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Geometrical theory of diffraction for sound radiation

and structural response

A. Le Bota

aLaboratoire de tribologie et dynamique des systèmes, UMR CNRS 5513, École centrale
de Lyon, Université de Lyon, 36, av. Guy de Collongue 69134 Ecully, France

Abstract

This study focuses on geometrical theory of diffraction (GTD) applied to
vibroacoustics with a particular emphasis to fluid-structure interaction. Six
types of hybrid rays are identified travelling either from structure-to-fluid
(sound radiation) or from fluid-to-structure (structural response). Three
rays correspond to sound radiation by the surface, edge, or corner of a
structure while the three others are the reciprocal paths corresponding to
sound-to-vibration conversion by the surface, edge, or corner. We present the
calculation of geometrical properties of wavefronts (principal directions and
curvatures) and their laws of transformation during an interaction process.
Furthermore, some simple explicit relationships for diffraction coefficients are
given under the light fluid assumption. Finally, two examples are discussed
to illustrate the concepts. The first one is a pure radiation problem while
the second one involves transmission through walls, structural response and
sound radiation.

Keywords: geometrical acoustics, rays, diffraction, sound radiation,
structural response

1. Introduction

The geometrical theory of diffraction (GTD) first developed by Keller
[1, 2] more than sixty years ago, is today a well-accepted and widespread
method. This theory has many advantages to calculate wave fields in the
presence of shadow zones. It has been widely employed in various fields of
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physics such as electromagnetics [3], acoustics, elastic waves [4, 5]. In the
field of acoustics, it has been applied to solve various problems, diffraction in
inhomogeneous media [6], sound diffracted over wide barriers [7], rectangular
box [8], sonic booms [9], multiple diffraction [10]...

However, application of GTD to rays in mechanical structures is less
common, probably because GTD best applies for exterior problems (typi-
cally diffraction by obstacles) where the number of rays reaching a point is
finite or countably infinite. Most often, high frequencies in built-up struc-
tures are tackled by other methods based on boundary integral equations
equivalent to ray-tracing without phase [11, 12] or even by statistical en-
ergy analysis [13] when ray fields are diffuse. In bounded domains, GTD
is generally implemented by ray-tracing like in room acoustics [14]. But in
vibroacoustics, a further difficulty arises. Ray methods require to introduce
simultaneously acoustical rays as well as structural rays. Since the conver-
sion of a structural ray into acoustical ray (sound radiation) and conversely
(structural response), may occur, we must admit the existence of hybrid rays.

Interaction processes between structural vibrations and acoustics are well-
known. For instance, an overview of these processes described by means of
a wave approach can be found in [15, 16]. The problem of transmission of
acoustical rays through finite plane plate using GTD including all diffraction
effects is touched on in [17]. These authors identify four types of hybrid
structural-acoustical rays associated with edge radiation and phase matched
leakage of structure modes and their reciprocal rays. The coupling coefficients
are not available in closed-form relationships but have been extracted from
numerical simulations based on a fine resolution of governing equations.

The purpose of this study is to apply the geometrical theory of diffraction
to sound radiation and structural response. GTD is here taken in its wider
sense, that is a phase is attached to rays. The study is focused on the inter-
action process between structures and the surrounding acoustical medium.
It is found that there exists six types of hybrid rays i.e. rays travelling in
both structure and fluid.

The outline of the present paper is as follows. In Section 2, some general
concepts such as ray field decomposition, the locality principle and canonical
problems are introduced. These concepts are rather common in the literature
in ray theories but here, they are described in the context of fluid-structure
interaction. In Section 3, a review is done of all rays specific to radiation and
absorption processes. This section is limited to these new rays and classical
ones ever presented in the literature are not described. In Section 4, the
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relationships for fields attached to structural and acoustical rays are derived.
Some relationships for the radii of curvature of wavefronts and the diffraction
coefficients and are given in Sections 5 and 6. Finally, two applications are
studied, radiation of sound from plates in Section 7 and transmission of sound
through plates in Section 8.

2. General concepts

Rays are usually introduced as a first order development of the field in
powers of 1/k where k is the wavenumber. The underlying assumption is
that the field magnitude does not vary significantly over a wavelength. This
condition usually applies at high frequencies that is when the wavelength is
small compared with the typical length of system. In the case of vibrating
plates immersed in a fluid, both wavelengths of structural and acoustical
waves must be short.

The present study is limited to the interaction of vibration in plane plates
with sound in air. In-plane motion in plates does not appear in the continuity
equation at fluid-structure interface. The out-of-plane motion (flexural vibra-
tion) is therefore the only vibration directly responsible of interaction with
fluid. However, in-plane motion may indirectly interact with fluid because of
wave mode conversion during reflection at edges. But for the sake of simplic-
ity, we shall not consider rays attached to in-plane waves. In the same spirit,
creeping rays are not considered in what follows. Creeping rays are gener-
ated when an acoustical ray impinges on obstacle at grazing incidence. They
are particularly important for curved structures but are of no importance for
plane plates. Finally, the light fluid assumption will be systematically used
after Section 6. The light fluid assumption allows the derivation of some
simple closed-form relationships for diffraction coefficients avoiding the use
of more general but more elaborated complex integrals.

A field is attached to each ray. And, at any point, the total field is simply
obtained by summing all fields of individual rays passing through that point.
Indeed, the nature of the field depends on the system. In fluid, the field is
the acoustical pressure p whereas in structures, the field is the transverse
displacement v. The choice of p and v for the field is not the only one
possible. Other possibilities could be the acoustical potential, the transverse
velocity of structure. . . Such another choice would not deeply modify the
present analysis but only the expressions of diffraction coefficients.
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Figure 1: Generalized Fermat’s principle, the path a, p, b is stationary. The singular
point p is constrained to lie on a surface, edge or vertex.

