, the work [10] on CTL* verification of infinite systems is based on partial sym-
bolic determinization, using prophecy variables to summarize the future program execution.
For finite alphabets, automata are a strictly more expressive formalism than temporal logics5.
Such a comparison is, however, non-trivial for languages over infinite alphabets. However, in
practice, we found the generic register automata considered in this paper to be a natural tool
for specifying verification conditions of array programs [18,17,8] and regular properties of
timed languages [2].

4 Our reduction to the emptiness of product automata is at least exponential.
5 For (in)finite words, the class of LTL-definable languages coincides with the star-free languages, which

are a strict subclass of (ω-)regular languages.
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1.3 Organization of the Paper

The rest of the paper is organized as follows: Section 2 describes preliminaries. Section 3
discusses closure properties of the considered class of generic register automata. Section 4
describes the trace inclusion semi-algorithm. Section 5 presents a concept of simulation re-
lations on register automata and their integration into the proposed trace inclusion algorithm.
Section 6 is an overview of our experimental evaluation, and, finally, Section 7 concludes
the paper.

2 Preliminary Definitions

Let N denote the set of non-negative integers including zero. For any k, ` P N, k ď `, we
write rk, `s for the set tk,k`1, . . . , `u. We write K and J for the boolean constants false
and true, respectively. Given a possibly infinite data domain D , we denote by FormpDq “
xD, f1, . . . , fmy the set of syntactically correct first-order formulae with function symbols
f1, . . . , fm. A variable x is said to be free in a formula φ, denoted as φpxq, iff it does not occur
under the scope of a quantifier.

Let x “ tx1, . . . ,xnu be a finite set of variables. A valuation ν : xÑD is an assignment
of the variables in x with values from D . We denote by Dx the set of such valuations. For
a formula φpxq, we denote by ν |ù φ the fact that substituting in φ each variable x P x by
νpxq yields a valid formula in the first-order theory of FormpDq. In this case, ν is said to be
a model of φ. A formula is said to be satisfiable iff it has a model. For a formula φpx,x1q
where x1 “

 

x1 | x P x
(

and two valuations ν,ν1 PDx, we denote by pν,ν1q |ù φ the fact that
the formula obtained from φ by substituting each x with νpxq and each x1 with ν1px1q is valid
in the first-order theory of FormpDq.

2.1 Generic Register Automata

Generic register automata6 (GRA) are extensions of non-deterministic finite automata with
variables ranging over an infinite data domain D with the first-order theory of FormpDq.
Formally, a GRA is a tuple A“ xD,Σ,x,Q, ι,F,∆y, where:

– Σ is a finite alphabet of input events and ˛ P Σ is a special padding symbol,
– x“ tx1, . . . ,xnu is a set of variables,
– Q is a finite set of states, ι P Q is an initial state, F Ď Q are final states, and
– ∆ is a set of rules of the form q σ,φpx,x1q

ÝÝÝÝÑ q1 where σ P Σ is an alphabet symbol and φpx,x1q
is a formula in FormpDq.

A configuration of A is a pair pq,νq P QˆDx. We say that a configuration pq1,ν1q is a suc-
cessor of pq,νq if and only if there exists a rule q σ,φ

ÝÑ q1 P ∆ and pν,ν1q |ù φ. We denote
the successor relation by pq,νq σ,φ

ÝÑ Apq1,ν1q, and we omit writing φ and A when no confu-
sion may arise. We denote by succApq,νq “ tpq1,ν1q | Dσ P Σ : pq,νq σ

ÝÑ Apq1,ν1qu the set of
successors of a configuration pq,νq.

For any ně 0, a trace is a finite sequence w“ pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q of pairs
pνi,σiq taken from the infinite alphabet DxˆΣ [if n“ 0, the trace is just pν0,˛q]. A run of A
over the trace w is a sequence of configurations π : pq0,ν0q

σ0
ÝÑ pq1,ν1q

σ1
ÝÑ . . .

σn´1
ÝÝÑ pqn,νnq

[for n “ 0, the run is pq0,ν0q only]. We say that the run π is accepting if and only if qn P F ,

6 Called data automata in [22].
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in which case A accepts w. The language of A, denoted LpAq, is the set of traces accepted
by A.

2.2 Generic Register Automata Networks

A generic register automata network (GRAN) is a non-empty tuple A “ xA1, . . . ,ANy of
generic register automata Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy, i P r1,Ns whose sets of states are
pairwise disjoint. A GRAN is a succint representation of an exponentially larger GRA
Ae “ xD,ΣA ,xA ,QA , ιA ,FA ,∆Ay, called the expansion of A , where:

– ΣA “ Σ1Y . . .YΣN and xA “ x1Y . . .YxN ,
– QA “ Q1ˆ . . .ˆQN , ιA “ xι1, . . . , ιNy and FA “ F1ˆ . . .ˆFN ,
– xq1, . . . ,qNy

σ,ϕ
ÝÑ xq11, . . . ,q

1
Ny if and only if there exists a set of indices I Ď r1,Ns such

that (i) for all i P I, qi
σ,ϕi
ÝÑ q1i , (ii) for all i R I, qi “ q1i , and (iii) ϕ ”

Ź

iPI ϕi^
Ź

jRI τ j,
where I “ ti P r1,Ns | qi

σ,ϕi
ÝÑ q1i P ∆iu is the set of GRA that can move from qi to q1i while

reading the input symbol σ, and τ j ”
Ź

xPx jzp
Ť

iPI xiq
x1 “ x propagates the values of the

local variables in A j that are not updated by tAiuiPI .
Intuitively, all automata that can read an input symbol synchronize their actions on that
symbol whereas the rest of the automata make an idle step and copy the values of their local
variables which are not updated by the active automata. The language of the GRAN A is
defined as the language of its expansion GRA, i.e., LpAq “ LpAeq.

2.3 Trace Inclusion

Let A be a GRAN and Ae“xD,Σ,xA ,QA , ιA ,FA ,∆Ay be its expansion. For a set of variables
y Ď xA , we denote by νÓy the restriction of a valuation ν P DxA to the variables in y. For
a trace w “ pν0,σ0q, . . . ,pνn,˛q P pDxA ˆΣAq

˚, we denote by wÓy the trace pν0Óy,σ0q, . . . ,

pνn´1Óy,σn´1q,pνnÓy,˛q P pDyˆΣq
˚. We lift this notion to sets of words in the natural way,

by defining LpAqÓy “
 

wÓy | w P LpAq
(

.
We are now ready to define the trace inclusion problem on which we focus in this paper.

Given a GRAN A as before and a GRA B “ xD,Σ,xB,QB, ιB,FB,∆By such that xB Ď xA ,
the trace inclusion problem asks whether LpAqÓxB

Ď LpBq? The right-hand side GRA B is
called observer, and the variables in xB are called observable variables.

3 Boolean Closure Properties of Generic Register Automata

We show first that generic register automata are closed under the boolean operations of
union, intersection and complement and that they are amenable to determinization. Clearly,
the emptiness problem is, in general, undecidable, due to the result of Minsky on 2-counter
machines with integer variables, increment, decrement and zero test [28].

Let A “ xD,Σ,x,Q, ι,F,∆y be a GRA for the rest of this section. A is said to be deter-
ministic if and only if, for each trace w P LpAq, A has at most one run over w. The first result
of this section is that, interestingly, any GRA can be determinized while preserving its lan-
guage. The determinization procedure is a generalization of the classical subset construction
for Rabin-Scott word automata on finite alphabets. The reason why determinization is pos-
sible for automata over an infinite data alphabet DxˆΣ is that the successive values taken
by each variable x P x are tracked by the language LpAq Ď pDxˆΣq

˚. This assumption is
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crucial: a typical example of automata over an infinite alphabet, that cannot be determinized,
are timed automata [2], where only the elapsed time is reflected in the language, and not the
values of the variables (clocks).

Formally, the deterministic GRA accepting the language LpAq is defined as Ad “

xD,Σ,x,Qd , ιd ,Fd ,∆dy, where Qd “ 2Q, ιd “ tιu, Fd “ tPĎ Q | PXF ‰Hu and ∆d is the
set of rules P σ,θ

ÝÑ P1 such that the formula:

θpx,x1q “
ľ

p1PP1

ł

p
σ,ψ
ÝÑp1P∆

pPP

ψ^
ľ

p1PQzP1

ľ

p
σ,ϕ
ÝÑp1P∆

pPP

 ϕ

is satisfiable7. The main difference with the classical subset construction for Rabin-Scott
automata is that here we consider all sets P1 of states that have a predecessor in P, not
just the maximal such set. This refined subset construction takes into account not just the
alphabet symbols in Σ, but also the valuations of the variables in x. Observe, moreover,
that Ad can be built for any first-order theory of FormpDq that is closed under conjunction,
disjunction, and negation. The following lemma states the main properties of Ad .

Lemma 1 Given a GRA A“ xD,Σ,x,Q, ι,F,∆y, (1) for any w P pDxˆΣq
˚ and P PQd , Ad

has exactly one run on w that starts in P, and (2) LpAq “ LpAdq.

Proof (1) Let w“pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q be an arbitrary trace and PĎQ be a state
of Ad . We first build a run π “ pP0,ν0q

σ0 ,θ0
ÝÝÑ pP1,ν1q . . .

σn´1 ,θn´1
ÝÝÝÝÝÑ pPn,νnq of Ad such that

P0 “ P, by induction on n ě 0. If n “ 0, then w “ pν0,˛q and π “ pP0,ν0q is trivially a run
of Ad over w. For the induction step, let n ą 0 and suppose that Ad has a run pP0,ν0q

σ0 ,θ0
ÝÝÑ

. . .pPn´1,νn´1q such that P0 “ P. We extend this run to a run over w by considering:

Pn “

!

p P Q | Dq P Pn´1 . q
σn´1 ,φ
ÝÝÝÑ p P ∆ and pνn´1,νnq |ù φ

)

,

θn ”
Ź

p1PPn

Ž

p
σ,ψ
ÝÑp1P∆

pPPn´1

ψ^
Ź

p1PQzPn

Ź

p
σ,ϕ
ÝÑp1P∆

pPPn´1

 ϕ.

It is not hard to see that pνn´1,νnq |ù θn, thus pP0,ν0q
σ0 ,θ0
ÝÝÑ . . .

σn ,θn
ÝÝÑ pPn,νnq is indeed a run of

Ad over w. To show that π is unique, suppose, by contradiction, that there exists a different
run π1 “ pR0,ν0q

σ0 ,ω0
ÝÝÑ pR1,ν1q . . .

σn´1 ,ωn´1
ÝÝÝÝÝÑ pRn,νnq such that P0 “ R0 “ P. Notice that the

relation labeling any transition rule Pi
σi ,θi
ÝÝÑPi`1 is entirely determined by the sets Pi and Pi`1,

so two runs are different iff they differ in at least one state, i.e., Pj ‰ R j for some j P r1,ns.
Let i denote the smallest such j and suppose that there exists p P Pi such that p R Ri (the
symmetrical case p P Ri and p R Pi is left to the reader). By the definition of ∆d , there
exists q P Pi´1 “ Ri´1 such that q

σi´1 ,ψ
ÝÝÝÑ p P ∆. Since pνi´1,νiq |ù θi´1^ωi´1, we obtain that

pνi´1,νiq |ù
Ž

tψ | q
σi´1 ,ψ
ÝÝÝÑ p P∆, q PPi´1u and pνi´1,νiq |ù

Ź

t ψ | q
σi´1 ,ψ
ÝÝÝÑ p P∆, q PPi´1u,

contradiction. Thus π is the only run of Ad over w starting in P.
(2) Let w “ pν0,σ0q, . . . ,pνn´1,σn´1q,pνn,˛q be a trace. “Ď” If w P LpAq, then A has

a run pq0,ν0q
σ0 ,φ0
ÝÝÑ . . .

