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Abstract
Flight initiation distance (FID), the distance at which individuals take flight when ap‐
proached by a potential (human) predator, is a tool for understanding predator–prey 
interactions. Among the factors affecting FID, tests of effects of group size (i.e., num‐
ber of potential prey) on FID have yielded contrasting results. Group size or flock size 
could either affect FID negatively (i.e., the dilution effect caused by the presence of 
many individuals) or positively (i.e., increased vigilance due to more eyes scanning for 
predators). These effects may be associated with gregarious species, because such 
species should be better adapted to exploiting information from other individuals in 
the group than nongregarious species. Sociality may explain why earlier findings on 
group size versus FID have yielded different conclusions. Here, we analyzed how 
flock size affected bird FID in eight European countries. A phylogenetic generalized 
least square regression model was used to investigate changes in escape behavior of 
bird species in relation to number of individuals in the flock, starting distance, diet, 
latitude, and type of habitat. Flock size of different bird species influenced how spe‐
cies responded to perceived threats. We found that gregarious birds reacted to a 
potential predator earlier (longer FID) when aggregated in large flocks. These results 
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1  | INTRODUC TION

Flocking is an important behavior in birds, constituting also anti‐
predator behavior by prey. In general, animals in larger groups will 
detect predators earlier (many/multiple eyes/ears or early‐warning 
hypothesis) (Lazarus, 1979). Individual group members have a lower 
probability of being caught by a predator (“dilution hypothesis”) in 
larger groups (Lima, 1995; Lima & Dill, 1990; Ydenberg & Dill, 1986). 
Other advantages of being a member of a large group are that in‐
dividuals spend more time feeding and less time vigilant as group 
size increases (Lima & Dill, 1990) and that large groups could quickly 
respond to new situations (Liker & Bókony, 2009). Foraging prey that 
have noticed a predator should make a decision, either stay or es‐
cape, thereby balancing possible benefits (e.g., decreased capture 
probability) and costs (e.g., abandoning a food patch, reduced time 
spent foraging, and increased energy use for locomotion) (Frid & Dill, 
2002). Many studies have indicated that prey are more vigilant when 
predation risk is high (Caro, 2005; Frid & Dill, 2002).

Flight initiation distance (FID) is defined as the distance at which 
animals take flight from approaching threats (Blumstein, 2013; 
Hediger, 1934). This behavioral trait has been used as a surrogate for 
antipredator or fear behavior in many ecological studies (Blumstein, 
2006; Glover, Weston, Maguire, Miller, & Christie, 2011; Legagneux 
& Ducatez, 2013; Møller, 2008a; Møller, Grim, Ibáñez‐Álamo, Markó, 
& Tryjanowski, 2013; Weston, Mcleod, Blumstein, & Guay, 2012). 
Briefly, this measure indicates when individuals take more risk (i.e., 
delayed escape) or take less risk (i.e., escape earlier) (Sol et al., 2018). 
Many studies of escape behavior in birds focused on the influence 
of external factors affecting behavioral responses: habitat quality 
(Burger, Gochfeld, Jenkins, & Lesser, 2010), the direction of ap‐
proach by predators (Møller & Tryjanowski, 2014), intruder starting 
distance (Blumstein, 2013; Glover et al., 2011), number or density of 
intruders (Geist, Liao, Libby, & Blumstein, 2001), population density 
(Mikula, 2014), urbanization (Samia et al., 2017), road speed limits 
(Legagneux & Ducatez, 2013), insular distribution (Cooper, Pyron, & 
Garland, 2014), predator–prey interactions (Møller, 2008b), spatial 
gradients of predator abundance (Díaz et al., 2013), or daytime and 
season when FID was measured (Burger & Gochfeld, 1991; Piratelli, 
Favoretto, & de Almeida Maximiano, 2015). Blumstein (2006) has 
made links between escape behavior and life history and natural his‐
tory traits (e.g., diet) in birds. Furthermore, earlier studies assumed 

that animals will respond to human approach in a similar way as they 
do when responding to predation (Bötsch, Gugelmann, Tablado, & 
Jenni, 2018; Frid & Dill, 2002; Møller & Tryjanowski, 2014; Morelli et 
al., 2018; Weston et al., 2012).

