
HAL Id: hal-02390650
https://hal.archives-ouvertes.fr/hal-02390650

Submitted on 18 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EQL-CE: An Event Query Language for Connected
Environment Management

Elio Mansour, Richard Chbeir, Philippe Arnould

To cite this version:
Elio Mansour, Richard Chbeir, Philippe Arnould. EQL-CE: An Event Query Language for Connected
Environment Management. 15th ACM International Symposium on QoS and Security for Wireless
and Mobile Networks, Nov 2019, Miami Beach, United States. pp.43-51, �10.1145/3345837.3355950�.
�hal-02390650�

https://hal.archives-ouvertes.fr/hal-02390650
https://hal.archives-ouvertes.fr

EQL-CE: An EventQuery Language for Connected Environment
Management

Elio Mansour
Univ Pau & Pays Adour
E2S UPPA, LIUPPA

Mont-de-Marsan, 40000, France
elio.mansour@univ-pau.fr

Richard Chbeir
Univ Pau & Pays Adour
E2S UPPA, LIUPPA
Anglet, 64600, France

richard.chbeir@univ-pau.fr

Philippe Arnould
Univ Pau & Pays Adour
E2S UPPA, LIUPPA

Mont-de-Marsan, 40000, France
philippe.arnould@univ-pau.fr

ABSTRACT
Recent technological advances have fueled the rise of connected
environments (e.g., smart buildings and cities). Event Query Lan-
guages (EQL) have been used to define (and later detect) events in
these environments. However, existing languages are limited to the
definition of event patterns. They share the following limitations:
(i) lack of consideration of the environment, sensor network, and
application domain in their queries; (ii) lack of provided query types
for the definition/handling of components/component instances;
(iii) lack of considered data and datatypes (e.g., scalar, multimedia)
needed for the definition of specific events; and (iv) difficulty in
coping with the dynamicity of the environments. To address the
aforementioned limitations, we propose here an EQL specifically
designed for connected environments, denoted EQL-CE. We de-
scribe its framework, detail the used language, syntax, and queries.
Finally, we illustrate the usage of EQL-CE in a smart mall example.

CCS CONCEPTS
• General and reference→ General conference proceedings;
• Information systems → Query representation; • Theory
of computation → Grammars and context-free languages;
• Computer systems organization→ Sensor networks.

KEYWORDS
Event Query Language, Internet of Things, Sensor Networks
ACM Reference Format:
Elio Mansour, Richard Chbeir, and Philippe Arnould. 2019. EQL-CE: An
Event Query Language for Connected Environment Management. In 15th
ACM Symposium on QoS and Security for Wireless and Mobile Networks
(Q2SWinet ’19), November 25–29, 2019, Miami Beach, FL, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3345837.3355950

1 INTRODUCTION
Recent years have witnessed the rise of smart connected environ-
ments where sensor networks are deployed in specific environ-
ments and produce valuable data for high level applications (e.g.,
improving manufacturing processes in smart factories, reducing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Q2SWinet ’19, November 25–29, 2019, Miami Beach, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6906-0/19/11. . . $15.00
https://doi.org/10.1145/3345837.3355950

the energy footprint of smart buildings, helping drivers avoid traffic
congestion in smart cities). The aforementioned applications have
different objectives. However, in order to achieve their goals, they
all need to define and detect specific key events (e.g., machinery
faults, traffic congestion, energy wastes). Event Query Languages
(EQL) have been proposed in many works [1, 15] as a means for
event definition prior to detection. EQL allow users to express how
the targeted events are defined (i.e., event describing features, pat-
terns). However, existing works [2, 3, 6–9, 11] suffer from various
limitations:

(1) Lack of considered components. In addition to events, one
might need to handle other components in a connected en-
vironment (these works heavily focus on defining events).
For instance, managing the infrastructure (e.g., locations,
spatial ties), the sensor network (e.g., sensors, observations),
and additional descriptions related to the application domain
(e.g., industrial, environmental).