σn´1 ,φn´1
ÝÝÝÝÝÑ pqn,νnq such that q0 “ ι and qn P F . By Point 1, Ad has

a unique run pP0,ν0q
σ0 ,θ0
ÝÝÑ . . .

σn´1 ,θn´1
ÝÝÝÝÝÑ pPn,νnq over w. We prove that qi P Pi by induction on

i P r0,ns. For i“ 0, we have P0 “ tιu by the definition of Ad . For the induction step, suppose
that i P r1,ns and qi´1 P Pi´1. By contradiction, assume that qi R Pi. Since pνi´1,νiq |ù θi´1,

7 Note that the empty disjunction is equivalent to K. Hence θpx,x1q satisfiable implies that for all p1 P P1

there exists p P P and a rule p
σ,ψ
ÝÑ p1 P ∆.
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we obtain pνi´1,νiq |ù  φi´1, contradiction. Thus qi P Pi for all i P r0,ns, and qn P Pn, hence
PnXF ‰ H. Then Pn P Fd , and w P LpAdq. “Ě” If w P LpAdq, then Ad has a (unique) run
pP0,ν0q

σ0 ,θ0
ÝÝÑ pP1,ν1q . . .

σn´1 ,θn´1
ÝÝÝÝÝÑ pPn,νnq over w such that P0 “ tιu and PnXF ‰H. Then

there exists pn P Pn XF , and, by the definition of Ad , there exists pn´1 P Pn´1 such that
pn´1

σn´1 ,ψn´1
ÝÝÝÝÝÑ pn P ∆ and pνn´1,νnq |ù ψn´1. Continuing this argument backwards, we can

find a run pq0,ν0q
σ0 ,ψ0
ÝÝÑ . . .

σn´1 ,ψn´1
ÝÝÝÝÝÑ pqn,νnq of A over w such that qi P Pi for all i P r0,ns.

Since P0 “ tιu and qn P F , we obtain that w P LpAq. [\

The construction of a deterministic GRA recognizing the language of A is key to defining
a GRA that recognizes the complement of A. Let A “ xD,Σ,x,Qd , ιd ,QdzFd ,∆dy. In other
words, A has the same structure as Ad , and the set of final states consists of those subsets
that contain no final state, i.e., tPĎ Q | PXF “Hu. Using Lemma 1, it is not difficult to
show that LpAq “ pDxˆΣq

˚
zLpAq.

Next, we show closure of GRA under intersection. Let B “ xD,Σ,x,Q1, ι1,F 1,∆1y be
a GRA and define AˆB“ xD,Σ,x,QˆQ1,pι, ι1q,FˆF 1,∆ˆy where pq,q1q σ,ϕ

ÝÑ pp, p1q P ∆ˆ

if and only if q σ,φ
ÝÑ p P ∆, q1 σ,ψ

ÝÑ p1 P ∆1 and ϕ ” φ^ψ. It is easy to show that LpAˆBq “
LpAqXLpBq. GRA are also closed under union since LpAqYLpBq “ LpAˆBq.

Let us turn now to the trace inclusion problem. The following lemma shows that this
problem can be effectively reduced to an equivalent language emptiness problem. However,
note that this reduction does not work when the trace inclusion problem is generalized by re-
moving the condition xB Ď xA. In other words, if the observer uses local variables not shared
with the network8, i.e., xBzxA ‰H, the generalized trace inclusion problem LpAqÓxAXxB

Ď

LpBqÓxAXxB
has a negative answer iff there exists a trace w“pν0,σ0q, . . . ,pνn,˛q PLpAq such

that, for all valuations µ0, . . . ,µn PDxBzxA , we have w1 “ pν0 ÓxAXxB
Y µ0,σ0q, . . . ,pνn ÓxAXxB

Y µn,˛q R LpBq. This kind of quantifier alternation cannot be easily accommodated within
the framework of language emptiness, in which only one type of (existential) quantifier oc-
curs.

Lemma 2 Given GRA A “ xD,Σ,xA,QA, ιA,FA,∆Ay and B “ xD,Σ,xB,QB, ιB,FB,∆By such
that xB Ď xA. Then LpAqÓxB

Ď LpBq if and only if LpAˆBq “H.

Proof We have LpAqÓxB
Ď LpBq iff LpAqÓxB

XLpBq “ LpAˆBqÓxB
“H iff LpAˆBq “H.

[\

The trace inclusion problem is undecidable, which can be shown by reduction from the
language emptiness problem for GRA (take B such that LpBq “ H). However, the above
lemma shows that any semi-decision procedure for the language emptiness problem can
also be used to deal with the trace inclusion problem.

4 Abstract, Check, and Refine for Trace Inclusion

This section describes our semi-algorithm for checking the trace inclusion between a given
network A and an observer B. Let Ae denote the expansion of A , defined in Section 2. In the
light of Lemma 2, the trace inclusion problem LpAqÓxB

Ď LpBq, where the set of observable

8 For timed automata, this is the case since the only shared variable is the time, and the observer may have
local clocks.



12 Lukáš Holı́k et al.

variables xB is included in the set of network variables, can be reduced to the language
emptiness problem LpAeˆBq “H.

Although language emptiness is in general undecidable for generic register automata
[28], several cost-effective semi-algorithms and tools [19,25,16,3] have been developed,
showing that it is possible, in many practical cases, to provide a yes/no answer to this prob-
lem. However, to apply one of the existing off-the-shelf tools to our problem, one needs to
build the product automaton AeˆB prior to the analysis. Due to the inherent state explosion
caused by the interleaving semantics of the network as well as by the complementation of
the observer, such a solution would not be efficient in practice.

To avoid building the product automaton, our procedure builds on-the-fly an over-
approximation of the (possibly infinite) set of reachable configurations of AeˆB. This over-
approximation is defined using the approach of lazy predicate abstraction [19], combined
with counterexample-driven abstraction refinement using interpolants [25]. We store the
explored abstract states in a structure called an antichain tree. In general, antichain-based
algorithms [33,1] store only states which are incomparable wrt a partial order called sub-
sumption. Our method can be thus seen as an extension of the antichain-based language
inclusion algorithms [33,1] to infinite state systems by means of predicate abstraction and
interpolation-based refinement. Since the trace inclusion problem is undecidable in general,
termination of our procedure is not guaranteed; in the following, we shall, however, call our
procedure an algorithm for the sake of brevity.

4.1 Antichain Trees

In this section, we define antichain trees, which are the main data structure of the trace
inclusion (semi-)algorithm. Let A “ xA1, . . . ,ANy be a network of automata where Ai “

xD,Σi,xi,Qi, ιi,Fi,∆iy, for all i P r1,Ns, and let B“ xD,Σ,xB,QB, ιB,FB,∆By be an observer
such that xB Ď

ŤN
i“1 xi. We also denote by Ae “ xD,ΣA ,xA ,QA , ιA ,FA ,∆Ay the expansion

of the network A and by AeˆB “ xD,ΣA ,xA ,Qp, ιp,F p,∆py the product automaton used
for checking language inclusion.

An antichain tree for the network A and the observer B is a tree whose nodes are la-
beled by product states (see Fig. 2 for examples)9. Intuitively, a product state is an over-
approximation of the set of reachable configurations of the product automaton AeˆB that
share the same control state. Formally, a product state for A and B is defined as a tuple
s“ pq,P,Φqwhere (i) pq,Pq is a state of AeˆB with q“xq1, . . . ,qNy being a state of the net-
work expansion Ae and P being a set of states of the observer B, and (ii) ΦpxAq P FormpDq
is a formula which defines an over-approximation of the set of valuations of the variables xA
that reach the state pq,Pq in AeˆB. A product state s“ pq,P,Φq is a finite representation of
a possibly infinite set of configurations of AeˆB, denoted as rrsss “ tpq,P,νq | ν |ùΦu. 10

To build an over-approximation of the set of reachable states of the product automaton,
we need to compute, for a product state s, an over-approximation of the set of configurations

9 The formal definition of antichain trees will be given as Definition 1 later in this section.
10 Note that the above choice of the product state in the form s“pq,P,Φq is not straightforward and resulted

from several previous unsuccessful attempts. For example, if one chooses to associate separate formulae for
the valuations of the variables with q and each of the states in P, which seems to be a quite natural choice,
the construction becomes unsound. Intuitively, when a successor state of such a product state is computed,
the disjunction of the formulae joint with the successors of P may entail the formula joint with the successor
of q. However, that does not mean that all pairs of source/target valuations possible in Ae are possible in B
too. More details are provided in Appendix A.
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that can be reached in one step from s. To this end, we define first a finite abstract domain of
product states, based on the notion of predicate map. A predicate map is a partial function
that associates sets of facts11 about the values of the variables used in the product automaton
with components of a product state. Facts are called predicates and components of a product
state are called substates. Formally, a substate of a state pxq1, . . . ,qNy,Pq PQp of the product
automaton AeˆB is a pair pxqi1 , . . . ,qiky,Sq such that (i) xqi1 , . . . ,qiky is a subsequence of
xq1, . . . ,qNy, and (ii) S ‰H only if SXP‰H.

The reason behind the distribution of predicates over substates is two-fold. First, we
would like the abstraction to be local, i.e., the predicates needed to define a certain subtree
in the antichain must be associated with the labels of that subtree only. Second, once a
predicate appears in the context of a substate, it should be subsequently reused whenever
that same substate occurs as part of another product state.

We denote the substate relation by pxqi1 , . . . ,qiky,Sq Ÿ pxq1, . . . ,qNy,Pq. The substate re-
lation requires the automata Ai1 , . . . ,Aik of the network A to be in the control states qi1 , . . . ,qik
simultaneously, and the observer B to be in at least some state of S provided S‰H (if S“H,
the state of B is considered to be irrelevant). Let SxA ,By “ tr | Dq P Qp . r Ÿ qu be the set of
substates of a state of AeˆB.

A predicate map Π : SxA ,ByÑ 2FormpDq associates each substate pr,Sq P Qi1 ˆ . . .ˆQik ˆ

2QB with a set of formulae πpxq where (i) x “ xi1 Y . . .Y xik Y xB if S ‰ H, and (ii) x “
xi1 Y . . .Yxik if S “H. Notice that a predicate associated with a substate refers only to the
local variables of those network components Ai1 , . . . ,Aik and of the observer B that occur in
the particular substate.

Example 1 The antichain in Fig. 2 (d) uses the predicate map pxq1
1,q

2
1y,tp1uq ÞÑ tv“ 1u,

pxq1
1,q

2
1y,tp2uq ÞÑ t∆ă x,v“ 2u. �

We are now ready to define the abstract semantics of the product automaton Ae ˆB,
induced by a given predicate map. For convenience, we define first a set Postpsq of concrete
successors of a product state s “ pq,P,Φq such that pr,S,Ψq P Postpsq if and only if (i) the
product automaton Ae ˆ B has a rule pq,Pq σ,θ

ÝÑ pr,Sq P ∆p and ΨpxAq ” Dx1A . Φpx1Aq ^
θpx1A ,xAq is satisfiable. The set of concrete successors does not contain states with empty
set of valuations because these states are unreachable in AeˆB.