An interesting consequence of the high frequency assumption is that all
phenomena become local. Any interaction process involving several waves
such as reflection, refraction, diffraction, only depends on the local geometry
of the system and wavefronts. This is named the locality principle. The main
interest of the locality principle is that the study of a complex problem involv-
ing several interaction processes may be split up into some simpler canonical
problems. A canonical problem usually deals with a single difficulty. It has
same local geometry as the complex problem, but extrapolated in such a
manner that a closed-form solution is obtained. Many examples of canonical
problems may be found in the related literature in optics or in acoustics. In
Section 6, several references will be quoted for canonical problems related to
vibroacoustics.

3. Review of rays in vibroacoustics

It is well-known that ray paths follow Fermat’s principle. The law of
reflection, equality of incidence and reflection angles, and Snell’s law of re-
fraction are all derived from this simple principle. But the most original
contribution of the geometrical theory of diffraction is to extend this princi-
ple and to show the existence of many further kinds of rays such as diffracted
rays, creeping rays and so some others.

Generalized Fermat’s principle may be enunciated as follows. Consider a
path between two points a and b. This path is assumed to be regular except
at a point p where may occur reflection, refraction, or diffraction. This point
p is constrained to be on a surface, edge, or vertex. We define the optical
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path L of the ray as the phase shift

L =

∫
ku.ds (1)

where the integral is performed over the path a− p− b, u is the unit vector
tangent to the path, ω the circular frequency, c the phase speed, and k = ω/c
the wavenumber which may vary along the path. Fermat’s principle states
that the actual optical path is stationary

δL = 0 (2)

for infinitesimal variation δs of the path where a and b are fixed. By denoting
u−, u+ the left and right unit vectors tangent to the singular point p, k−

(respectively k+) the wavenumber on section a − p (respectively p − b)
(Fig. 1), integration by parts of Eq. (2) leads to∫

ku.d(δs) = k+u.δb− k+u+.δp + k−u−.δp− k−u.δa−
∫
δs.d(ku) = 0 (3)

But δa = δb = 0, it yields ∫
δs.d(ku) = 0 for all δs (4)

(k−u− − k+u+).δp = 0 for all δp (5)

The first condition simplifies to d(ku) = 0. In homogeneous media (k con-
stant) u is constant and therefore the path is straight. The second rela-
tionship imposes a condition on position of point p that we shall investigate
hereafter.

Let us now confine the discussion to vibroacoustics. A plane plate with
normal n is immersed in a fluid. The subscript s refers to the structure
(plate) and the subscript f to the fluid. We denote cs the phase speed of
structural rays and cf that of sound rays.

Consider a structural ray travelling inside the plate in direction u− as
shown in Fig. 2. This ray may radiate a sound ray at point p in direction
u+. When applying Eq. (5) to this situation, δp belongs to the plate plane.
Since Eq. (5) applies for all δp verifying δp.n = 0 then u−/cs−u+/cf = λn.
In particular u+ belongs to the u−,n-plane. Writting u+ = sin θ0u

−+cos θ0n,
we get

sin θ0 =
cf
cs

(6)
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Figure 2: Radiation of a supersonic structural ray, the acoustical ray starts with an emis-
sion angle θ0 defined in Eq. (6).

It follows that a sound ray exists only if cs > cf , that is the structural ray
is supersonic. The acoustical ray is then emitted in the plane u−,n with an
emission angle θ0.

Consider now a structural ray impinging on a plate edge with tangent
vector t as shown in Fig. 3. The sound ray starts from the edge at a point
p. As δp is colinear to t, δp = λt and Fermat’s principle reads (u−/cs −
u+/cf ).t = 0. By letting cosϕ = u−.t where ϕ is the incidence angle and
cos θ = u+.t where θ is the elevation angle of emission, this reads

cos θ =
cf
cs

cosϕ (7)

while the azimuthal angle of emission α can take any value. The diffracted
ray belongs to Keller’s cone of axis t and angle θ given by Eq. (7). Note that
for supersonic structural ray (cs > cf ), there is always a diffracted ray. But
in the subsonic case, no diffraction occurs for incidence ϕ < arccos cs/cf .

Finally, consider a structural ray impinging on a plate corner as shown
in Fig. 4. The point p is fixed therefore δp = 0. Eq. (5) is satisfied for any
diffracted direction u+. A corner diffracts structural rays in all directions
in the acoustical medium. More generally this is the case for any singular
point such as force point, attachement point of additional mass or stiffness,
or small hole.

By virtue of reciprocity, all previously determined paths can be inverted.
It follows that acoustical rays hitting the plate with the particular incidence
θ0 are absorbed and transformed into structural rays. In a similar way,
acoustical rays reaching a plate edge are also absorbed for any incidence
in the subsonic case and incidence θ > arccos cf/cs in the supersonic case.
Finally, absorption by corner or any singular points occurs for any incidence.
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Figure 3: Diffraction of a structural ray by edge, the acoustical ray lies in a Keller’s cone
which angle θ is given in Eq. (7).
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Figure 4: Diffraction of a structural ray a corner, the acoustical ray may follow any
direction.
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Thus, there exists six types of hybrid rays i.e. rays travelling in both fluid
and structure. They appear in vibroacoustics each time a structure radiates
or absorbs acoustical energy. But all other classical rays may be required in
practice.