According to Ydenberg and Dill (1986), FID increases with the risk 
of capture and the increasing cost of flight. Large species of birds have 
long FIDs, because larger species need more time to get airborne and 
hence avoid capture (Fernández‐Juricic et al., 2006; Hemmingsen, 
1951; Møller, 2008c; Weston et al., 2012). We know that birds from 
rural areas tend to escape earlier than birds from urban areas, being 
less tolerant of humans, probably because urban birds live under lower 
predation risk than their rural counterparts (Møller, 2015; Samia et al., 
2017), because urban birds have become adapted or habituated to the 
presence of humans (Carrete & Tella, 2013; Holtmann, Santos, Lara, 
& Nakagawa, 2017), or because local selection for bolder individu‐
als has occurred (van Dongen, Robinson, Weston, Mulder, & Guay, 
2015). Additionally, we know that behavioral responses of animals to 
human approach such as FID can be useful for conservation purposes, 
namely management of disturbance, especially in human‐dominated 
environments (Guay, Dongen, Robinson, Blumstein, & Weston, 2016; 
Weston et al., 2012). However, we know very little about the intra‐
specific factors that can be involved in variation in FID. Group size 
has been suggested to be another important component that influ‐
ences escape decisions by prey (Burger & Gochfeld, 1991; Fernández‐
Juricic, Jimenez, & Lucas, 2002; Glover et al., 2011; Samia et al., 2017; 
Yasué, 2005). However, the relationships between group size and 
FID have been diverse (Deboelpaep, Keleman, Vanschoenwinkel, & 
Koedam, 2018; Lima & Dill, 1990; Ydenberg & Dill, 1986). According 
to the early‐warning hypothesis, a larger flock will flee earlier, that 
is, having a longer FID, because it will detect a predator earlier de‐
spite per capita decreases in vigilance rates. However, according to 
the dilution hypotheses, the cost of remaining may be smaller in larger 
flocks, that is, FID will be reduced. It is also possible that if foraging ef‐
ficiency is superior in larger than in smaller groups, then any response 
of the predator may be delayed, causing a shorter FID.

Predation has been shown to be an important selective force af‐
fecting patterns of sociality, such as grouping (Lima & Dill, 1990). 
Vigilance in response to predators as a social phenomenon has been 
studied intensively as a component of antipredator behavior (Caro, 
2005). In general, members in large groups spend less time vigilant 
(Caro, 2005; Lima & Dill, 1990). However, a large amount of variation 

support a higher vigilance arising from many eyes scanning in birds, suggesting that 
sociality may be a key factor in the evolution of antipredator behavior both in urban 
and rural areas. Finally, future studies comparing FID must pay explicit attention to 
the number of individuals in flocks of gregarious species.

K E Y W O R D S

birds, dilution effect, fear response, FID, gregariousness, human disturbance, social 
interactions, vigilance
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in the relationships between group size and vigilance remains un‐
explained, for example, due to the spatial position of group mem‐
bers in the flock, dominance status, sex, and probably other factors 
(Beauchamp, 2008; Ydenberg & Dill, 1986). It is also possible that 
vigilance could firstly decline and thereafter increase when group 
size increases (Wang, Li, Beauchamp, & Jiang, 2011). Møller (2015) 
reviewed the literature on FID in birds and showed that sociality is an 
important factor influencing FID. There is less information available 
for other classes of animals (Cooper & Blumstein, 2015). Under clas‐
sical ecological models of predation risk, which predict a decrease in 
individual risk when group size increases (Alexander, 1974; Pulliam, 
1973), we would expect a reduction in FID among individuals in large 
groups through the dilution effect (Fernández‐Juricic et al., 2002; 
Pulliam, 1973; Roberts, 1996). However, the opposite response 
could also be expected (increasing FID with increasing flock size) be‐
cause fear responses may be socially transmitted (Griffin, 2004), as 
is early detection of predators by large groups (Hingee & Magrath, 
2009; Stankowich & Blumstein, 2005). Awareness or nervous reac‐
tions can be positively related to flock size because of higher vigi‐
lance (effect of many eyes scanning for predators) (Pulliam, 1973). 
Thus, under threat, individuals in large flocks should react more 
rapidly than solitary individuals or individuals in small groups, as a 
consequence of cascade effects or contagious alertness.