Given a predicate map Π, the set PostΠpsq of abstract successors of a product state s
is defined as follows: pr,S,Ψ7q P PostΠpsq if and only if (i) there exists a product state
pr,S,Ψq P Postpsq and (ii) Ψ7pxAq ”

Ź

rŸpr,Sq
Ź

tπ PΠprq |ΨÑ πu. In other words, the
set of data valuations reachable by an abstract successor is the tightest over-approximation
of the concrete set of reachable valuations, obtained as the conjunction of the available
predicates from the predicate map that over-approximate this set.

Example 2 (Continued from Ex. 1) Consider the antichain from Fig. 2 (d). The concrete
successors of s“ pxq1

1,q
2
1y,tp1u,v“ 1q are pxq1

1,q
2
1y,tp1u,Ψ1q and pxq1

1,q
2
1y,tp2u,Ψ2q:

Ψ1 ” Dv1,x1,∆1 . v1 “ 1^ x“ x1`1^ v“ 1^∆“ ∆1^0ď x1 ă ∆^ v“ v1,
Ψ2 ” Dv1,x1,∆1 . v1 “ 1^ x“ x1`1^ v“ 2^∆“ ∆1^∆ď x1 ă 2∆^ v“ v1`1.

With predicate map Π from Ex. 1, PostΠpsq “ tpxq1
1,q

2
1y,tp1u,Ψ

7
1q,pxq

1
1,q

2
1y,tp2u,Ψ

7
2qu:

pΨ1 Ñ v“ 1q Ñ pΨ
7
1 ” v“ 1q,

pΨ2 Ñ v“ 2 and Ψ2 Ñ ∆ă xq Ñ pΨ
7
2 ” v“ 2^∆ă xq. �

11 A fact is a formula in FormpDq.
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Finally, an antichain tree (or, simply antichain) T for A and B is a tree whose nodes
are labeled with product states and whose edges are labeled by input symbols and concrete
transition relations. Let N˚ be the set of finite sequences of natural numbers that denote the
positions in the tree. For a tree position p P N˚ and i P N, the position p.i is a child of p.
A set S Ď N˚ is said to be prefix-closed if and only if, for each p P S and each prefix q of p,
we have q P S as well. The root of the tree is denoted by the empty sequence ε.

Definition 1 Formally, an antichain T is a set of pairs xs, py, where s is a product state and
p PN˚ is a tree position, such that (1) for each position p PN˚ there exists at most one prod-
uct state s such that xs, py P T , (2) the set tp | xs, py P T u is prefix-closed, (3) prootxA ,By,εq P
T where rootxA ,By “ pxι1, . . . , ιNy,tιBu,Jq is the label of the root, and (4) for each edge
pxs, py,xt, p.iyq in T , there exists a predicate map Π such that t P PostΠpsq. For the latter
condition, if s “ pq,P,Φq and t “ pr,S,Ψq, there exists a unique rule pq,Pq σ,θ

ÝÑ pr,Sq P ∆p,
and we shall sometimes denote the edge as s σ,θ

ÝÑ t or simply s θ

ÝÑ t when the tree positions or
alphabet symbols are not important.

Each antichain node n “ ps,d1 . . .dkq P T is naturally associated with a path from the
root to itself ρ : n0

σ1 ,θ1
ÝÝÑ n1

σ2 ,θ2
ÝÝÑ . . .

σkθk
ÝÝÑ nk. We denote by ρi the node ni for each i P

r0,ks, and by |ρ| “ k the length of the path. The path formula associated with ρ is Θpρq ”
Źk

i“1 θipxi´1
A ,xi

Aq where xi
A “

 

xi | x P xA
(

is a set of indexed variables for each i P r0,ks.

Example 3 Consider the following path ρ : pxq1
0,q

2
0y,tp0u,Jq

init
ÝÑ pxq1

1,q
2
1y,tp1u,v“ 1q

a2
ÝÑ

pxq1
1,q

2
1y,tp2u,∆ ă xq

a2
ÝÑ pxq1

1,q
2
1y,H,∆ ă xq in the antichain from Fig. 2 (c). The path for-

mula of ρ is Θpρq ” θ1^θ2^θ3 where:

θ1 ” v1 “ 1^ x1 “ 0^0ă ∆1,
θ2 ” v2 “ v1`1^∆2 “ ∆1^ v2 “ 2^ x2 “ x1`1^∆1 ď x1 ă 2∆1^ pv2 “ v1q,
θ3 ” v3 “ 2^∆3 “ ∆2^ x3 “ x2`1^∆2 ď x2 ă 2∆2^ pv3 “ v2q. �

4.2 Counterexample-driven Abstraction Refinement

A counterexample is a path from the root of the antichain to a node which is labeled by
an accepting product state. A product state pq,P,Φq is said to be accepting iff pq,Pq is an
accepting state of the product automaton Ae ˆ B, i.e., q P FA and PX FB “ H. A coun-
terexample is said to be spurious if its path formula is unsatisfiable, i.e., the path does not
correspond to a concrete execution of AeˆB. In this case, we need to (i) remove the path ρ

from the current antichain and (ii) refine the abstract domain in order to exclude the occur-
rence of ρ from future state space exploration.

Let ρ : rootxA ,By “ pq0,P0,Φ0q
θ1
ÝÑ pq1,P1,Φ1q

θ2
ÝÑ . . .

θk
ÝÑ pqk,Pk,Φkq be a spurious coun-

terexample in the following. For efficiency reasons, we would like to save as much work as
possible and remove only the smallest suffix of ρ which caused the spuriousness. For some
j P r0,ks, let Θ jpρq ”Φ jpx0

Aq^
Źk

i“ j θipxi´ j
A ,xi´ j`1

A q be the formula defining all sequences
of data valuations that start in the set Φ j and proceed along the suffix pq j,Pj,Φ jq ÝÑ . . . ÝÑ
pqk,Pk,Φkq of ρ. The pivot of a path ρ is the maximal position j P r0,ks such that Θ jpρq is
unsatisfiable, and ´1 if ρ is not spurious.

Example 4 (Continued from Ex. 3) The path formula Θpρq ” θ1 ^ θ2 ^ θ3 from Ex. 3 is
unsatisfiable, thus ρ is a spurious counterexample. Moreover, we have unsatisfiable Θ1pρq ”

J^ θ2 ^ θ3 because of the unsatisfiable subformula v2 “ 2^ v3 “ 2^ pv3 “ v2q. Since
Θ2pρq is satisfiable, the pivot of ρ is 1. �
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Finally, we describe the refinement of the predicate map, which ensures that a given
spurious counterexample will never be found in a future iteration of the abstract state space
exploration. The refinement is based on the notion of interpolant [25].

Definition 2 Given a formula Φpxq and a sequence xθ1px,x1q, . . . ,θkpx,x1qy of formulae, an
interpolant is a sequence of formulae I “ xI0pxq, . . . , Ikpxqy where: (1) ΦÑ I0, (2) Ik ÑK,
and (3) Ii´1pxq^θipx,x1q Ñ Iipx1q for all i P r1,ks.

Any given interpolant is a witness for the unsatisfiability of a (suffix) path formula Θ jpρq.
Dually, if Craig’s Interpolation Lemma [11] holds for the considered first-order data theory,
any infeasible path formula is guaranteed to have an interpolant. The interpolant can be
computed by means of Satisfiability Modulo Theories (SMT) solvers [9,26].

Example 5 (Continued from Ex. 4) Let Φ ” J (variables initially unconstraint) and the se-
quence of formula be xθ1,θ2,θ3y from Ex. 3. An interpolant is a sequence I “ xJ,v“ 2,Ky.
�

Given a spurious counterexample ρ“ pq0,P0,Φ0q
θ1
ÝÑ . . .

θk
ÝÑpqk,Pk,Φkqwith pivot jě 0,

an interpolant I “ xI0, . . . , Ik´ jy for the infeasible path formula Θ jpρq can be used to re-
fine the abstract domain by augmenting the predicate map Π. A simple possible refine-
ment is to add the formula Ii into Πppq j`i,Pj`iqq for each 0 ď i ď pk´ jq. As an effect of
this refinement, the antichain construction algorithm will avoid every path with the suffix
pq j,Pj,Φ jq ÝÑ . . .ÝÑ pqk,Pk,Φkq in a future iteration.

We use an improved version of this simple refinement in order to obtain more reusable
predicates. If Ii “ C1

i py1q ^ . . .^Cmi
i pymiq is a conjunctive normal form (CNF) of the i-

th component of the interpolant, we consider the substate pr`i ,S`
i q for each C`

i py`q where
` P r1,mis:

– r`i “ xqi1 , . . . ,qihy where 1ď i1 ă . . .ă ih ďN is the largest sequence of indices such that
xig X y` ‰ H for each g P r1,hs and the set xig of variables of the network component
GRA Aig ,

– S`
i “ Pi if xBXy` ‰H, and S`

i “H, otherwise.
A predicate map Π is said to be compatible with a spurious path ρ : s0

θ1
ÝÑ . . .

θk
ÝÑ sk

with pivot j ě 0 if s j “ pq j,Pj,Φ jq and there is an interpolant I“ xI0, . . . , Ik´ jy of the suffix
xθ j, . . . ,θky wrt. Φ j such that, for each clause C of some equivalent CNF of Ii, i P r0,k´ js,
it holds that C P Πprq for some substate r Ÿ si` j. The following lemma proves that, under
a predicate map compatible with a spurious path ρ, the antichain construction will exclude
further paths that share the suffix of ρ starting with its pivot.

Lemma 3 Let ρ : pq0,P0,Φ0q
θ0
ÝÑ pq1,P1,Φ1q

θ1
ÝÑ . . .

θk´1
ÝÝÑ pqk,Pk,Φkq be a spurious coun-

terexample and Π a predicate map compatible with ρ. Then, there is no sequence of product
states pq j,Pj,Ψ0q, . . . ,pqk,Pk,Ψk´ jq such that: (1) Ψ0 ÑΦ j and (2) pqi`1,Pi`1,Ψi´ j`1q P

PostΠppqi,Pi,Ψi´ jqq for all i P r j,k´1s.

Proof Let j P r0,ks be the pivot of ρ. Since ρ is spurious, there exists an interpolant I “
xI0, . . . , Ik´ jy for Φ j and xθ j, . . . ,θky. It is sufficient to prove that Ψi Ñ Ii for all i P r0,k´
js. Since Ik´ j “ K, we obtain Ψk´ j “ K, and consequently pqk´ j,Pk´ j,Kq P
PostΠppqk´ j´1,Pk´ j´1,Ψk´ j´1qq. By the definition of PostΠ, we have pqk´ j,Pk´ j,Kq P
Postppqk´ j´1,Pk´ j´1,Ψk´ j´1qq, which contradicts with the definition of Post. We show
that Ψi Ñ Ii for all i P r0,k´ js, by induction on k´ j. For the base case k´ j “ 0, we have
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Ψ0 ÑΦ j Ñ I0. For the induction step, we assume Ψi Ñ Ii for all i P r0,k´ j´1s and prove
Ψk´ j Ñ Ik´ j. By the induction hypothesis, we have:

Ψk´ j´1pxAq Ñ Ik´ j´1pxAq and
Ψk´ j´1pxAq^θk´ j´1pxA ,x1Aq Ñ Ik´ j´1pxAq^θk´ j´1pxA ,x1Aq Ñ Ik´ jpx1Aq.