(2) Lack of considered query types. In addition to defining com-
ponents, one should be able to modify previously defined
components (e.g., altering, renaming, or dropping), and ma-
nipulating component instances (e.g., selecting, inserting).

(3) Lack of considered datatypes. It is important to integrate the
diverse data and datatypes needed for the definition of spe-
cific events (e.g., for scalar, multimedia sensor observations).

(4) Handling environment dynamicity. In a dynamic environ-
ment, mobile sensors can enter/leave the network or change
locations at any time. Since events rely on sensors and their
observations, event queries need to cope with the changes.

In addition, some works [4, 5] are not re-usable in different setups
due to their reliance on a specific data model-based syntax.
In this paper, we propose an Event Query Language specifically
designed for Connected Environments. Our proposal, denoted EQL-
CE, considers the entire connected environment components. This
entails defining the infrastructure, its sensor network, the targeted
events, and the application domain. Our proposal provides the
common query types needed for the definition of components and
the management of their instances. Also, EQL-CE integrates various
datatypes, and copes with the dynamicity of the environment by
re-writing/updating queries that became obsolete due to sensor
mobility (to be detailed in a separate work). Finally, EQL-CE uses
EBNF (Extended Backus-Naur Form), a generic and easy to parse
language in order to allow re-usability in various contexts.
In the following, we present our motivating scenario in Section
2, and present some background on EBNF in Section 3. Then, we
briefly describe the framework of EQL-CE and detail its syntax in
Section 4. An illustration example, and the experimental protocol

https://doi.org/10.1145/3345837.3355950
https://doi.org/10.1145/3345837.3355950

are provided in Section 5. We compare related work on EQL in
Section 6. Finally, Section 7 concludes the paper and discusses
future research directions.

2 MOTIVATING SCENARIO
Consider the following scenario that illustrates a smart mall. Please
note that this example does not summarize all needs found in a
connected environment/event detection application scenario. It
is only used to highlight the main needs and challenges related
to this work. Figure 1 details the infrastructure's location map,
and individual locations (e.g., shops). The mall is equipped with a
sensor network having static/mobile sensors that produce various
observations (e.g., temperature, video). A mall manager would like
to adopt an existing EQL capable of:

Figure 1: The Smart Mall

• Need 1: Providing common/basic querying functionality.
This entails defining connected environment components
(e.g., environment, sensor network, events, and application
domain). This also includes interrogating the connected en-
vironment (e.g., selecting sensors, retrieving sensor observa-
tions, detecting events).

• Need 2: Coping with the connected environment changes.
For instance, integrating a newly added shop into the mall's
location map and detecting events in the new area. Similarly,
adding more sensor instances in the mall in order to detect
new events or better detect previously defined events (e.g.,
average values for indoor temperature). Adding components
related to the environment/sensor network is needed.

• Need 3: Handling various datatypes. This entails covering
scalar and multimedia sensor observations (e.g., textual tem-
perature values, video surveillance footage). The mall man-
ager needs to define different events (e.g., intrusion detection,
indoor overheating). To do so, the EQL should be able to ma-
nipulate different data and their respective datatypes.

• Need 4: Coping with the dynamicity of the environment.
The mall manager relies on clients' mobile phones as mobile
sensors in the network. This allows dynamic sensing, and
improves coverage without adding many static sensors and
increasing the costs. However, mobile sensors change loca-
tions and enter/exit the network. Since the defined events
rely on sensed data, some event definitions might become
obsolete over time. The EQL should be capable of coping
with this issue.