Although the literature on fear responses and sociality is limited, 
cooperative breeders are known to be more alarmed than species 
with other breeding systems (Blumstein, 2006), which is consistent 
with the second hypothesis. The study by Laursen, Kahlert, and 
Frikke (2005) showed that, in different species of waterbirds, FID in‐
creased with flock size. These findings are inconsistent with dilution 
effects, because if each individual in a flock experienced a smaller 
risk, we should expect a shorter FID in larger flocks. In contrast, the 
results are consistent with effects of many eyes scanning for the 
presence of a predator, although differences in phenotypic composi‐
tion of differently sized flocks may be an alternative explanation for 
these findings. Finally, Tätte, Møller, and Mänd (2018) showed that 
flock size increased FID, but not the distance fled.

Gregariousness is common in nature and can be defined as the 
tendency to live in flocks (Miller, 1922). A flock is a term used to de‐
fine any aggregation of homogeneous individuals, that live, travel, or 
feed together, regardless of size or density (Emlen, 1952). As pointed 
out by Miller (1922), probably the most obvious advantage of gregar‐
ious behavior in birds is that it affords a multiplicity of eyes, increas‐
ing the probability of sighting a potential predator or prey. Thus, any 
defensive measures can be taken early, increasing the probability of 
successful escape when encountering a risk (Miller, 1922).

We hypothesized that FID in response to human approach would 
be longer in individuals aggregated in large flocks. The ecological ratio‐
nale for this expectation is that vigilance and FID increase with group 
size because of the many eyes effect, and vigilance can be transmitted 
more easily (or quickly) when there are many individuals in a flock. As 
a consequence, the aim of this study was to test whether FID in birds 
increases with the number of conspecifics (flock size), focusing on dif‐
ferences between environments, latitudes, and species’ traits such as 

diet. We explored differences in FID between environments because 
previous studies suggested significant differences between urban and 
rural birds (Díaz et al., 2013; Piratelli et al., 2015; Samia et al., 2017). 
Additionally, we focused on potential differences associated with diet 
in an effort to test whether foraging strategies can affect the escape 
behavior of species. Flock size was measured as the number of indi‐
viduals of the same species aggregated in a group. We focused on 
gregarious bird species because such species tend to stay in groups. 
In this study, we used body mass‐corrected FID throughout, because 
large‐bodied species require more effort to get airborne.

2  | METHODS

2.1 | Study area and flight initiation distance

Data were collected during the breeding period in each study area 
(April–September 2015) using a standard protocol (Blumstein, 2006; 
Samia et al., 2017) in urban and adjacent rural areas of eight cities 
in eight European countries: Czech Republic, Denmark, Estonia, 
Finland, France, Hungary, Poland, and Spain (Figure 1; Table S1). 
Because the wide latitudinal gradient in our study, FID data were col‐
lected in all localities during a comparable period using a narrow tem‐
poral phenological window according to latitude, in order to control 
any effect of seasonality (Weston, Ju, Guay, & Naismith, 2018). For 
the same reason, we focused our study almost exclusively on adult 
individuals during the peak of the breeding season, in each country.