4. Field of rays

In this section, fields attached to rays are derived. This calculation is
performed in two separated steps, the field phase and its magnitude.

Along a ray, the phase shift ∆ϕ between two points separated by a dis-
tance r is simply the optical length

∆ϕ = kαr (8)

where kα = ω/cα with α = s, f .
The magnitude of the field is determined by applying the principle of

conservation of energy in a ray beam.
Consider first the case of a plate and a ray beam of angle dθ as shown in

Fig. 5a. The structural intensity is denoted by I. If the wavefront has radius
of curvature ρ, all rays passing through that wavefront stem from a same
point located at distance ρ in normal direction behind the wavefront. At a
distance r (resp. r + dr) ahead of the wavefront, the radius of curvature is
ρ+ r (resp. ρ+ r+ dr). In the infinitesimal element (ρ+ r)drdθ, the ingoing
power is (ρ + r)Idθ whereas the outgoing power is (ρ + r + dr)(I + dI)dθ.
Dissipation by structural damping induces a dissipated power proportional to
(ρ+ r)Idθdr. Similarly, sound radiation imposes an additional loss. Let 2ms

be the total attenuation factor. Neglecting second order terms, the energy
balance reads

dI

dr
+

1

ρ+ r
I(r) + 2msI(r) = 0 (9)

with the solution
I(r) = I(0)

ρ

ρ+ r
exp(−2msr) (10)

A ray is a travelling wave. In particular the proportionality I ∝ |v|2 holds
where v is the plate deflection. Since, |v| ∝

√
I and the phase of v is given

in Eq. (8), we finally obtain the deflection field as

v(r) = v(0)

√
ρ

ρ+ r
exp(iksr) (11)
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Figure 5: Energy balance in a beam of rays, (a) in plate, (b) in fluid.

where i =
√
−1 and ks = ks + ims is the complex structural wavenumber. In

AppendixA, some explicit relationships for ks and ms are given in both cases
of subsonic and supersonic waves.

In the case of acoustical rays, an additional difficulty arises from the
presence of two principal radii of curvature for wavefronts. Let denote by ρ1
and ρ2 these radii. At a distance r (resp. r+ dr) ahead of the wavefront the
radii becomes ρ1 + r and ρ2 + r (resp. ρ1 + r+ dr and ρ2 + r+ dr) as shown
in Fig. 5b. Considering that acoustical rays loss some energy due to the
atmospheric absorption with an attenuation factor mf , the energy balance is

dI

dr
+

1

ρ1 + r
I(r) +

1

ρ2 + r
I(r) + 2mfI(r) = 0 (12)

with the solution

I(r) = I(0)
ρ1ρ2

(ρ1 + r)(ρ2 + r)
exp(−2mfr) (13)

Finally, the pressure field p is obtained by

p(r) = p(0)

√
ρ1ρ2

(ρ1 + r)(ρ2 + r)
exp(ikfr) (14)

where kf = kf + imf is the complex acoustical wavenumber. This field is a
spherical wave when ρ1 = ρ2, a cylindrical wave when ρ2 → ∞ and a plane
wave when ρ1 →∞, ρ2 →∞.
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Figure 6: Geometry of wavefront. (a) Euler’s formula: 1 and 2 principal directions; ρ1,
ρ2 principal radii of curvature; ρ radius of curvature in a normal plane inclined by ψ to
direction 1. (b): Meusnier’s theorem: ρn radius of curvature in normal plane; ρ radius of
curvature in a plane inclined by β to the normal plane.

5. Radius of curvature

Let us examine how the wavefronts are transformed during a fluid-structu-
re interaction. A wavefront is determined by the principal radii of curvature
but also the orientation of the principal directions in the plane normal to
the ray. In general, fluid-structure interaction modifies the ray direction,
the principal directions of wavefront, and the principal radii of curvature.
Since the modification of ray direction has been outlined in Section 3, the
remaining question is therefore to determine the principal directions and the
curvatures of wavefronts after transformation.

Wavefronts are defined as surfaces of all points of the bundle rays having
same phase (Fig. 6a). A wavefront is normal to the ray direction. For each
normal plane defined by the ray direction and any transverse direction, the
intersection with the wavefront forms a curve whose radius of curvature is
noted ρ. The principal directions 1 and 2 are the two transverse directions
for which the radii of curvatures ρ1 and ρ2 reach their maximum and min-
imum values. The principal directions are orthogonal. If a normal plane is
inclined by ψ relative to direction 1, the radius of curvature ρ verifies Eu-
ler’s formula 1/ρ = cos2 ψ/ρ1 + sin2 ψ/ρ2. Another important result is the
so-called Meusnier’s theorem (Fig. 6b). Let ρn be the radius of curvature at
r in a normal plane and ρ the radius of curvature of the curve intersection

10



θ0 r 
ρ-

r’ θ0s 
p 

n 

r 

1 
2 

s’ 

n 

s p 

s’ 

2 
r 

1 

θ0

θ0

β 

Figure 7: Wavefronts for supersonic structural ray radiating acoustical rays. The acoustical
wavefront at r is a cone of axis n with a straight generating line normal to the ray.

with a plane that makes angle α with the normal and has the same tangent
at r. Then Meusnier’s theorem states that ρ = ρn cos β.