Let C1^ . . .^C` be the CNF of Ik´ j. Since Π is compatible with ρ, for each clause Ci, there
exists a substate r Ÿ pqk,Pkq such that Ci P Πprq. By the definition of PostΠ, we obtain that
Ψk´ j ÑCi for each i P r1, `s, hence Ψk´ j Ñ Ik´ j. [\

Observe that the refinement induced by interpolation is local since Π associates sets
of predicates with substates of the states in AeˆB, and the update impacts only the states
occurring within the suffix of that particular spurious counterexample.

4.3 Subsumption

The main optimization of antichain-based algorithms [1] for checking language inclusion of
automata over finite alphabets is that product states that are subsets of already visited states
are never stored in the antichain. On the other hand, language emptiness semi-algorithms,
based on predicate abstraction [25] use a similar notion to cover newly generated abstract
successor states by those that were visited sooner and that represent larger sets of con-
figurations. In this case, state coverage does not only increase efficiency but also ensures
termination of the semi-algorithm in many practical cases.

In this section, we generalize the subset relation used in classical antichain algorithms
with the notion of coverage from predicate abstraction, and we define a more general notion
of subsumption for generic register automata. Given a state pq,Pq of the product automaton
AeˆB and a valuation ν P DxA , the residual language Lpq,P,νqpAeˆBq is the set of traces
w accepted by AeˆB from the state pq,Pq such that ν is the first valuation which occurs
on w. This notion is then lifted to a product state s “ pq,P,Φq as follows: LspAe ˆBq “
Ť

pq,P,νqPrrsssLpq,P,νqpAeˆBq where rrsss “ tpq,P,νq | ν |ùΦu—i.e. the set of configurations
of the product automaton AeˆB represented by the given product state s.

Definition 3 Given a GRAN A and a GRA B, a partial order Ď is a subsumption provided
that, for any two product states s and t, we have s Ď t only if LspAeˆBq Ď LtpAeˆBq.

A procedure for checking the emptiness of AeˆB needs not continue the search from
a product state s if it has already visited a product state t that subsumes s. The intuition
is that any counterexample discovered from s can also be discovered from t. The trace in-
clusion semi-algorithm described below in Section 4.4 works, in principle, with any given
subsumption relation. In practice, our implementation uses the subsumption relation defined
by the lemma below:

Lemma 4 The relation defined such that pq,P,ΦqĎimg pr,S,Ψq ðñ q“ r, PĚ S, and ΦÑ

Ψ is a subsumption.

Proof For any valuation ν PDxA , we have Lpq,P,νqpAeˆBq “ Lpq,νqpAeqXLpP,νqpBq. Since
PĚ S, we have LpP,νqpBqĚLpS,νqpBq, thus LpP,νqpBqĎLpS,νqpBq. We obtain that Lpq,P,νqpAeˆ

Bq Ď Lpr,νqpAeq X LpS,νqpBq “ Lpr,S,νqpAe ˆ Bq. Since moreover Φ Ñ Ψ, we have that
Lpq,P,ΦqpAeˆBq Ď Lpr,S,ΦqpAeˆBq Ď Lpr,S,ΨqpAeˆBq. [\
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Algorithm 1 Trace Inclusion Semi-algorithm
input:

1. A GRAN A “ xA1, . . . ,ANy such that Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for all i P r1,Ns.
2. A GRA B“ xD,Σ,xB,QB, ιB,FB,∆By such that xB Ď

ŤN
i“1 xi.

output: True if LpAqÓxB
Ď LpBq, otherwise a trace τ P LpAqÓxB

zLpBq.
1: ΠÐH, VisitedÐH, NextÐxrootxA ,By,εy, SubsumeÐH

2: while Next‰H do
3: choose curr P Next and move curr from Next to Visited
4: match curr with xs, py
5: if s is an accepting product state then
6: let ρ be the path from the root to curr and k be the pivot of ρ

7: if kě 0 then
8: ΠÐ REFINEPREDICATEMAPBYINTERPOLATIONpΠ,ρ,kq
9: remÐ SUBTREEpρkq

10: for pn,mq P Subsume such that m P rem do
11: move n from Visited to Next
12: remove rem from pVisited,Next,Subsumeq
13: add ρk to Next
14: else
15: return EXTRACTCOUNTEREXAMPLEpρq

16: else
17: iÐ 0
18: for t P PostΠpsq do
19: if there exists m“ xt1, p1y P Visited such that t Ď t1 then
20: add pcurr,mq to Subsume
21: else
22: remÐtn P Next | n“ xt1, p1y and t1 < tu
23: succÐxt, p.iy
24: iÐ i`1
25: for n P Visited such that n has a successor m P rem do
26: add pn,succq to Subsume

27: for pn,mq P Subsume such that m P rem do
28: add pn,succq to Subsume

29: remove rem from pVisited,Next,Subsumeq
30: add succ to Next
31: return True

Example 6 In the antichain from Fig. 2 (d), pxq1
1,q

2
1y,tp1u,v“ 1qĎimg pxq1

1,q
2
1y,tp1u, v“ 1q

because xq1
1,q

2
1y “ xq

1
1,q

2
1y, tp1u Ě tp1u, and v“ 1Ñ v“ 1. �

The language inclusion algorithm for non-deterministic automata on finite alphabets [1]
uses also a more sophisticated subsumption relation based on a pre-computed simulation
[27] between the states of the automata. We have defined a similar notion of simulation for
generic register automata and an algorithm for computing such simulations. Details con-
cerning data simulations and their integration within the framework of antichain-based ab-
straction refinement are described in Section 5.

4.4 The Trace Inclusion Semi-algorithm

With the previous definitions, Algorithm 1 describes the procedure for checking trace inclu-
sion. It uses a classical worklist iteration loop (lines 2-30) that builds an antichain tree by
simultaneously unfolding the expansion Ae of the network A and the complement B of the
the observer B, while searching for a counterexample trace w P LpAeˆBq. Both Ae and B
are built on-the-fly, during the abstract state space exploration.

Within Algorithm 1, the antichain is represented as a set of nodes. Each node is a tuple
xs, py where s is a product state and p is a position in the tree. The processed antichain nodes
are kept in the set Visited, and their abstract successors, not yet processed, are kept in the
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set Next. Initially, Visited“H and Next“
 

xrootA ,B,εy
(

. The algorithm uses a predicate
map Π, which is initially empty (line 1).

We keep a set of subsumption edges Subsume Ď VisitedˆpVisitedYNextq with the
following meaning: pxs, py,xt,qyq P Subsume for two antichain nodes, where s, t are prod-
uct states and p,q P N˚ are tree positions, if and only if there exists an abstract successor
s1 P PostΠpsq such that s1 Ď t (Definition 3). Observe that we do not explicitly store a sub-
sumed successor of a product state s from the antichain; instead, we add a subsumption edge
between the node labeled with s and the node that subsumes that particular successor. The
algorithm terminates when each abstract successor of a node from Next is subsumed by
some node from Visited.

An iteration of Algorithm 1 starts by choosing a current antichain node curr “ xs, py
from Next and moving it to Visited (line 3). If the product state s is accepting (line 5), we
check the counterexample path ρ, from the root of the antichain to curr, for spuriousness,
by computing its pivot k (see Section 4.2). If k ě 0, then ρ is a spurious counterexample
(line 7), and the path formula of the suffix of ρ, which starts with position k, is infeasible.
In this case, we compute an interpolant for the suffix and refine the current predicate map Π

by adding the predicates from the interpolant to the corresponding substates of the product
states from the suffix (line 8).

The function REFINEPREDICATEMAPBYINTERPOLATION updates the predicate map
using the principle described in Section 4.2. Subsequently, we remove (line 12) from the
current antichain the subtree rooted at the pivot node ρk, i.e., the k-th node on the path ρ

(line 9), and add ρk to Next in order to trigger a recomputation of this subtree with the new
predicate map. Moreover, all nodes with a successor previously subsumed by a node in the
removed subtree are moved from Visited back to Next in order to reprocess them (line 11).

On the other hand, if the counterexample ρ is found to be real (k “ ´1), any valuation
ν P

Ť|ρ|

i“0 Dxi
A that satisfies the path formula Θpρq yields a counterexample trace w PLpAqÓxB

zLpBq, obtained by ignoring all variables from xAzxB (line 15).

If the current node is not accepting, we generate its abstract successors (line 18). In order
to keep in the antichain only nodes that are incomparable wrt the subsumption relation Ď,
we add a successor t of s to Next (lines 23 and 30) only if it is not subsumed by another
product state from a node m P Visited. Otherwise, we add a subsumption edge pcurr,mq
to the set Subsume (line 20). Furthermore, if t is not subsumed by another state in Visited,
we remove from Next all nodes xt1, p1y such that t strictly subsumes t1 (lines 22 and 29) and
add subsumption edges to the node storing t from all nodes with a removed successor (line
26) or a removed subsumption edge (line 28).

The following theorem states the soundness of our trace inclusion semi-algorithm.

Theorem 1 Let A “ xA1, . . . ,ANy be a GRAN such that Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for all
i P r1,Ns, and let B“ xD,Σ,xB,QB, ιB,FB,∆By be a GRA such that xB Ď

ŤN
i“1 xi. If Algorithm

1 terminates and returns true on input A and B, then LpAqÓxB
Ď LpBq.

The dual question “if there exists a counterexample trace w P LpAq ÓxB
zLpBq, will Al-

gorithm 1 discover it?” can also be answered positively, using an implementation that enu-
merates the abstract paths in a systematic way, e.g., by using a breadth-first path exploration.
This can be done using a queue to implement the Next set in Algorithm 1.
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4.5 Proof of Theorem 1

Given a network A “ xA1, . . . ,ANy where Ai “ xD,Σi,xi,Qi, ιi,Fi,∆iy for all i P r1,Ns and
an observer B “ xD,Σ,xB,QB, ιB,FB,∆By, we recall that a configuration of the product au-
tomaton AeˆB is a tuple pxq1, . . . ,qNy,P,νq PQ1ˆ . . .ˆQNˆ2QB ˆDxA , and a node of the
antichain T is a pair xs, py where s is a product state for A and B and p P N˚ is a tree posi-
tion. Moreover, rootxA ,By “ pxι1, . . . , ιNy,tιBu,Jq is the product state that labels the root of
T . In the following, let Γ “ pΠ,Visited,Next,Subsumeq be an antichain state where Π is
the predicate map, and Visited, Next, and Subsume are the sets of antichain nodes handled
by Algorithm 1.

We say that Γ is a closed antichain state if and only if, for all nodes xs, py P Visited
and every successor pq,P,νq P succAeˆBprrsssq of a configuration of the product automaton
AeˆB represented by the product state s, there exists a node xt,ry P VisitedY Next such
that Lpq,P,νqpAeˆBq Ď LtpAeˆBq and one of the following holds:

– r“ p.i for some i PN, i.e., xt,ry is a child of xs, py in the antichain T “ VisitedYNext,
or

– pxs, py,xt,ryq P Subsume.
In other words, the current antichain T , defined as the union of the sets Visited and Next, is
in a closed state if the residual language of every successor of a configuration of the product
automaton AeˆB that is covered by a visited product state must be included in the residual
language of a product state stored in the antichain, either as a direct successor in the tree or
via a subsumption edge.