Existing EQL mainly focus on event definition, and do not handle
other connected environment components. To address needs 1 and

2, one might use another language that integrates different func-
tionality and handles the environment/sensor network changes.
However, in this case, the manager will have to use various lan-
guages with different syntax. A more appropriate solution might be
to extend the capabilities of the EQL to provide a means for defining
the structure of various components related to the environment,
sensor network, targeted events, and application domain (cf. Need
1-2). The EQL should also handle scalar/multimedia observable
properties and sensor observations (cf. Need 3). In addition, the
EQL should be capable of re-writing/re-defining obsolete event def-
initions (i.e., replacing sensors/observations that are missing due
to sensor mobility) in order to cope with the dynamicity of the en-
vironment (cf. Need 4). Finally, this should be done using a generic,
technology independent syntax that could be parsed into various
data model-based languages to ensure re-usability. However, when
considering all of the above, the following challenges emerge:

• Challenge 1: How to consider various query types to cover
all the required functionality?

• Challenge 2: How to consider different components (i.e., en-
vironment, sensor network, events, and application domain)
in the queries?

• Challenge 3: How to define the structure of both scalar and
multimedia data?

• Challenge 4: How to detect obsolete event definitions? How
to redefine these events by replacing missing sensors/data?

• Challenge 5: How to establish a generic/re-usable syntax
that is independent from the underlying infrastructure?

In the following section, we provide some background on the EBNF
syntax used in our proposal EQL-CE.

3 BACKGROUND & PRELIMINARIES
A syntactic metalanguage is useful whenever a clear formal descrip-
tion and definition is required. EBNF is defined by the International
Organization for Standardization (ISO 149771). It proposes a nota-
tion for defining the syntax of a language using rules. Each rule
names part of the language (called a non-terminal symbol) and then
defines its possible forms. A terminal symbol is an atom that cannot
be split into smaller components of the language. EBNF extends
the original BNF to avoid lengthier rules by adding notations for
options and repetitions. Furthermore, EBNF includes mechanisms
for enhancements, defining the number of repetitions, excluding al-
ternatives, and adding comments. The following resumes the main
characteristics of EBNF:

• Terminal symbols of the language are quoted so that any
character, including one used in EBNF, can be defined as a
terminal symbol of the language being defined

• The [] symbols indicate optional rules/statements
• The {} symbols indicate repetition
• Each rule has an explicit final character so that there is never
any ambiguity about where a rule ends

• Brackets group items together. It is an obvious convenience
to use the () symbols in their ordinary mathematical sense

Table 1 details the main EBNF notations and their usage.

1https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

Usage Notation
Definition =

Concatenation ,
Termination ;
Alternation |
Option [...]

Repetition { ... }

Usage Notation
Grouping (...)

Terminal String ...
Terminal String ’ ... ’

Comment (* ... *)
Special Sequence ? ... ?

Exception -

Table 1: EBNF Notations

4 EQL-CE PROPOSAL
Here, we describe our EQL-CE [13] framework and briefly discuss
its two layers. Then, we focus more on the syntax, and detail the
structure of various connected environment components.

4.1 EQL-CE Framework
EQL-CE has two layers: (i) the logical layer allows the construction
of generic queries; and (ii) the physical layer parses the queries into
a data model-specific language (e.g., SQL, SPARQL) and executes
the parsed queries. Figure 2 shows an overview of EQL-CE. In the
following, we discuss each layer.

Figure 2: EQL-CE Overview

4.1.1 The Logical Layer. The top layer of EQL-CE, denoted the log-
ical layer, allows users to compose/design their queries. The process
starts by choosing a specific query type. To cover various common
queries (cf. Criterion 1 - Section 6), we provide the following: (i) the
Component Definition Language defines the structure of compo-
nents. Various query types are included in this group (e.g., CREATE,
ALTER, RENAME, DROP); and (ii) the Component Manipulation
Language handles component instances. Here we propose the fol-
lowing query types: SELECT, INSERT, UPDATE, and DELETE. Any
chosen query can be used with various connected environment
components (cf. Criterion 2 - Section 6). Also, one could define the
structure of scalar/multimedia data using EQL-CE (cf. Criterion 3 -
Section 6). Finally, a query optimizer discovers/re-writes obsolete
queries to cope with the dynamicity of the environment (cf. Crite-
rion 4 - Section 6). This module is not detailed here, will leave it for
a dedicated separate work.