We used a study design collecting data in urban and rural sites 
(habitat type) in each study location, because a large amount of lit‐
erature highlights the main differences between urban and rural 
environments, in terms of responses of birds to risk of predation 
(Møller, 2012; Møller et al., 2013; Samia et al., 2017; Sol et al., 2018). 
The distance between each pair of urban and rural site was always 
shorter than 20 km (with a minimum of 3.5 km). The sites classified 
as “urban” were characterized by areas with multistory buildings or 
by areas with single‐family houses (suburban areas). The sites clas‐
sified as “rural” were dominated by open farmland with scattered 
houses (Samia et al., 2017). For the classification of urban and rural 
habitats, we followed the definitions provided in Marzluff, Bowman, 
and Donnelly (2001). Urban habitats were defined as areas with at 
least 50% built‐up area, building density >10 buildings/ha, and a 
residential human density >10 humans/ha. Rural habitats were de‐
fined as the areas with 5%–20% built‐up areas, a building density 
<2.5 buildings/ha, and residential human density between 1 and 
10 humans/ha (Marzluff et al., 2001).

Observers used binoculars to identify birds that were foraging 
or engaged in “relaxed behavior” (i.e., roosting or preening). Flight 
initiation distance observation is considered reliable even when col‐
lected by different observers (Guay, McLeod, et al., 2013b). Highly 
vigilant or obviously alarmed individuals were not approached. 
Furthermore, data from breeding sites (e.g., from gull colonies) or an‐
thropogenic feeding sites (e.g., rubbish dumps) were not collected, in 
order to reduce disturbance (breeding sites) or avoid an excessive ef‐
fect of artificial food source on the behavior of birds. Each individual 
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bird was approached in a straight line by the observer walking at a 
constant speed (0.5 m/s). Starting distance was measured as the dis‐
tance at which an observer started the approach to the bird, in me‐
ters (Blumstein, 2013). Flight initiation distance was measured as the 
distance between the observer and the point where the individual 
bird began to flee (see more details in Samia et al., 2017). Only bird 
species detected on the ground were considered. Sol et al. (2018) 
showed that species with more than 10 recorded cases per study 
site provided reliable estimates of FID. Here, we only selected bird 
species with more than 10 observations of FID. To avoid collecting 
the same flock several times, we visited every site just once.

Flock size was defined as the number of aggregated individuals of 
the same species, implying that individuals in flocks are closer to each 
other than individuals that are not in flocks. We collected data on FID 
for single individuals or well‐recognizable flocks, at a distance from 
other individuals or flocks longer than 10 m. Only single‐species flocks 
were targeted in this study, because mixed flocks could be problematic 
if the species present differ in their tolerance to humans. When birds 
were in a flock, we always selected the closest individual to the ob‐
server, because that individual generally would have the shortest FID.

2.2 | Ecological variables: gregariousness, trophic 
guild, and body mass

In this study, we focused only on “gregarious” species because, by 
definition, such species can be found in aggregated groups. The gre‐
gariousness was classified using information from the Handbook of 
the Birds of the Western Palearctic (Cramp & Perrins, 1994) (Table 
S2). Birds were classified as “gregarious" when species have shown 

gregarious activities either during breeding or nonbreeding, follow‐
ing the classification made in the same book (Cramp & Perrins, 1994). 
There was a positive correlation between gregariousness during 
these two periods (Kendall rank order correlation τ = 0.40, p = 0.020), 
implying that species that were gregarious during breeding also tend 
to be gregarious during the nonbreeding season. We decided to 
group breeding and nonbreeding gregarious species, because we as‐
sumed that social cognition, that is, the capacity to communicate with 
other individuals belonging to the same species, is a species‐specific 
trait that may be manifest all the time (Yu et al., 2016, 2017).

For each gregarious species recorded in this study, we included 
the following information: trophic guild or diet (main type of food 
consumed, following the bird traits of feeding ecology provided in 
Pearman et al. (2014)). All species were classified into five main cat‐
egories as granivorous, granivorous–insectivorous, insectivorous, 
carnivorous, and carrion‐eater (Table S2). Body mass for each spe‐
cies was obtained from the same source (Pearman et al., 2014), and 
this variable was log‐transformed to fit normality.