Let us consider the case of an acoustical ray radiated by a supersonic
structural ray. Assuming that the radius of curvature of the structural wave-
front at point p is ρ− (Fig. 7), the optical path from the source s to p is
ksρ
−. In the fluid, the ray seems to stem from a point s′ located below the

plate at a distance r′ = ρ−ks/kf = ρ− sin θ0 (after Eq. (7)) in the radiated
direction. The set of all points s′ for various points p forms a cone of vertex
s, axis n and half-angle β = π/2 − θ0. Since the acoustical path from s′ to
p equals the structural path from s to p, s′ has same phase as s. This cone
is therefore an equiphase surface. The acoustical wavefront at p being an
equiphase surface is also a cone of same axe and half-angle. The principal
directions of this cone are firstly, the tangent in the plate plane (this is also
the tangent to the structural wavefront at p) and secondly the generating
line passing through p. The calculation of the curvatures of a cone is clas-
sical. Meusnier’s theorem states that the radius of curvature in the section
normal to the generating line at p is ρ+1 = ρ−/ cos β since ρ− is the radius
of the circle normal to n of centre s. This gives the first principal curvature.
The second principal curvature is zero since the generating line of a cone is
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Figure 8: Wavefronts for acoustical rays under incidence θ0 converted into structural rays.
The structural wavefront at p is the curve intersection of the incident acoustical wavefront
and the plate.

straight. The radii of curvature in the principal directions are therefore

ρ+1 = ρ−/ sin θ0 (15)

ρ+2 = ∞ (16)

Setting ρ+2 →∞ in Eq. (14), the pressure field at a point r located at distance
r from p in direction θ0 (Fig. 7) is

p(r) = p(p)

√
ρ+1

ρ+1 + r
exp(ikfr) (17)

Now substituting the above value of ρ+1 and defining the detachment coeffi-
cient Lf such that p(p) = Lfv(p) where v(p) is the transverse deflection at
p, it yields

p(r) = v(p)Lf

√
ρ−

ρ− + r sin θ0
exp(ikfr) (18)

The detachment coefficient Lf will be determined in Section 6.
The reciprocal problem is easier (Fig. 8). When an acoustical ray im-

pinges on the plate at incidence θ0, all points located on the intersection
of the incident acoustical wavefront and the plate plane have same phase.
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Figure 9: Wavefronts for structural rays diffracted by edges. The acoustical wavefront at
r is a cone of axis t with a curved generating line.

This curve is therefore the wavefront of the structural ray. Consider the nor-
mal plane defined by the ray direction and the tangent to wavefront at p in
the plate plane. Let us denote ρ− the radius of curvature of the acoustical
wavefront in this normal plane. If this normal plane makes angle ψ with
the principal direction 1 of the incident wavefront, then by Euler’s formula
1/ρ− = cos2 ψ/ρ−1 + sin2 ψ/ρ−2 with ρ−1 , ρ−2 being the radii of curvature in
principal directions. Now, let ρ+ be the radius of curvature at p of the curve
intersection of wavefront and plate plane. By Meusnier’s theorem

ρ+ = ρ− sin θ0 (19)

After Eq. (11), the structural field at a point r at distance r from p (Fig. 8),
is then

v(r) = p(p)Ls

√
ρ− sin θ0

ρ− sin θ0 + r
exp(iksr) (20)

where Ls is the attachment coefficient defined by v(p) = Lsp(p) (see Sec-
tion 6).

When a structural ray is diffracted into the fluid by an edge, we denote
by ρ− the radius of curvature of the structural wavefront in the plate plane
at point p on the edge (Fig. 9). We must determine the principal directions
of the acoustical wavefront and their normal radius of curvatures noted ρ+1
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and ρ+2 . All acoustical rays in the Keller’s cone start with same initial phase.
The circles normal to the edge (axis of the cone) are thus equiphased. The
radius of curvature equals the circle radius, and since p is the vertex of
Keller’s cone, we get ρ+1 = 0. In addition, in the fluid, the ray seems to
start from a fictitious source s′ located below p in the diffracted direction.
The distance ρ+2 = |p− s′| is given by the following argument. Consider an
infinitesimal variation δp of the diffracting point on the edge. The variation
dϕ of incidence is given by |δp| = ρ−dϕ/ sinϕ where ϕ is the incidence
angle. In the same way, this must equal the variation for the corresponding
infinitesimal angle dθ where θ is the emission angle. So, ρ−dϕ/ sinϕ =
ρ+2 dθ/ sin θ and finally, differentiating Eq. (7), it yields

ρ+1 = 0 (21)

ρ+2 = ρ−
kf
ks

sin2 θ

sin2 ϕ
(22)

The wavefront is therefore a cone about the edge with a curved generating
line. The principal directions are drawn in Fig. 9. Following Eq. (14), the
pressure field in the fluid at a point r distant from p by r in direction θ is

p(r) = v(p)Dedge
f

√
ρ−kf sin2 θ

(ρ−kf sin2 θ + rks sin2 ϕ)r
exp(ikfr) (23)

where Dedge
f is a diffraction coefficient defined by p(p) = Dedge

f v(p).
Consider now the case of an acoustical ray hitting a plate edge and

diffracted into a structural ray (Fig. 10). Let ρ− be the radius of curvature of
incident wavefront in the normal plane containing the edge and the incident
ray. If this plate makes angle ψ with the principal direction 1 then by Euler’s
formula 1/ρ− = cos2 ψ/ρ−1 + sin2 ψ/ρ−2 . ρ+ denotes the radius of curvature of
the structural wavefront at p. Following the same reasoning as in the previ-
ous case, an infinitesimal variation of p is |δp| = ρ−dθ/ sin θ = ρ+dϕ/ sinϕ.
Finally,

ρ+ = ρ−
ks
kf

sin2 ϕ

sin2 θ
(24)