4.1.2 The Physical Layer. The bottom layer of EQL-CE saves the
received queries in a dedicated storage unit for future use. Then, it
parses the aforementioned queries into a specific syntax depending
on the underlying data model (e.g., SQL, SPARQL). Finally, the
parsed query is saved and sent to the query run engine where it is
executed. If needed, external functions, methods, or algorithms are
called (e.g., for string comparison, mathematical functions).

4.2 EQL-CE Syntax
Here, we detail the syntax that describes the structure of the various
connected environment components. To avoid redundancies, we
state here that each component has a unique identifier.

4.2.1 Environment Component Syntax. Sensors and sensor net-
works are hosted on platforms. Each platform has a unique identifier
and a type (cf. Syntax 1).

Syntax 1: Defining the structure of a Platform

CREATE PLATFORM ([ID] <platform_id>
[, [TYPE] <type> = 'infrastructure' | 'device']) ;

We define two types of platforms: (i) infrastructures; and (ii)
devices. Infrastructures represent physical, real world environments
(e.g., office, building, forest). Each infrastructure has a location map
to describe spatial features, and a set of hosted platforms such as
other infrastructures or devices (cf. Syntax 2). A location map has
a set of distinct locations (cf. Syntax 3), and each location has a
description that details its geometric shape, coordinates in space,
and a set of spatial relations with other locations (cf. Syntax 4).
We also allow users to define external spatial relations (from the
application domain) and use them for inter-location ties.

Syntax 2: Defining the structure of an Infrastructure

CREATE INFRASTRUCTURE ([ID] <infrastructure_id>
[, [LOCATION MAP] <location_map_id>] [, { [PLATFORM] <platform_id> }]) ;

Syntax 3: Defining the structure of a Location Map

CREATE LOCATION MAP ([ID] <location_map_id>
[, { [LOCATION] <location_id> }]) ;

Syntax 4: Defining the structure of a Location

CREATE LOCATION ([ID] <location_id>
[, [DESCRIPTION] <description_id>]
[, { ([RELATION] <relation> , [LOCATION] <location_id>) }]) ;

<relation> = 'contains' | 'covers' | 'crosses' | 'equals' |'includes' |
'isAbove' | 'isBelow' | 'isCloseTo' | 'isDisjointWith' | 'isFraFrom' |
'isLeftOf' | 'isRightOf' | 'overlaps' | 'touches' | <spatial_relation_id> ;

Devices (cf. Syntax 5) are also considered platforms since they
are capable of hosting sensors. We describe their hardware, soft-
ware, and provided services in Syntax 6. The descriptions for hard-
ware might include information about the device's power supply,
memory, processor, network interface, and expansion cards where
sensors are embedded. The description of software might include
details about the operating system. And finally, the services descrip-
tions might specify the provided functionality, and input/output.

Syntax 5: Defining the structure of a Device

CREATE DEVICE ([ID] <device_id> [, { [HARDWARE] <hw_id> }]
[, { [SOFTWARE] <sw_id> }] [, { [SERVICE] <service_id> }]) ;

Syntax 6: Defining the structure of a device's Hardware, Software, and Services

CREATE HARDWARE ([ID] <hw_id> [, [DESCRIPTION] <description_id>]) ;

CREATE SOFTWARE ([ID] <sw_id> [, [DESCRIPTION] <description_id>]) ;

CREATE SERVICE ([ID] <service_id> [, [DESCRIPTION] <description_id>]) ;

4.2.2 Sensor Network Component Syntax. When considering the
sensor network, many components can be defined. For the sake
of brevity, we choose here to detail the structure of observable
properties in the environment (cf. Syntax 7), sensor observations
(cf. Syntax 8), and sensors (cf. Syntax 9). Various properties can be
monitored in a connected environment (e.g., temperature, noise,
humidity). Some are scalar (i.e., textual) and others multimedia
(i.e., audio, video, images). And each property is linked to a set
of sensor observations. Each observation, has a description (e.g.,
unit of measurement), data value (if scalar) or a data object/file
(if multimedia) alongside a datatype. Finally, each observation is
mapped to a set of metadata tag/value pairs.