2.3 | Statistical analyses

The average values of FID and flock size between birds classified 
on the basis of their species‐specific gregariousness were compared 
using the standard nonparametric Wilcoxon test (Triola, 2012).

To test the presence of a phylogenetic signal (Blomberg & Garland, 
2003) in FID data for gregarious bird species, we used Blomberg's K 
statistic (Blomberg, Garland, & Ives, 2003). When K approaches 1, trait 
evolution follows a mode of evolution that is consistent with Brownian 
motion, and if K > 1, close relatives are more similar than expected 

F I G U R E  1   Location of 12 study sites 
across eight European countries, where 
data on flight initiation distance (FID) of 
gregarious birds were collected. Each site 
contained one urban and one nearby rural 
location
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under Brownian motion and indicate a strong phylogenetic signal, 
while K values closer to zero correspond to a random or convergent 
pattern of evolution, and that closely related species are less similar 
than expected (Blomberg et al., 2003). Blomberg's K statistic was es‐
timated using the R package “phylosignal” (Keck, Rimet, Bouchez, & 
Franc, 2016). To control for the phylogenetic relationship among spe‐
cies, we used phylogenetic generalized least square regression models 
to analyze the changes in FID behavior of bird species in relation to 
flock size and characteristics of species. Models were fitted using the 
package “ape” (Paradis, Claude, & Strimmer, 2004), “nlme” (Pinheiro, 
Bates, DebRoy, & Sarkar, 2017), and the function “gls” with correlation 
equals consensus tree. We extracted the phylogenetic relationship for 
all 23 species from the phylogeny available online (Jetz, Thomas, Joy, 
Hartmann, & Mooers, 2012; Jetz et al., 2014) and obtained consen‐
sus phylogenies from 100 random trees with Mesquite (Maddison & 
Maddison, 2018). Different populations of the same species from dif‐
ferent countries and habitats were defined with a relatively different 
branch length of 1E−18 just to fit the models. We weighted models by 
sample size (see more details in Garamszegi (2014)). In order to reduce 
any effect associated with a strong correlation between FID and body 
mass (Møller, Samia, Weston, Guay, & Blumstein, 2016), we first did a 
log–log‐linear regression for FID and body mass and use the residuals 
of this model to represent relative FID. This allowed us to focus on the 
main effects of selected predictors. The full model considered relative 
FID as response variable, while flock size, starting distance, habitat 
type (urban or rural), latitude, and diet were introduced as predictors.

All statistical tests were performed with R software version 
3.2.4 (R Development Core & Team, 2017).

3  | RESULTS

From a total of 5,783 observations from eight different European 
countries (Figure 1; Table S1), all observations of FID for the 23 gre‐
garious birds were collected with sample size large than 10 observa‐
tions per species (Table S2).

In the initial exploration of data, FID was positively correlated 
with body mass (Figure 2). The FID for gregarious bird species ranged 
from a minimum of close to 0 m to a maximum of 152 m, with a mean 
value = 15.2 with SD = 13 m in rural habitat and 8.7 + SD = 7 m in 
urban habitats. A preliminary graphical exploration showed that FID 
was shorter in urban than in rural habitats for the majority of gregar‐
ious birds that were the focus of this study, with the only exceptions 
being Corvus monedula and Parus caeruleus (Figure S1).

The FID for gregarious bird species showed a strong phylogenetic 
signal with a K statistic approaching 1 and with p < 0.01, suggesting a 
model similar to Brownian motion. The result of a phylogenetic gen‐
eralized linear regression model (PGLS) showed that relative FID of 
individuals from rural and urban habitats was positively associated 
with flock size (Figure 3) and starting distance, while relative FID 
was shorter in urban habitats and for granivorous–insectivorous and 
insectivorous species (Table 1). Latitude and granivorous diet were 
both unrelated to the values of relative FID (Table 1).