For a product state s, we define Distpsq “ min
 

|w| | w P LspAeˆBq
(

, and Distpsq “ 8
if and only if LspAeˆBq “ H. For a finite non-empty set of antichain nodes S, we define
DistpSq “mintDistpsq | xs, py P Su with DistpHq “8.

We now prove several auxiliary lemmas.

Lemma 5 Given a network A and an observer B, for any product state s of A and B, we
have succAeˆBprrsssq “

Ť

tPPostpsq rrtss.

Proof Let s “ pq,P,Φq. “Ď” Let pr,S,µq P succAeˆBprrsssq be a configuration of AeˆB for
which there exists pq,P,νq P rrsss such that pq,P,νq σ,θ

ÝÑ pr,S,µq. Then there exists a unique
rule pq,Pq σ,θ

ÝÑ pr,Sq P ∆p such that pν,µq |ù θ. Moreover, if pq,P,νq P rrsss, we have ν |ù Φ.
Let t “ pr,S,Ψq P Postpsq where ΨpxAq ” Dx1A . Φpx1Aq^θpx1A ,xAq. We have µ |ùΨ, hence
pr,S,µq P rrtss. “Ě” Let pr,S,µq P rrtss for some t P Postpsq. Then we have t “ pr,S,Ψq where
ΨpxAq ” Dx1A . Φpx1Aq^ θpx1A ,xAq. Since µ |ù Ψ, there exists ν |ù Φ such that pq,P,νq σ,θ

ÝÑ

pr,S,µq. Hence pq,P,νq P rrsss, thus pr,S,µq P succAeˆBprrsssq. [\

Lemma 6 Given a network A , an observer B, and a predicate map Π, for any product state
s of AeˆB and any product state t P Postpsq, there exists t1 P PostΠpsq such that rrtss Ď rrt1ss.

Proof Let t “pr,S,Ψq PPostpsq. By the definition of PostΠ, we have t1“pr,S,Ψ7q PPostΠpsq,
where ΨÑΨ7, thus rrtss Ď rrt1ss. [\

Lemma 7 Given a network A , an observer B, and a predicate map Π, for each product state
s and each configuration pq,P,νq P succAeˆBprrsssq there exists a product state t P PostΠpsq
such that pq,P,νq P rrtss.
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Proof We use the fact that succAeˆBprrsssq “
Ť

tPPostpsq rrtss (Lemma 5) and that for each
t P Postpsq there exists t1 P PostΠpsq such that rrtss Ď rrt1ss (Lemma 6). [\

The proof of soundness of Algorithm 1 relies on the inductive invariants (Inv1) and (Inv2)
from the following lemma.

Lemma 8 The following invariants hold each time line 2 is reached in Algorithm 1:
– (Inv1) Γ“ pΠ,Visited,Next,Subsumeq is closed,
– (Inv2) DistprootxA ,Byq ă 8Ñ DistpVisitedq ą DistpNextq.

Proof Initially, when coming to line 2 for the first time, we have Visited “ H, thus
DistpVisitedq “ 8, and both invariants hold trivially. For the case when coming to line 2
after executing the loop body, we denote by:

Γold “ pΠold,Visitedold,Nextold,Subsumeoldq and
Γnew “ pΠnew,Visitednew,Nextnew,Subsumenewq

the antichain states before and after the execution of the main loop. We assume that both
invariants hold for Γold.

(Inv1) Let xs, py P Visitednew and pq,P,νq P succAeˆBprrsssq. We distinguish two cases ac-
cording to the control path taken inside the main loop:
(1) If the test on line 5 is positive, the predicate map is augmented, i.e., Πnew Ě Πold (line

8). Let Γ1 “ pΠnew,Visitedold,Nextold,Subsumeoldq be the next antichain state. Clearly
Γ1 is closed provided that Γold is. Next, let npivot P Visitedold be the pivot of the path to
the current node (line 6) and define the following sets of nodes:

T “ SUBTREEpnpivotq,
S “ tn P Visitedold | Dm P T . pn,mq P Subsumeoldu.

Then we obtain (lines 10–13):

Visitednew “ VisitedoldzpSYT q,
Nextnew “ ppNextoldYSqzT qY

 

npivot
(

,
VisitednewYNextnew “ ppVisitedoldYNextoldqzT qY

 

npivot
(

.

Since Γ1 is closed, there exists a node xt,ry P VisitedoldYNextold such that Lpq,P,νqpAeˆ

Bq ĎLtpAeˆBq and either r“ p.i for some i PN or pxs, py,xt,ryq P Subsumeold. We dis-
tinguish two cases:
(a) xt,ry R T . Then xt,ry P VisitednewYNextnew and, because Subsumenew “

SubsumeoldXpVisitednewˆpVisitednewYNextnewqq, we obtain that Γnew is closed
as well.

(b) xt,ry P T . Then we distinguish two further cases:
(i) If r “ p.i for some i P N, since we have assumed that xs, py P Visitednew,

we have xs, py R T . The only possibility is then xt,ry “ npivot and xs, py is the
parent of npivot. In this case, we have xt,ry P Nextnew.

(ii) If pxs, py,xt,ryq P Subsumeold, then xs, py P S, which contradicts the assumption
xs, py P Visitednew.

(2) Otherwise, the test on line 5 is negative, in which case we have Πnew “ Πold and
Visitednew “ VisitedoldYtcurru. For each pq,P,νq P succAeˆBprrsssq there exists t P
PostΠpsq such that Lpq,P,νqpAeˆBq Ď LtpAeˆBq (by Lemma 7). We distinguish two
cases:
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(a) xs, py“ curr. In this case, either (i) there is xt1, p1y P Visitedold such that t Ď t1, and
then we also have Lpq,P,νqpAeˆBqĎLt1pAeˆBq (Definition 3) and pxs, py,xt1, p1yq P
Subsumenew (added on line 20), or (ii) pt, p.iq P Nextnew for some i P N (added on
lines 23 and 30).

(b) Otherwise xs, py P Visitedold. As Γ1 is closed, there is xu,ry P VisitedoldYNextold

such that Lpq,P,νqpAe ˆ Bq Ď LupAe ˆ Bq and either r “ p.i for some i P N or
pxs, py,xu,ryq P Subsumeold. We distinguish two sub-cases:

(i) xu,ry P rem (line 22). Then LupAe ˆBq Ď LtpAe ˆBq (Definition 3), hence
Lpq,P,νqpAe ˆ Bq Ď LtpAe ˆ Bq. If r “ p.i, then pxs, py,xt,r1yq P Subsumenew

for some r1 P N˚ (added on line 26). Else, if pxs, py,xu,ryq P Subsumeold, we
have pxs, py,xt,r1yq P Subsumenew for some r1 PN˚ (added on line 28). In both
cases, we obtain that Γnew is closed.

(ii) xu,ry R rem. Then xu,ry P Visitednew Y Nextnew. Since Subsumenew “

SubsumeoldXpVisitednewˆpVisitednewY Nextnewqq, we obtain that Γnew is
closed.

(Inv2) We distinguish two cases:
1. If DistpVisitednewq “ 8, it is sufficient to show that DistpNextnewq ă 8. Suppose,

by contradiction, that DistpNextnewq “ 8, hence DistpVisitednewYNextnewq “ 8, and
since rootxA ,By P VisitednewYNextnew, we obtain DistprootxA ,Byq “ 8, contradiction.

2. Otherwise, DistpVisitednewq ă 8 and there exists a node xs, py P Visitednew such
that DistpVisitednewq “ Distpsq ă 8. Let w “ pν0,σ0q,pν1,σ1q, . . . ,pνn,˛q P LspAeˆ

Bq be a trace such that DistpVisitednewq “ n. Then there exists a run pq0,P0,ν0q
σ0
ÝÑ

pq1,P1,ν1q
σ1
ÝÑ . . .

σn´1
ÝÝÑ pqn,Pn,νnq of Ae ˆ B over w such that pq0,P0,ν0q P rrsss and

pqn,Pnq a final state of Ae ˆ B. Since Γnew is closed due to (Inv1) and pq1,P1,ν1q P

succAeˆBprrsssq, there exists a node xs1, p1y P Visitednew Y Nextnew such that
Lpq1,P1,ν1qpA

eˆBq Ď Ls1pAeˆBq. If xs1, p1y P Nextnew, we obtain that DistpNextnewq ď

n´ 1, and we are done. Otherwise, xs1, p1y P Visitednew, and we can repeat the same
argument inductively, to discover a sequence of nodes xs1, p1y, . . . ,xsn, pny P Visitednew

such that Lpqi,Pi,νiqpA
eˆBq Ď LsnpAeˆBq for all i P r1,ns. Since pqn,Pnq is a final state

of AeˆB, we have pνn,˛q P Lpqi,Pi,νiqpA
eˆBq, thus pνn,˛q P LsnpAeˆBq, and sn is an

accepting product state. But this contradicts with the fact that accepting product states
are never stored in the antichain.

[\

With the above lemmas at hand, we can finally prove Theorem 1:

Proof If Algorithm 1 terminates and reports true, this is because Next “ H, hence
DistpNextq “8. By Lemma 8 (Inv2), we obtain that DistprootxA ,Byq “8. Suppose, by con-
tradiction, that LpAqÓxB

Ę LpBq. By Lemma 2, there exists a trace

w“ pν0,σ0qpν1,σ1q . . .pνn,˛q P LpAe
ˆBq.

Thus we have a run of AeˆB over w:

pq0,P0,ν0q
σ0
ÝÑ pq1,P1,ν1q

σ1
ÝÑ . . .

σn´1
ÝÝÑ pqn,Pn,νnq

where q0 “ xι1, . . . , ιNy, P0 “ tιBu, qn is final in Ae, PnXFB “H. But, since pq0,P0,ν0q P

rrrootxA ,Byss, we have w P LrootxA ,BypAeˆBq. Hence, DistprootxA ,Byq ď n, which is in con-
tradiction with the fact that DistprootxA ,Byq “ 8. Consequently, it must be the case that
LpAqÓxB

Ď LpBq. [\
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5 Simulations on Generic Register Automata

In the classical setting of finite state automata over finite alphabets, a simulation [27] is a
relation on the states of an automaton which is invariant with respect to its transition relation.
The simulation-based approach to checking language inclusion between two automata A
and B first computes a simulation relation on the union of the states of A and B, and then
checks whether the pair of initial states is a member of the simulation relation. Note that this
is not a complete decision procedure for language inclusion, because there exist automata
such that LpAq Ď LpBq, but the initial state of A is not simulated by the initial state of B.
However, a pre-computed simulation relation can be used to speed up the convergence of
the antichain-based method, by weakening (i.e. generalizing) the subsumption relation used
by the antichain construction algorithm [1]. In practice, the experimental evaluation in [1]
shows a significant improvement of running times, when simulations are used.

In the below subsection, we first introduce a concept of data simulations suitable for
GRAs, together with an algorithm that computes useful under-approximations of the largest
data simulation on a given GRA. In the next subsection, we then propose a way of using
data simulations to enhance the convergence of Algorithm 1 between a GRAN and a GRA
in a similar way as classical simulations are integrated with the antichain-based language
inclusion algorithm for automata over finite alphabets [1].