And the field for the structural ray is by Eq. (11)

v(r) = p(p)Dedge
s

√
ρ−ks sin2 ϕ

ρ−ks sin2 ϕ+ rkf sin2 θ
exp(iksr) (25)
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Figure 10: Wavefronts for acoustical rays diffracted into structural rays by plate edges.

where Dedge
s is a diffraction coefficient defined by v(p) = Dedge

s p(p).
When a structural ray is diffracted into fluid by a corner or a singularity,

the diffracted wavefront is spherical and so, both radii of curvature are zero
at the diffraction point

ρ+1 = 0 (26)

ρ+2 = 0 (27)

The diffracted field is thus by Eq. (14)

p(r) = v(p)Dcorner
f

1

r
exp(ikfr) (28)

which does not depend on the radius of curvature of incident wavefront.
Dcorner
f is a diffraction coefficient defined by p(p) = Dcorner

f v(p).
Conversely, when an acoustical ray is diffracted into the structure by a

corner, the structural diffracted ray is cylindrical and thus

ρ+ = 0 (29)

By Eq. (11), the field at a point r distant by r from the corner, is

v(r) = p(p)Dcorner
s

1√
r

exp(iksr) (30)

where Dcorner
s is a diffraction coefficient defined by v(p) = Dcorner

s p(p).
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6. Diffraction coefficients

This section gives explicit relationship for the detachment coefficient Lf ,

the attachment coefficient Ls, and the diffraction coefficients Dedge
f and Dedge

s .
Other coefficients useful in practice are also provided. For each coefficient,
we specify a reference or give the complete calculation in appendices. From
now, the light fluid assumption will always be admitted. The time convention
is exp (−iωt).

In this section, we shall denote by ρ0 the density of the light fluid (air)
and kf = ω/cf the acoustical wavenumber where cf is the sound speed.
The plate is thin and has bending stiffness B = Eh3/12(1 − ν2) where E is
Young’s modulus, h the plate thickness and ν the Poisson coefficient. The
plate has mass per unit area m. At frequency ω, the structural wavenumber
is ks = (mω2/B)1/4 and the phase speed in plate is cs = (Bω2/m)1/4.

The problem of a supersonic structural ray radiating sound rays during its
travel, shown in Fig. 2, exhibits a detachment coefficient Lf in Eq. (18). This
coefficient is calculated by considering the canonical problem of a structural
plane plane travelling in an infinite plate and radiating a sound plane wave.
This canonical problem is classical in the literature (see for instance [23],
page 502). The sound plane wave is emitted at angle θ0 and its magnitude
may be calculated by applying the continuity condition at the fluid-plate
interface. Lf is determined by p = Lfv where p and v are respectively the
pressure and plate deflection waves. With the above notations, this gives the
following detachment coefficient for sound radiation

Lf =
−iρ0ω

2√
k2f − k2s

(31)

when cs > cf and zero otherwise. Note that Lf is a complex number. This
value of Lf must be substituted in Eq. (18).

In the reciprocal problem, a sound ray hits the plate at incidence θ0 and
transformed into a structural ray. The canonical problem, a sound plane
wave impinging on an infinite plate at incidence θ0 and giving rise to a struc-
tural plane wave, is strictly equivalent to the previous canonical problem
of sound radiation, excepted that the time must be reversed. The attach-
ment coefficient Ls which appears in Eq. (20) is then obtained by applying
v = Lsp where v is the plate deflection and p the acoustical pressure on the
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plate surface. It yields

Ls = − 1

Lf
(32)

Note that the minus sign comes from the time inversion (formally equivalent
to the substitution i→ −i). This value of Ls must be substituted in Eq. (20).

In the third problem, a structural ray impinging on a plate edge at inci-
dence ϕ is diffracted into the fluid as shown in Fig. 3. The associated canoni-
cal problem considers a structural plane wave impinging on the straight edge
of a semi-infinite plate. The structural wave is both reflected into the plate
and diffracted into the fluid. The following values of the reflection coeffi-
cient defined as the ratio of reflected to incident plane wave magnitudes,
are calculated by assuming that the plate is in vacuo (see AppendixB for
details).

Rs = −1 for simply supported edge (33)

Rs =
sinϕ+ i

√
1 + cos2 ϕ

sinϕ− i
√

1 + cos2 ϕ
for clamped edge (34)

Rs =
−i
√

1+cos2 ϕ
sinϕ [1−(1−ν) cos2 ϕ]

2
−[1+(1−ν) cos2 ϕ]

2

i

√
1+cos2 ϕ
sinϕ

[1−(1−ν) cos2 ϕ]2−[1+(1−ν) cos2 ϕ]2
for free edge (35)

An evanescent wave is also reflected in the plate by the edge. In the same
condition, the reflection coefficients for this evanescent wave are

Re = 0 for simply supported edge (36)

Re =
−2 sinϕ

sinϕ− i
√

1 + cos2 ϕ
for clamped edge (37)

Re =
2[1−(1−ν)2 cos4 ϕ]

−i
√

1+cos2 ϕ
sinϕ

[1−(1−ν) cos2 ϕ]2+[1+(1−ν) cos2 ϕ]2
for free edge (38)

Note that the in vacuo assumption only gives a zero-order approximation
of the actual reflection coefficients in the presence of a fluid loading. In
particular from Eqs. (33, 34, 35), we get |Rs|2 = 1 which shows that all
energy is reflected into the plate. These reflection coefficient will turn out to
be useful when we will consider the radiation problem in Section 7 and the
transmission problem in Section 8.