4  | DISCUSSION

The main finding of this study of FID in birds was that FID in‐
creased with flock size in European gregarious bird species, in rural 
and urban habitat. Gregarious species may be more susceptible to 
human disturbance than nongregarious species, both at the individ‐
ual and probably at the population levels (Weston et al., 2012). Our 
statistical model also confirmed the positive association between 
FID and starting distance of observer, already shown in other stud‐
ies (Blumstein, 2013). In addition, relative FID tended to decrease in 
urban habitats when compared with rural areas, confirming previ‐
ous studies (Díaz et al., 2013; Møller et al., 2016; Samia et al., 2017; 
Weston et al., 2012). In this study on European gregarious birds, diet 
was significantly associated with relative FID, with insectivorous and 
granivorous–insectivorous species having the shortest relative FID 
(Figure S2). We believe that this association between foraging strat‐
egy or diet and escape behavior of birds deserves further study, as 
suggested also in a previous study (Blumstein, 2006).

We tried to test indirectly the two hypotheses presented in the 
Introduction: the dilution effect (Stankowich & Blumstein, 2005) 
and the many eyes effect (Hingee & Magrath, 2009; Stankowich & 
Blumstein, 2005). According to these hypotheses, larger flocks have 
more individuals scanning for predators, but larger flocks also result 
in greater dilution effects because the risk of mortality is smaller for 
each individual in a larger flock. Here, mainly using Passeriformes, 
we have shown a positive relationship between FID and flock size, 
which supports the many eyes effect hypothesis. A similar gen‐
eral pattern was previously reported by Laursen et al. (2005) for 
waterbirds and by Glover et al. (2011) for red‐necked stint Calidris 

F I G U R E  2   Linear regression lines between mean flight 
initiation distance (FID, m) and log‐transformed body mass (g) in 
all gregarious bird species recorded in this study in eight European 
countries. Envelopes around lines are 95% confidence intervals
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ruficollis, while other studies suggested no influence of flock size 
on FID for the particular case of black swans Cygnus atratus (Guay, 
Lorenz, Robinson, Symonds, & Weston, 2013) or for other bird spe‐
cies (Fernández‐Juricic et al., 2006; Guay, McLeod, et al., 2013b) 

or negative association between flock size and FID for waders 
(Charadriiformes) (Mikula et al., 2018). The present study of mainly 
passerine birds compares well with that by Laursen et al. (2005) for 
waterbirds comprised of geese, ducks, waders, and gulls. In fact, 
both studies have very similar effect sizes despite the taxa being 
completely different, but the association with urbanization was fo‐
cused only in our study. However, hunting activities affected FID in 
the study by Laursen et al. (2005), but not in our study in which only 
three of 23 focal species were hunted: mallard Anas platyrhynchos, 
wood pigeon Columba palumbus, and rook Corvus frugilegus. Indeed 
Laursen et al. (2005) showed an association between flock size and 
FID for nine waterbird species in fall, when hunting is common, but 
only for two species in spring when hunting ceased.

Vigilance in large groups can provide increased capacity to detect 
predators, thereby allowing individuals to spend additional time on 
foraging activities (Olson, Haley, Dyer, & Adami, 2015). Longer FID in 
larger flocks of a given species implies that individuals on average run 
higher risk in small flocks. This could either be due to such larger flocks 
being composed of individuals of lower phenotypic quality, or that in‐
dividuals in small flocks with short FID run higher risks of mortality. 
Indeed, Møller (2014) has shown that barn swallow Hirundo rustica in‐
dividuals with short FID are more likely to be caught by sparrowhawks 
Accipiter nisus. In addition, bird species with shorter FID are more vul‐
nerable to predation by raptors (Møller, Nielsen, & Garamszegi, 2008) 
and cats Felis catus (Møller, Berthold, & Fiedler, 2010), but also to be 
killed by cars (Møller, Erritzøe, & Erritzøe, 2011). An alternative in‐
terpretation when measuring FID in flocks of many individuals could 
be that the first individual responder may set off a social escape re‐
sponse. In that case, FID would not reflect average tolerance of the 
group to predators, but rather the least tolerant individual in the flock 
(e.g., large flocks may flush earlier because there is a probability that 
they contain especially sensitive individuals). However, our study 
does not allow discrimination between these different hypotheses.