We note that, in the context of classical automata, an approach going beyond the com-
bination of antichains and simulation relations has been proposed [7]. It is based on using
congruence relations instead of antichains. However, their usage in the context of generic
register automata is so far unclear, and we leave it as an interesting subject for future work.

5.1 Data Simulations and Their Computation

Our notion of data simulations is defined as follows.

Definition 4 A relation RĎQˆDxˆQ is a data simulation for a GRA A“xΣ,D,x,Q, ι,F,∆y
if and only if the following holds for all pq,ν,q1q P R:
1. q P F ùñ q1 P F , and
2. for all σ P Σ and all pr,ν1q P QˆDx such that pq,νq σ

ÝÑ A pr,ν1q there exists r1 P Q such
that pq1,νq σ

ÝÑ A pr1,ν1q and pr,ν1,r1q P R.

Observe that, while a classical simulation is a binary relation on states, a data simulation is
a ternary relation that involves also a valuation of the variables. The following lemma shows
that a data simulation preserves the residual languages of GRAs:

Lemma 9 Given a GRA A“ xΣ,D,x,Q, ι,F,∆y and a data simulation RĎ QˆDxˆQ for
A, we have Lpq,νqpAq Ď Lpq1,νqpAq for any tuple pq,ν,q1q P R.

Proof Let pν0,σ0q, . . . ,pνn,˛q PLpq,νqpAq be a trace and pq,νq “ pq0,ν0q
σ0
ÝÑ . . .

σn´1
ÝÝÑ pqn,νnq

be a run of A. By induction on n ě 0, it is easy to find a run pq1,νq “ pq10,ν0q
σ0
ÝÑ . . .

σn´1
ÝÝÑ

pq1n,νnq of A such that, for all i P r0,ns, pqi,νi,q1iq P R and moreover, qi P F ùñ q1i P F . Thus,
pν0,σ0q, . . . ,pνn,˛q P Lpq1,νqpAq. [\

Let A“ xΣ,D,x,Q, ι,F,∆y, where Q“ tq1, . . . ,qku for some ką 0, be a GRA for the rest
of this section. The data simulation algorithm (Algorithm 2) given in this section manipu-
lates sets of valuations from Dx that are definable by first-order formulae in FormpDq. A re-
lation RĎQˆDxˆQ is said to be definable if and only if there exists a matrix Φ“ rφi js

k
i, j“1
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Algorithm 2 Data Simulation Algorithm
input: A generic register automaton A“xΣ,D,x,Q, ι,F,∆y, where Q“tq1, . . . ,qku, and a constant Ką 0.
output: A data simulation RĎ QˆDxˆQ for A.
global vars rSimi js

k
i, j“1, rPrevSimi js

k
i, j“1, rCnti js

k
i, j“1

1: for i“ 1, . . . ,k do
2: for j“ 1, . . . ,k do
3: PrevSimi j ÐJ

4: Cnti j Ð K
5: for j“ 1, . . . ,k do
6: if qi P F and q j R F then
7: Simi j ÐK

8: else
9: Simi j Ð

Ź

σPΣ

Ź

q`Ppostσpqiq
PreSimσpi, j, `,PrevSimq

10: while D` P r1,ks such that Sim` ı PrevSim` do
11: TempSimÐ Sim
12: pick ` P r1,ks such that Sim` ı PrevSim`

13: for σ P Σ do
14: for qi P preσpq`q do
15: for j“ 1, . . . ,k do
16: Simi j Ð Simi j^PreSimσpi, j, `,Simq
17: for all j“ 1, . . . ,k such that Sim` j ı PrevSim` j do
18: if Cnt` j “ 0 then
19: Sim` j ÐK

20: else
21: Cnt` j Ð Cnt` j´1
22: PrevSim`Ð TempSim`

23: return Sim

of formulae φi jpxq P FormpDq such that pqi,ν,q jq P R ðñ ν |ù φi j. For ` P r1,ks, we denote
by Φ` the `-th row of the matrix Φ.

Algorithm 2 is a refinement algorithm which handles two matrices of formulae that de-
fine the relations Sim,PrevSimĎQˆDxˆQ. Below, we shall use the same names to denote
the relations and their matrix representations. Intuitively, PrevSim is the previous candidate
for simulation, whereas Sim is an entry-wise stronger relation that refines PrevSim. The re-
finement step is performed backwards wrt each transition rule qi

σ,φ
ÝÑ q` of the automaton as

follows. The tuple pqi,ν,q jq is added to the newly created relation Sim if pqi,ν,q jq PPrevSim
and there exist a valuation ν1, a state qm PQ, and a formula ψ such that pν,ν1q |ù φ, q j

σ,ψ
ÝÑ qm,

pq`,ν1,qmq P PrevSim, and pν,ν1q |ù ψ. This update guarantees that, for every transition
pqi,νq

σ

ÝÑ A pq`,ν1q where pqi,ν,q jq P Sim, there exists a state qm such that pq j,νq
σ

ÝÑ Apqm,ν
1q

and pq`,ν1,qmq P PrevSim. The algorithm stops when Sim and PrevSim define the same rela-
tion. Moreover, this relation is guaranteed to be a data simulation.

To define the update, we use the following function, where σ P Σ is an input event,
i, j, ` P r1,ks are state indices such that qi

σ,φ
ÝÑ q j P ∆ is a transition rule and R is kˆ k matrix

of formulae:

PreSimσpi, j, `,Rq ” @x1 . φpx,x1q Ñ
ł

q j
σ,ψ
ÝÑqm

ψpx,x1q^R`mpx1q .

We also define the sets postσpqq “ tq
1 | q σ,φ

ÝÑ q1 P ∆u and preσpqq “ tq
1 | q1 σ,φ

ÝÑ q P ∆u.
With this notation, Algorithm 2 describes the procedure that computes a data simulation for
a given data automaton.
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Initially, the matrix PrevSim is true everywhere (line 3). The current simulation candi-
date Sim is initialized to false for all i, j P r1,ks such that qi P F and q j R F (line 7). Observe
that, in this case, q j cannot simulate qi, by Definition 4 (1). Otherwise, we initialize Simi j

to the strongest pre-simulation with respect to PrevSim (line 9). In the iterative loop (lines
10–22), the algorithm chooses a state q` for which the current simulation candidate Sim` is
not equivalent to the previous one PrevSim` (line 13) and sharpens the set Simi j with respect
to the transition rule qi

σ,φ
ÝÑ q` for all input symbols σ P Σ and all peer states q j, j P r1,ks

(line 16). The following invariants are key to proving the correctness of Algorithm 2.

Lemma 10 The following invariants hold each time Algorithm 2 reaches line 10:
– (SimInv1) for all i, j P r1,ks, the entailment Simi j Ñ PrevSimi j is valid.
– (SimInv2) for all σ P Σ, all i, j, ` P r1,ks and all ν,ν1 P Dx, if ν |ù Simi j and pqi,νq

σ

ÝÑ

pq`,ν1q then there exists m P r1,ks such that pq j,νq
σ

ÝÑ pqm,ν
1q and ν1 |ù PrevSim`m.

Proof Let Sim1 and PrevSim1 denote the global matrices after one iteration of the loop on
lines 10–22.

(SimInv1) When line 10 is reached for the first time, PrevSimi j “ J for all i, j P r1,ks, thus
SimInv1 holds initially. Since Sim is modified on lines 16 or 19 only, we have Sim1i j Ñ Simi j

for all i, j P r1,ks. Moreover, for each i, j P r1,ks either (i) PrevSim1i j “ TempSimi j “ Simi j

(line 22) and Sim1i j Ñ Simi j Ñ PrevSim1i j holds, or (ii) PrevSim1i j “ PrevSimi j (no update)
and Sim1i j Ñ Simi j Ñ PrevSimi j Ñ PrevSim1i j holds, by the inductive hypothesis.

(SimInv2) We show that this invariant holds the first time the control reaches line 10. Let
σ P Σ, i, j, ` P r1,ks and ν,ν1 P Dx such that ν |ù Simi j and pqi,νq

σ

ÝÑ pq`,ν1q. Since ν |ù

Simi j (thus Simi j ‰ K) and q` P postσpqiq, we have that ν |ù PreSimσpi, j, `,PrevSimq where
qi

σ,φ
ÝÑ q` P ∆. Since pqi,νq

σ

ÝÑ pq`,ν1q, we obtain that pν,ν1q |ù φpx,x1q, and, consequently,
pν,ν1q |ùψpx,x1q^PrevSim`mpx1q for some m P r1,ks such that q j

σ,ψ
ÝÑ qm P∆. Hence, SimInv2

holds when the control first reaches line 10.
For the induction step, let us assume that SimInv2 holds on line 10, and we prove that it

also holds after executing line 22. Let σ P Σ, i, j, ` P r1,ks and ν,ν1 PDx such that ν |ù Sim1i j

and pqi,νq
σ

ÝÑ pq`,ν1q. We distinguish two cases:
1. If Sim` ı PrevSim` on line 10 since qi P preσpq`q, then Sim1i j was updated on line 16.

Since ν |ù Sim1i j, we obtain ν |ù PreSimσpqi,q j,q`,Simq. Moreover, PrevSim1` is updated
to TempSim` ” Sim` on line 22, hence ν |ù PreSimσpqi,q j,q`,PrevSim1q as well. Since
pqi,νq

σ

ÝÑ pq`,ν
1q, we obtain that pν,ν1q |ù ψpx,x1q^PrevSim1`mpx1q for some m P r1,ks

such that q j
σ,ψ
ÝÑ qm P ∆, thus pν,ν1q |ù ψpx,x1q and ν1 |ù PrevSim1`m. Thus SimInv2 holds

for Sim1 and PrevSim1.
2. Otherwise Sim` ” PrevSim` on line 10. Moreover, PrevSim1` ” PrevSim` because the

update on line 22 is skipped, and, for all qi P preσpq`q and all j P r1,ks, we have Sim1i j ”

Simi j. Then, by the induction hypothesis, SimInv2 holds for Sim1 and PrevSim1 because
it holds for Sim and PrevSim.

[\

The algorithm iterates the loop on lines (10–22) until Sim and PrevSim define the same
relation. Since, in general, the data constraints Simi j obtained from different iteration steps
might form an infinitely decreasing sequence, we use the matrix Cnt of integer counters,
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initially set to some input value K ą 0 (line 4).12 Observe that each entry Cnti j decreases
every time Simi j ı PrevSimi j (line 21). When the counter Cnti j reaches zero, we set Simi j

to false (line 19), which guarantees that Simi j ” PrevSimi j always in the future. Since the
number of entries in the counter matrix is finite, the algorithm is guaranteed to terminate.
The following theorem summarizes the main result of this section.

Theorem 2 Algorithm 2 terminates on any GRA A “ xΣ,D,x,Q, ι,F,∆y, and its output is
a data simulation RĎ QˆDxˆQ for A.