The diffraction coefficient Dedge
f in Eq. (23) is obtained by solving the

same canonical problem of a structural plane wave impinging on the edge of
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a plate at incidence ϕ (see Fig. 3). The rigorous solution to this canonical
problem requires the application of the Wiener-Hopf technique (see [18, 19,
20] for a complete solution with various boundary conditions). We give below
a version of Dedge

f which follows the simplified method described in [21, 22].
It is obtained under the light fluid assumption by solving the Helmholtz
equation with in vacuo deflection field as boundary conditions. The plate is
assumed to be baffled. The polar angle about the edge is noted α (Fig. 3) and
the incidence angle ϕ. We have seen in Section 3 that no ray is diffracted
when ϕ < arccos cs/cf , we can therefore assume that kf > ks cosϕ. The
diffraction coefficient is then

Dedge
f (ϕ, α) = −ρ0ω2 û(kf sin θ cosα)

sin θ
√

2πkf
exp

(
i
π

4

)
(39)

where the function û is

û(s) =
−i

ks sinϕ− s
+

iRs

ks sinϕ+ s
+

Re

ks(1 + cos2 ϕ)1/2 − is
(40)

In these relationships, the emission angle θ is related to incidence angle ϕ by
Eq. (7). This value of Dedge

f may be substituted in Eq. (23).
In the fourth problem, the reciprocal of the third one, an acoustical ray

hits the plate edge and is diffracted in both structural ray and acoustical rays.
The corresponding canonical problem is an acoustical plane wave hitting an
edge of a semi-infinite plate with incidence θ tangent to the edge and polar
angle α (Fig. 3). Again, a rigorous solution is a problem of complex analysis.
In [21], it is proposed to estimate the diffracted field under the light fluid
assumption by remarking that the incident sound wave imposes a forced
field in the plate which does not satisfy the plate boundary conditions. The
method consists in enforcing the boundary conditions of the plate by adding
a structural plane wave of wavenumber kf and an evanescent wave, both
in direction ϕ. The diffraction coefficient Dedge

s is the magnitude of this
structural plane wave

Dedge
s (θ, α) =

i[1 + cos2 ϕ+ (
kf
ks

sin θ cosα)2]kf sin θ sinα

2ρ0ω2 + iB[(k4f (1− sin2 θ sin2 α)2 − k4s ]kf sin θ sinα
(41)

for simply supported edge. The emission angle ϕ is related to incidence angle
θ by Eq. (7). This diffraction coefficient appears in Eq. (25).
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Unfortunately, the canonical problem of a structural plane wave hitting
a corner or any other singularity of a plate has not been solved analytically.
No simple expression for the corresponding acoustical diffraction coefficient
are available in the literature. Similarly, the reciprocal canonical problem of
an acoustical plane wave hitting a corner has not been solved. Especially,
the diffraction coefficient attached to structural waves emanating from the
edge is unknown.

Other diffraction or reflection coefficients are useful in practice. For in-
stance, in the example of sound transmission that will be discussed in Sec-
tion 8, we shall need to consider the problem of a sound ray hitting a plate
and split into reflected and transmitted rays. The associated canonical prob-
lem is a sound plane wave impinging on a thin infinite plate with incidence
θ normal to the plate. This is a standard problem in the literature. The
reflection and transmission coefficients are (see for instance [13], page 232)

Rf (θ) =
i[B(kf sin θ)4 −mω2]kf cos θ

2ρ0ω2 + i[B(kf sin θ)4 −mω2]kf cos θ
(42)

Tf (θ) =
2ρ0ω

2

2ρ0ω2 + i[B(kf sin θ)4 −mω2]kf cos θ
(43)

A final problem problem that may be of practical interest is a fluid loaded
plate excited by a transverse point force. Under such a concentrated exci-
tation, two waves emanate from the driven point. The structural wave is
cylindrical v(r) = As exp(iksr)/

√
r where r is the source-receiver distance.

The acoustical wave is spherical of the form p(r) = Af exp(ikfr)/r. The am-
plitudes Aα, α = s, f have been calculated under the light fluid assumption
in [23, 24]. They will not be used in the rest of this paper.

7. Radiation of sound

In this section, we detail a simple application of GTD to a sound radiation
problem.

We consider a structural plane wave incident on the edge of a semi infinite
baffled plate as shown in Fig. 11. Let r denote a point above the plate. To
determine the acoustical pressure at this point, we need to make an inventory
of all rays passing through that point. First, the incident ray is diffracted by
the edge leading to the field p1. Since any point in the fluid is located on a
unique Keller’s cone, the point r is always reached by such a diffracted ray.
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Figure 11: Plane wave hitting the edge of a plate. Three rays are radiated towards the
fluid and three zones numbered in roman characters are defined depending on the number
of rays reaching the zone.

Secondly, in the supersonic frequency range, the incident structural ray radi-
ates continuously acoustical rays at angle θ0 which may reach the reception
point r. The attached field is noted p2. Finally, the incident ray is reflected
by the edge and the resulting reflected plane wave also radiates acoustical
rays at angle −θ0 whose field is noted p3. Three zones are thus clearly de-
fined depending on the number of rays reaching r. They are summarized as
follows.