We assumed that gregarious species would encounter conspecif‐
ics more often than nongregarious species (Emlen, 1952). For this rea‐
son, we hypothesized that individuals of gregarious species are better 
adapted at extracting information from other individuals than nongre‐
garious species, and then, their escape behavior could be affected by 

F I G U R E  3   Linear regression lines between flight initiation 
distance (FID, m) and log‐transformed flock size in gregarious bird 
species from rural and urban environments in eight European 
countries. Envelopes around lines are 95% confidence intervals

Variables Estimate SE t p

(Intercept) 0.109 0.047 2.335 0.019

Flock 0.007 0.001 6.220 <0.0001

Starting distance 0.005 0.001 10.163 <0.0001

Latitude −0.001 0.001 −1.218 0.223

Habitat (urban) −0.175 0.012 −14.084 <0.0001

Diet (granivorous) −0.064 0.038 −1.652 0.097

Diet (granivorous–insectivorous) −0.119 0.031 −3.877 0.0001

Diet (insectivorous) −0.149 0.037 −3.992 0.0001

Models were based on data from eight European countries, weighted by sample size for species of 
birds. Significant variables are highlighted in bold. Model statistics: residual standard error: 0.584, 
degrees of freedom: 1,146 total; 1,137 residual, R2 = 0.202. SE: standard error.

TA B L E  1   Results of phylogenetic 
generalized linear regression model 
(PGLS), accounting for variation in relative 
flight initiation distance (FID) in relation to 
flock size, starting distance, habitat (urban 
or rural), latitude, and diet in gregarious 
bird species
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the number of surrounding individuals. The increased skill to exploit 
information from other individuals and signal effectively should im‐
prove the efficiency of the group at detection and defense against 
predators (Krebs, MacRoberts, & Cullen, 1972; Treisman, 1975). Thus, 
individuals belonging to gregarious species would experience a trade‐
off between foraging (or resting) under the safety of the presence of 
many conspecifics and hence long FIDs, or such individuals may have 
short FIDs in the presence of few conspecifics (Laursen et al., 2005). 
Accordingly, our results highlighted that relative FID was positively 
associated with flock size in European gregarious birds.

We explicitly recorded FID observations from urban and rural 
habitats. While previous studies have shown consistently longer 
FIDs in rural than in urban habitats (Samia et al., 2017), we are only 
aware of a single other study investigating the independent effects 
of rural versus urban habitats and flock size on FID (Tätte et al., 
2018). The latter study also found a similar effect of flock size on 
FID in rural and urban habitats. Our results suggested also that FID 
in urban areas tends to be shorter than in rural areas. However, the 
positive association between flock size and FID found for gregari‐
ous species was similar across the two types of habitats.

Our findings suggest that future studies on escape behavior of 
birds should explicitly consider flock size, at least in gregarious bird 
species. The influence of the many eyes effect in the presence of 
numerous conspecifics can significantly alter the escape behavior of 
social birds. We hypothesize that experimental change in sociality will 
affect FID. Indeed, Laursen, Møller, and Holm (2016) have shown that 
flock size changes adaptively in response to intense hunting. We pre‐
dicted that such changes in immediate risk will be accompanied by 
similarly directed changes in FID. In conclusion, relative FID increased 
with flock size in gregarious species, independently of the rural versus 
urban areas. Our results support the role of sociality for risk‐taking 
behavior and hence for social organization. These conclusions have 
broad biological implications, especially considering the role of social‐
ity (gregariousness) as possible factor facilitating colonization of urban 
environments and adaptation to such human‐impacted environments.
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