Proof Let Simn and PrevSimn denote the matrices Sim and PrevSim at the n-th iteration of
the loop on lines 10–22, for n ě 0. Algorithm 2 terminates whenever Simn

i j ” PrevSimn
i j for

all i, j P r1,ks (line 10). Suppose, by contradiction, that this never happens, thus there exist
i, j P r1,ks such that Simn

i j ı PrevSimn
i j for all ně 0. Then CntK

i j “ 0 (line 21) and SimK`1
i j “

PrevSimK`2
i j “ K (lines 19 and 22). Since Simn

i j Ñ PrevSimn
i j, by Lemma 10 (SimInv1), we

obtain that SimK`2
i j “ PrevSimK`2

i j , a contradiction.
To prove that the output of Algorithm 2 is a data simulation for A, we use Lemma 10

(SimInv2) and the fact that, upon termination, we have Simi j ” PrevSimi j, for all i, j P r1,ks.
[\

5.2 Simulation and Subsumption

Finally, we explain how a data simulation relation computed by Algorithm 2 can be used to
optimize the trace inclusion semi-algorithm. Let A “ xA1, . . . ,ANy be a GRAN where Ai “

xD,Σi,xi,Qi, ιi,Fi,∆iy for all i P r1,Ns, and let B “ xD,Σ,xB,QB, ιB,FB,∆By be an observer
GRA such that xB Ď

ŤN
i“1 xi.

The main problem for using data simulations to enhance the convergence of our trace
inclusion semi-algorithm is related to the fact that simulation relations are, in general, not
compositional wrt the interleaving semantics of the network. In other words, if we have N
data simulations Ri Ď QiˆDxi ˆQi for i P r1,Ns, then their cross-product RĎ QA ˆDxA ˆ

QA defined as:

@q1,r1 PQ1 . . .@qN ,rN PQN@ν PDxA : pxq1, . . . ,qNy,ν,xr1, . . . ,rNyq PR ðñ pqi,νÓxi
,riq PRi

is not necessarily a simulation on the network expansion Ae. The reason for this can be
seen for N “ 2. Let σ1,σ2 P ΣA such that σ1 R Σ2 and σ2 R Σ1. The execution of Ae on the
sequence of input symbols σ1σ2 is pxq1,q2y,νq

σ1
ÝÑ pxq11,q2y,ν

1q
σ2
ÝÑ pxq11,q

1
2y,ν

2q. Suppose
that pqi,νÓxi

,riq P Ri, for all i “ 1,2. Then there exists r11 P Q1 such that pxr1,r2y,νq
σ1
ÝÑ

pxr11,r2y,ν
1q and pq11,ν

1Óx1
,r11q P R1. In order to use the simulation and build the continuation

pxr11,r2y,ν
1q

σ2
ÝÑpxr11,r

1
2y,ν

2q, we would need that pq2,ν
1Óx2

,r2q PR2, which is not necessarily
ensured by the hypothesis pq2,νÓx2

,r2q P R2.
We propose a partial solution to this problem, based on a restriction concerning the dis-

tribution of the network variables xA “
ŤN

i“1 xi over the components A1, . . . ,AN : for each
i P r1,Ns, we have xi “ xgYx`i where xg is a set of global variables and x`i are the local vari-
ables of Ai. In other words, the only variables shared between more than one component are
the global variables xg, which, moreover, are visible to all components.13 Then the problem

12 Taking a bigger K leads to a more precise Simi j , but, on the other hand, it can significantly increase the
computation time.

13 Many realistic systems comply with this restriction, take, for instance, shared-memory multithreading in
Java.
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can be bypassed if none of the simulation relations Ri Ď QiˆDxi ˆQi may constrain the
global variables:

Assumption 3 For each i P r1,Ns and each pqi,ν,riq P Ri, we also have pqi,ν
1,riq P Ri for

each ν1 PDxi such that νÓx`i “ ν1Óx`i .

Under this assumption, we use pre-computed data simulations Ri Ď QiˆDxg
ˆQi and

RB Ď QBˆDxB ˆQB to generalize the basic subsumption relation between product states
(defined by Lemma 4), which may speed up the convergence of Algorithm 1.

Lemma 11 Under Assumption 3, the relation defined as

pxq1, . . . ,qNy,P,ΦqĎsim pxr1, . . . ,rNy,S,Ψq
ðñ

@i P r1,Ns @ν PDxA : ν |ùΦùñ ν |ùΨ and
"

pqi,νÓxi
,riq P Ri p1q

@s P S Dp P P : ps,νÓxB
, pq P RB p2q

is a subsumption relation.

Proof Let s“ pxq1, . . . ,qNy,P,Φq and t “ pxr1, . . . ,rNy,S,Ψq be two product states such that
s Ďsim t. According to Definition 3, we need to prove that LspAeˆBq ĎLtpAeˆBq. For that,
it is sufficient to prove that, for each ν PDxA such that ν |ùΦ, the following two points hold:
1. Lpxq1,...,qNy,νqpA

eq Ď Lpxr1,...,rNy,νqpA
eq, and

2. for all p P S there exists q P P such that Lpp,νÓxB
qpBq Ď Lpq,νÓxB

qpBq.
Indeed, assuming that the above statements hold, we have

LspAeˆBq “
Ť

ν|ùΦ

´

Lpxq1,...,qNy,νqpA
eqX

Ş

qPP Lpq,νÓxB
qpBq

¯

Ď
Ť

ν|ùΦ

´

Lpxr1,...,rNy,νqpA
eqX

Ş

rPS Lpr,νÓxB
qpBq

¯

Ď
Ť

ν|ùΨ

´

Lpxr1,...,rNy,νqpA
eqX

Ş

rPS Lpr,νÓxB
qpBq

¯

“ LtpAeˆBq,

and we are done. Moreover, the second point above is a direct consequence of the second
point of the definition of Ďsim and Lemma 9. We are left with proving the first point.

To prove the first point, assume that we are given configurations pxq1
0, . . . ,q

N
0 y,ν0q and

pxr1
0, . . . ,r

N
0 y,ν0q of Ae such that @i P r1,Ns : pqi

0,ν0Óxi
,ri

0q P Ri. We show that if there is
a run pxq1

0, . . . ,q
N
0 y,ν0q

σ0
ÝÑ . . .

σn´1
ÝÝÑ pxq1

n, . . . ,q
N
n y,νnq for any n ě 0, then there is some run

pxr1
0, . . . ,r

N
0 y,ν0q

σ0
ÝÑ . . .

σn´1
ÝÝÑpxr1

n, . . . ,r
N
n y,νnqwhere @i P r1,Ns : @ j P r0,ns : pqi

j,ν jÓxi
,ri

jq P

Ri ^ pqi
j P Fi ùñ ri

j P Fiq, by induction on the length n of the run. The base case for
n “ 0 follows trivially from the assumption @i P r1,Ns : pqi

0,ν0Óxi
,ri

0q P Ri and from the
first point of the definition of data simulations (Def. 4). Now, assuming that the prop-
erty holds for runs of length n, we show that it holds for runs of length n` 1 too. Take
a run pxq1

0, . . . ,q
N
0 y,ν0q

σ0
ÝÑ . . .

σn´1
ÝÝÑ pxq1

n, . . . ,q
N
n y,νnq

σn
ÝÑ pxq1

n`1, . . . ,q
N
n`1y,νn`1q. Further,

take a configuration pxr1
0, . . . ,r

N
0 y,ν0q such that @i P r1,Ns : pqi

0,ν0Óxi
,ri

0q P Ri. From the in-
duction hypothesis, we immediately get that there exists a run pxr1

0, . . . ,r
N
0 y,ν0q

σ0
ÝÑ . . .

σn´1
ÝÝÑ

pxr1
n, . . . ,r

N
n y,νnq where @i P r1,Ns : @ j P r0,ns : pqi

j,ν jÓxi
,ri

jq P Ri ^ pqi
j P Fi ùñ ri

j P

Fiq. Next, let I Ď r0,Ns be the set of indices of the GRAs that make a move during the
step pxq1

n, . . . ,q
N
n y,νnq

σn
ÝÑ pxq1

n`1, . . . ,q
N
n`1y,νn`1q. For any i P I, from pqi

n,νnÓxi
,ri

nq P Ri

and pqi
n,νnÓxi

q
σn
ÝÑ pqi

n`1,νn`1Óxi
q, we get there there is some ri

n`1 such that pri
n,νnÓxi

q
σn
ÝÑ

pri
n`1,νn`1Óxi

q, pqi
n`1,νn`1Óxi

,ri
n`1q P Ri, and qi

n`1 P Fi Ñ ri
n`1 P Fi. Moreover, for any
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Table 1 Experiments with single-component networks.

Example A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
Arrays shift 3/3 3/4 5 ok ă 0.1s
Array rotation 1 4/5 4/5 7 ok 0.1s
Array rotation 2 8/21 6/24 11 ok 34s
Array split 20/103 6/26 14 ok 4m32s
HW counter 1 2/3 1/2 2 ok 0.2s
HW counter 2 6/12 1/2 2 ok 0.4s
Synchr. LIFO 4/34 2/15 4 ok 2.5s
ABP-error 14/20 2/6 14 cex 2s
ABP-correct 14/20 2/6 14 ok 3s

i P r1,NszI, the fact that νnÓxl
i
“ νn`1Óxl

i
, pqi

n,νnÓxi
,ri

nq P Ri, qi
n`1 “ qi

n, ri
n`1 “ ri

n, and As-
sumption 3, give us pqi

n`1,νn`1Óxi
,ri

n`1q P Ri, and, consequently, qi
n`1 P Fi Ñ ri

n`1 P Fi too.
[\

6 Experimental Results

We have implemented both Algorithm 1 (trace inclusion) and Algorithm 2 (data simulations)
in a prototype tool INCLUDER14 using the MATHSAT SMT solver [9] for answering the
satisfiability queries and computing the interpolants. The results of the experiments with
trace inclusion are given in Tables 1 and 2. The results of experiments combining trace
inclusion and simulations are given in Table 3. The results were obtained on an Intel i7-
4770 CPU @ 3.40GHz machine with 32GB RAM.

6.1 Trace Inclusion

Table 1 contains experiments where the network A consists of a single component. We ap-
plied the tool on several verification conditions generated from imperative programs with
arrays [8] (Array shift, Array rotation 1+2, Array split) available online [29]. Then, we ap-
plied it on models of hardware circuits (HW Counter 1+2, Synchronous LIFO) [31]. Finally,
we checked two versions (correct and faulty) of the timed Alternating Bit Protocol [34].

Table 2 provides a list of experiments where the network A has N ą 1 components.
First, we have the example of Fig. 1 (Running). Next, we have several examples of real-
time verification problems [32]: a controller of a railroad crossing [21] (Train) with T trains,
the Fischer Mutual Exclusion protocol with deadlines ∆ and Γ (Fischer), and a hardware
communication circuit with K stages, composed of timed NOR gates (Stari). Third, we have
modeled a Producer-Consumer example [14] with a fixed buffer size B. Fourth, we have
experimented with several models of parallel programs that manipulate arrays (Array init,
Array copy, Array join) with window size ∆.

For the time being, our implementation is a proof-of-concept prototype that leaves plenty
of room for optimization (e.g., caching of intermediate computation results) likely to im-
prove the performance on more complicated examples. Despite that, we found the results
from Tables 1 and 2 rather encouraging.

14 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/
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Table 2 Experiments with multiple-component networks (e.g., 2ˆ2{2`2ˆ3{3 in column A means that A
is a network with 4 components that includes 2 GRAs with 2 states and 2 rules and 2 GRAs with 3 states and
3 rules).