• zone I: p(r) = p1(r)

• zone II: p(r) = p1(r) + p2(r)

• zone III: p(r) = p1(r) + p2(r) + p3(r)

These zones and the three types of acoustical rays are shown in Fig. 11.
Now, let us calculate the field attached to each ray. The incident struc-

tural ray is assumed to be a plane wave with a unit magnitude (ρ− = ∞).
Firstly, the diffracted field is by Eq. (23)

p1(r) = exp(iksd1)D
edge
f (α)

exp(ikfr1)√
r1

(44)

where d1 = |p1 − s| and r1 = |p1 − r|. The term exp(iksd1) is attached to
the structural part of the ray while Dedge

f exp(ikfr1)/
√
r1 is the cylindrical
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Figure 12: Cylindrical wave hitting the plate. Six rays are transmitted through the plate
and six zones numbered in roman characters are defined depending on the number of rays
reaching the zone.

acoustical wave from the edge to the receiver point. Secondly, the field
radiated by the incident ray is by Eq. (18)

p2(r) = exp(iksd2)Lf exp(ikfr2) (45)

where d2 = |p2 − s| and r2 = |p2 − r|. Lf is the factor for radiation and
exp(ikfr2) the field attached to the acoustical plane wave. Thirdly, the field
radiated by the reflected ray is

p3(r) = exp(iksd1)Rs exp(iksd3)Lf exp(ikfr3) (46)

where d3 = |p3−p1| and r3 = |p3− r|. The term Rs exp(iksd3) is due to the
reflected field.

This simple example illustrates the ease with which a ray-tracing ap-
proach applies to sound radiation problems. Of course, the semi-infinite
nature of the plate leads a small number of rays. In the case of a finite
plate, successive reflections occur on plates edges and the fields are series of
structural rays radiating sound rays. An energetic approach to this problem
is presented in [25, 26].
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8. Transmission of sound

The second application is concerned with a transmission problem. Con-
sider a cylindrical acoustical wave emanating from the source point s and
impinging on a semi-infinite baffled plate as shown in Fig. 12. One searches
the acoustical field in the lower half-plane. From the source s to the receiver
point r, six rays can propagate. The first one is the acoustical ray that
reaches the receiver point in straight line directly through the plate. The
field is noted p1 with

p1(r) =
exp(ikfs0)√

s0
Tf

√
s0√

s0 + r0
exp(ikfr0) (47)

where s0 = |p0 − s| and r0 = |p0 − r|. The second ray is absorbed by the
structure at incidence θ0, travels in the plate, and is radiated into the lower
fluid with emission angle θ0. The corresponding field is

p2(r) =
exp(ikfs4)√

s4
Ls exp(iksd1)Lf exp(ikfr3) (48)

where s4 = |p4− s|, r3 = |p3−r| and d1 = |p4−p3|. The third one is similar
to the second one, although it is reflected by the edge before to be radiated.

p3(r) =
exp(ikfs4)√

s4
Ls exp(iksd2)Rs exp(iksd3)Lf exp(ikfr2) (49)

where r2 = |p2 − r|, d2 = |p1 − p4| and d3 = |p1 − p2|. The fourth ray is
successively absorbed at incidence θ0 and diffracted by the edge.

p4(r) =
exp(ikfs4)√

s4
Ls exp(iksd2)D

edge
f

exp(ikfr1)√
r1

(50)

where r1 = |p1−r|. The fifth one is the acoustical ray impinging on the edge
and directly diffracted toward the receiver point.

p5(r) =
exp(ikfs1)√

s1
Dedge
f

exp(ikfr1)√
r1

(51)

with s1 = |p1 − s|. Finally, the sixth ray is diffracted into the structure by
the edge, travels into the structure and is radiated with emission angle θ0
toward the receiver point. Its field is

p6(r) =
exp(ikfs1)√

s1
Dedge
s exp(iksd3)Lf exp(ikfr2) (52)
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These rays do not reach every point of the lower half-plane and the pat-
tern. They are summarized as follows.

• zone I: p(r) = p4 + p5

• zone II: p(r) = p1 + p4 + p5

• zone III: p(r) = p1 + p2 + p4 + p5

• zone IV: p(r) = p1 + p4 + p5

• zone V: p(r) = p1 + p2 + p3 + p4 + p5 + p6

• zone VI: p(r) = p1 + p3 + p4 + p5 + p6

These zones and the three types of acoustical rays are shown in Fig. 12.

9. Conclusion

In this paper, the geometrical theory of diffraction has been applied to
sound radiation and structural response of plane structures. It has been
shown that fluid-structure interaction gives rise to six structural-acoustical
rays. These are radiation of supersonic structural rays, diffraction by edges
of structural rays, diffraction by corners of structural rays, absorption of
acoustical rays at incidence θ0, absorption of acoustical rays by edges, ab-
sorption of acoustical rays by corners. Some of these rays may not exist in
particular situations. Their existence are specified by Snell’s laws derived
from Fermat’s principle. In practice, a complete description of a problem
requires all other classical rays such as structural-structural rays reflected by
edges, diffracted by corners and acoustical-acoustical rays reflected by plates,
transmitted through plates, diffracted by edges, corners, creeping rays and
so on.
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AppendixA.

In this Appendix some basic relationships related to the fluid structure
interaction are derived. The plate has mass per unit area m and bending
stiffness B = Eh3/12(1 − ν2) where E is Young’s modulus, h the plate
thickness and ν Poisson’s coefficient. The circular frequency is noted ω and
the time convention is exp (−iωt). The in vacuo the plate wavenumber is
kv = (mω2/B)1/4. The fluid has volumic mass ρ0 and speed of sound cf . The
wavenumber of acoustical waves is kf = ω/cf . In the presence of material
damping, a complex wavenumber is introduced. For the plate, k̄v = kv(1 +
iη/4) where η is the damping loss factor of the material. In the fluid, k̄f =
kf + imf where mf is the sound absorption coefficient. When the coupling
between plate and fluid is taken into account, the structural wavenumber
is no longer k̄v but k̄s. The continuity of velocity on the plate gives the
dispersion equation

B(k̄4s − k̄4v) =
−2iρ0ω

2

(k̄2f − k̄2s)1/2
(A.1)

This equation has five solutions for k̄s but only one is physical corresponding
to a decreasing travelling wave. The real wavenumber ks and the absorption
coefficient ms are simply obtained by separating the real and imaginary parts
k̄s = ks + ims.