Example N A (|Q|/|∆|) B (|Q|/|∆|) Vars. Res. Time
Running 2 2ˆ2/2 3/4 3 ok 0.2s
Running 10 10ˆ2/2 11/20 3 ok 25s
Train (T “ 5) 7 5ˆ3/3 + 4/4 + 4/4 2/38 1 ok 4s
Train (T “ 10) 12 10ˆ3/3 + 4/4 + 4/4 2/68 1 ok 29s
Train (T “ 20) 22 20ˆ3/3 + 4/4 + 4/4 2/128 1 ok 6m26s
Fischer (∆“ 1, Γ“ 2) 2 2ˆ5/6 1/10 4 ok 8s
Fischer (∆“ 1, Γ“ 2) 3 3ˆ5/6 1/15 4 ok 2m48s
Fischer (∆“ 2, Γ“ 1) 2 2ˆ5/6 1/10 4 cex 3s
Fischer (∆“ 2, Γ“ 1) 3 3ˆ5/6 1/15 4 cex 32s
Stari (K “ 1) 5 4/5 + 2/4 + 5/7 + 5/7 + 5/7 3/6 3 ok 0.5s
Stari (K “ 2) 8 4/5 + 2/4 + 2ˆ5/7 + 2ˆ5/7 + 2ˆ5/7 3/6 3 ok 0.5s
Prod-Cons (B“ 3) 2 4/4 + 4/4 2/7 2 ok 10s
Prod-Cons (B“ 6) 2 4/4 + 4/4 2/7 2 ok 2m32s
Array init (∆“ 2) 5 5ˆ2/2 2/6 2 ok 3s
Array init (∆“ 2) 15 15ˆ2/2 2/16 2 ok 3m15s
Array copy (∆“ 20) 20 20ˆ2/2 2/21 3 ok 0.3s
Array copy (∆“ 20) 150 150ˆ2/2 2/151 3 ok 43s
Array join (∆“ 10) 4 2ˆ2/2 + 2ˆ3/3 2/3 2 ok 6s
Array join (∆“ 10) 6 3ˆ2/2 + 3ˆ3/3 2/4 2 ok 23s
Array join (∆“ 20) 6 3ˆ2/2 + 3ˆ3/3 2/4 2 ok 1m9s

6.2 Combination of Trace Inclusion and Simulations

Unlike the computation of the most general simulation on a finite-alphabet automaton, which
is possible in polynomial time [?], computing the weakest data simulation on a GRA is,
in general, impossible due to the fact that the data constraints cannot be represented in a
decidable logical domain, such as linear integer arithmetic. For this reason, our algorithm
(Algorithm 2) is sound but incomplete, returning a possibly stronger simulation, in which
the data constraint associated with certain pairs of states is set of K. Such simulations can be
computed in reasonable time, but they could be of limited use in speeding up the antichain-
based trace inclusion check.

Our implementation tries to achieve a balance between these opponent goals, as shown
by the results in Table 3. We apply a timeout on each single call of the PreSim function in
Algorithm 2. Moreover, we may also limit the size of the resulting formula15 for a single
call of the PreSim function. If the timeout or the size limit is exceeded, the result of PreSim
will be safely underapproximated to K (i.e., no simulation).

The use of simulation-based subsumption has an impact on running times of the trace
inclusion in the examples, where the system contains a nontrivial simulation relation, which
could be discovered by Algorithm 2 at most K “ 2 iterations on each pair of states and,
moreover, some product states in the antichain tree are compatible with this simulation re-
lation. This is clearly visible in the Fischer 2-serial and Fischer 2-branching models where
the synchronization based on the Fischer protocol is used in non-minimalistic scenarios, i.e.,
scenarios not restricted to a single critical section. In particular, Fischer 2-serial is an abstract
model of a system where a process uses the Fischer protocol to access a critical section twice
in a row. Fischer 2-branching is an abstraction of a system where a single process contains
two branches and each of these branches accesses a critical section using the Fischer’s pro-
tocol. The parameters ∆ and Γ are parameters of the Fischer’s protocol, and N is the number

15 The size of a formula is measured in the number of nodes of its MathSAT graph-based representation.
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Table 3 Experiments with simulations. Timenosim
inclusion represents the time of checking trace inclusion without

using simulation, Timesim
inclusion represents the time of checking trace inclusion while using simulation-based

subsumption, and Timesim represents the time needed to compute data simulations. K is the parameter of
Algorithm 2, Max size is a limit on the size of the result of the PreSim function, and TO is a timeout on
a single call of the PreSim function.

Example Timenosim
inclusion Timesim

inclusion Timesim K Max size TO
Array rotation 2 27s 24s 38s 2 15 2s
Array rotation 2 27s 24s 24s 2 15 1s
Array Split 3m23s 2m37s 5m52s 2 15 2s
Array Split 3m23s 2m37s 4m1s 2 15 1s
Fischer 2-serial (∆“ 1, Γ“ 2, N “ 3) 17m43s 3m55s 2s 2 8 8

Fischer 2-serial (∆“ 1, Γ“ 2, N “ 2) 27s 9s 2s 2 8 8

Fischer 2-serial (∆“ 2, Γ“ 1, N “ 3) (cex) 50s 1m 2s 2 8 8

Fischer 2-serial (∆“ 2, Γ“ 1, N “ 2) (cex) 3s 2s 2s 2 8 8

Fischer 2-branch (∆“ 1, Γ“ 2, N “ 3) 25m57s 4m28s 2s 2 8 8

Fischer 2-branch (∆“ 1, Γ“ 2, N “ 2) 24s 11s 2s 2 8 8

Fischer 2-branch (∆“ 2, Γ“ 1, N “ 3) (cex) 1m49s 1m8s 2s 2 8 8

Fischer 2-branch (∆“ 2, Γ“ 1, N “ 2) (cex) 10s 3s 2s 2 8 8

of parallel processes. Note that if the system contains a counterexample (e.g. Fischer 2-serial
with parameters ∆“ 2, Γ“ 1, N “ 3), the simulation-based subsumption may also increase
the running time. The reason is that the computation is stopped when an accepting product
state is discovered and the rest of the antichain tree is not constructed. The simulation-based
subsumption makes the whole antichain tree smaller (in terms of nodes), but the shortest
counterexample path may be subsumed by a longer one resulting to a postpone of a coun-
terexample discovery.

Also note that we managed to compute nontrivial simulations16 for all the examples
from Tables 1 and 2. However, in most of them, the use of the simulation has no impact on
the time of checking the trace inclusion. The main reason is that most of the protocols are
modeled by automata where very limited data simulations exist between pairs of states (i.e.,
the data constraints under which the simulation holds are quite strong), and product states in
the antichain tree are incompatible with these simulations (cf. Points 1 and 2 of Lemma 11).

7 Conclusions

We have presented an interpolation-based abstraction refinement method for trace inclusion
between a network of generic register automata and an observer where the variables used
by the observer are a subset of those used by the network. The procedure builds on a new
determinization result for GRAs and combines in a novel way predicate abstraction and
interpolation with antichain-based inclusion checking. The efficiency of the basic method
can be further enhanced by data simulations. The procedure has been successfully applied
to several examples, including verification problems for array programs, real-time systems,
and hardware designs.

For the future, it is interesting to extend the method to data tree automata and apply
it to logics for heaps with data. Also, we foresee an extension of the method to handle
infinite traces. Finally, it is also an open problem how to handle the case when the observer
is allowed to have local variables.

16 A simulation R is trivial iff @x,y P Q : x‰ yÑ px,K,yq P R.
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A Alternative Notions of the Product State

Below, we briefly discuss two alternative notions of product states that we originally considered but dropped
them since we were not able to build a sound antichain construction on them.

The first option we considered was to link predicates with the individual states involved in a product
state. In that case, the predicate map linked particular states of automata Ae and B to sets of formulas as
follows: Πind : QAe YQB Ñ 2FormpDq. The product state was then defined as sind “ pxq,Φqy,Pq with q being
a state of the automaton Ae, Φq Ď Πindpqq, and PĎ txr,Φry | r P QB and Φr Ď Πindprqu. The semantics of
the product state sind “ pxq,Φqy,Pq was that whenever the automaton Ae is in the state q with a valuation
ν |ù Φq of the variables, then the automaton B can be in any state r such that xr,Φry P P and ν |ù Φr .
A product state sind “ pxq,Φqy,Pq was considered accepting iff q P FAe and there existed ν |ù Φq such that
ν |ù

Ž

tΦr | xr,Φry P P^ r P FBu. That implied existence of a trace accepted by Ae at the state q with the
final valuation ν, not covered by the automaton B. A problem with this product construction is that it cannot
be used for soundly deciding the inclusion problem as shown in the following example: Take the product state

s1 “ pxq1,x P t1,2uy,txr1,x“ 1y,xr2,x“ 2yuq obtained for an automaton Ae with the rule q1
σ,x1“x`1
ÝÝÝÝÝÑ q2

and an automaton B with rules r1
σ,x1ąx
ÝÝÝÑ r3 and r2

σ,x1“x`1^xą10
ÝÝÝÝÝÝÝÝÑ r3. Moreover, let q2 be final in Ae and r3

be final in B. When one computes the post of s1, one gets s2 “ pxq2,x P t2,3uy,txr3,x ą 1yuq, which is
not accepting, because all configurations of Ae are covered by configurations of B. However, the automaton

Ae can do a step pq1,x “ 2q σ,x1“x`1
ÝÝÝÝÝÑ pq2,x “ 3q, which cannot be followed by B. Hence, an antichain

construction based on this notion of product states could hide a real counterexample and provide an unsound
answer.

In order to avoid the unsoundness of the above solution, we attempted to use predicates representing
relations between successive values of variables within a step leading to a given product state. In this case,
the predicate map was defined as Πrel : QAe YQB Ñ 2FormpDqˆ2FormpDq. The product state was then defined
as srel “ pxq,Φqy,Pq with q being a state of the automaton Ae, Φq ĎΠrelpqq, and PĎ txr,Φry | r P QB and
Φr Ď Πrelprqu. The semantics of the product state srel “ pxq,Φqy,Pq was that whenever the last step of Ae

was p ,νq ÝÑ pq,ν1q such that pν,ν1q |ù Φr , then the last step of B could have been p ,νq ÝÑ pr,ν1q where
xr,Φry P P and pν,ν1q |ù Φr . (The source states of the steps were not reflected in the product states, and
hence are represented using the underscore sign.) A product state was considered final iff q P FAe and there
existed a relation pν,ν1q |ùΦr such that pν,ν1q |ù

Ž

tΦr | xs,Φry^ r P FBu. The antichain tree could be used
for sound checking of the inclusion in this case. However, a problem was to find a subsumption relation to
soundly prune the antichain tree. A natural way of defining the subsumption relation following the approach
of [1] is to define the subsumption as follows: pxq1,Φ1y,P1qĎ pxq2,Φ2y,P2q iff (i) q1 “ q2, (ii) Φ1 Ñ Φ2,
and (iii) for each xr,Φry P P2 there exists xs,Φsy P P1 such that r “ s and Φr Ñ Φs. Unfortunately, it turns
out that using such a subsumption cannot be used for sound inclusion checking since comparing formulae
representing solely the last step of the automata can lead to omitting counterexamples to inclusion that depend
on longer traces. Existence of a suitable sound subsumption for this type of product states, which is needed
to ensure termination of the antichain construction, is an open problem.