In the case of light fluid, a first order development of Eq. (A.1) gives an
approximate solution of k̄s. Let rewrite the dispersion equation (A.1) with
the adimensional parameters ε = 2ρ0/(mkv), ζ = kf/kv and x = ks/kv, it
yields

(x4 − 1)(ζ2 − x2)1/2 = −iε (A.2)

The first order solution in powers of ε is x = 1− iε/4(ζ2 − 1)1/2. Finally

ks =

{
kv + εkv

4(1−ζ2)1/2 for ζ < 1

kv for ζ > 1
(A.3)

and

ms =

{
ηkv
4

for ζ < 1
ηkv
4

+ εkv
4(ζ2−1)1/2 for ζ > 1

(A.4)

Remark that ζ = cf/cv where cv = (B/m)1/4
√
ω represents the in vacuo

Mach number. For a supersonic structural wave ζ > 1 and for a subsonic
wave ζ < 1. We may observe in Eq. (A.4) that when ζ < 1, the structural
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attenuates under the action of material damping only. But when ζ > 1,
the triggering of sound radiation imposes an additional attenuation due to a
transfer of energy to the fluid.

AppendixB.

We consider the problem of a structural plane wave reflecting on a plate
edge [27]. The edge is along the y-axis and the x-axis is inward the plate.
The time convention is exp(−iωt). The structural wavenumber is noted k
and is complex-valued.

For a unit incident plane wave with incidence ϕ with the tangent to the
edge (Fig. 3), the deflection is

v = [exp(−ikx sinϕ) +Rs exp(ikx sinϕ) +Re exp(−kx
√

1+cos2 ϕ)]
× exp(iky cosϕ)

(B.1)

The boundary conditions determine the unknowns Rs and Re. Three cases
are solved. First, for a simply supported edge, the boundary conditions are

v(0, y) =
∂2v

∂x2
(0, y) + ν

∂2v

∂y2
(0, y) = 0 (B.2)

By remarking that ∂yyv = 0 since v = 0 along the y-axis, this leads to the
set of linear equations

0 = 1 +Rs +Re, (B.3)

0 = (1 +Rs) sin2 ϕ−Re

[
1 + cos2 ϕ

]
(B.4)

The solution is Rs = −1, Re = 0 given in Eqs. (33, 36).
Second, for a clamped edge, the conditions are

v(0, y) =
∂v

∂x
(0, y) = 0, (B.5)

that is

0 = 1 +Rs +Re (B.6)

0 = i(1−Rs) sinϕ+Re

√
1 + cos2 ϕ (B.7)

The solution is given in Eqs. (34, 37).
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Finally, the free edge conditions are

∂2v

∂x2
(0, y) + ν

∂2v

∂y2
(0, y) =

∂3v

∂x3
(0, y) + (2− ν)

∂3v

∂x∂y2
(0, y) = 0 (B.8)

that is

0 = (1 +Rs)(sin
2 ϕ+ ν cos2 ϕ)−Re

[
1 + (1− ν) cos2 ϕ

]
(B.9)

0 = (1−Rs) sinϕ [1+(1−ν) cos2 ϕ] + iRe

√
1+cosϕ2 [1−(1−ν) cos2 ϕ] (B.10)

The solution is given in Eqs. (35, 38).
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[11] D.J. Chappell, D. Löchel, N. Sondergaard, G. Tanner Dynamical energy
analysis on mesh grids: A new tool for describing the vibro-acoustics
response of complex mechanical structures, Wave Motion 51 (2014) 589–
597.

[12] A. Le Bot, E. Reboul High frequency vibroacoustics: A radiative transfer
equation and radiosity based approach, Wave Motion 51 (2014) 598–605.

[13] A. Le Bot, Foundation of statistical energy analysis in vibroacoustics,
Oxford University Press, 2015.

[14] N. Tsingos,T. Funkhouser, A. Ngan, I. Carlbom “Modeling acoustics in
virtual environments using the uniform theory of diffraction”, in Pro-
ceedings of the 28th annual conference on Computer graphics and inter-
active techniques, 545-552 (2001).

[15] D.G. Crighton The 1988 Rayleigh medal lecture: Fluid loading – the
interaction between sound and vibration, J. Sound Vib. 133 (1989) 1–
27.

[16] F. Fahy, P. Gardonio, Sound and Structural Vibration - Radiation,
Transmission and Response, Academic Press, 2006.

[17] T.K. Kapoor, L.B. Felsen, Hybrid ray-mode analysis of acoustic scat-
tering from a finite, fluid-loaded plate, Wave motion 22 (1995) 109–131.

[18] H.G. Davies, Natural motion of a fluid-loaded semi-infinite membrane,
J. Acoust. Soc. Am. 55 (1974) 213–219.

[19] D.G. Crighton, Acoustic edge scattering of elastic surface waves, J.
Sound Vib. 22 (1972) 25–32.

[20] D.G. Crighton, D. Innes, The modes, resonances and forced response of
elastic structures under heavy fluid loading, Phil. Trans. R. Soc. Lond.
A 312 (1984) 295–381.

[21] V. Cotoni, Modélisation de phénomènes vibroacoustiques en moyennes
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