Syntax 7: Defining the structure of a Property

CREATE PROPERTY ([ID] <property_id>
[, [TYPE] <type> = 'scalar' | 'audio' | 'image' | 'video']
[, { [[SCALAR | MEDIA] OBSERVATION] <observation_id> }]) ;

Syntax 8: Defining the structure of an Observation

CREATE [SCALAR | MEDIA] OBSERVATION (
[ID] <observation_id>
[, [DESCRIPTION] <description_id>]
[, ([DATA VALUE] <data_value_id> | [DATA OBJECT] <data_object_id> ,

[DATATYPE] <datatype_id>)]
[, { ([METADATA TAG] <metadata_tag> : [METADATA VALUE] <metadata_value>)
}]) ;

Finally, we define static or mobile sensors. Each having (i) a
description; (ii) a location history record containing a set of loca-
tion/time interval pairs; (iii) a coverage area history record contain-
ing a set of coverage area/time interval pairs; (iv) a set of sensed
properties/produced observations; and (v) the platform in which
the sensor is embedded/hosted. We should mention that the loca-
tion/coverage area records must contain at all times a current value
for the sensor location and coverage area (i.e., a location/coverage
area with an ongoing time interval).

Syntax 9: Defining the structure of a Sensor

CREATE SENSOR ([ID] <sensor_id> [, [TYPE] <type> = 'static' | 'mobile']
([, WITH

[, { [DESCRIPTION] <description_id> }]
[, [LOCATION HISTORY] <location_history> =

{ ([LOCATION] <location_id> , [TIME INTERVAL] <ti>) }]
[, [COVERAGE HISTORY] <coverage_history> =
{ ([COVERAGE AREA] <coverage_area_id> , [TIME INTERVAL] <ti>) }]

])
([, SENSING { [PROPERTY] <property_id> }])
([, PRODUCING { [OBSERVATION] <observation_id> }])
([, HOSTED ON [PLATFORM] <platform_id>])) ;

4.2.3 Event Component Syntax. We define an event (cf. Syntax 10)
by assigning to it what we called an event space, an n-dimensional
space where each dimension represents an event describing feature.
In addition, since the events are detected based on sensor data, we
map a set of contributing sensors to each event definition. When
defining the event, one might choose a specific set of sensors, or
any available ones that fit the event needs.

Syntax 10: Defining the structure of an Event

CREATE EVENT (
[ID] <event_id>
[, [EVENT SPACE] <event_space_id>]
[, USING { [SENSOR] <sensor_id> }]
) ;

The event space (cf. Syntax 11) contains a set of features each
having some related conditions (e.g., temperature feature with a
condition greater than 35◦C). Finally, all observations belonging to
an event are found within its space.

Syntax 11: Defining the structure of an Event Space

CREATE EVENT SPACE (
[ID] <event_space_id>
[,

{ (
[FEATURE] <feature_id>
[, [CONDITION] <condition_id>]

) }
]
[, { [OBSERVATION] <observation_id> }]
) ;

4.2.4 Application Domain Component Syntax. Since event features
are better defined by an expert. We leave the feature syntax (cf.
Syntax 12) to the application domain part. A feature is represented
as a dimension in the event space. Therefore, each feature has
a specific datatype for its values, a function that measures the
distance between two instances belonging to the same feature, a
default value, and a description. We provide a set of basic features,
and leave the definition of advanced/complex features to domain
experts.

Syntax 12: Defining the structure of a Feature

CREATE FEATURE (
[ID] <feature_id>
[, [DATATYPE] <datatype> = 'integer' | 'float' | 'boolean' | 'date' |
'time' | 'date time' | 'character' | 'string'
]
[, [DISTANCE MEASURE] <distance_measure_id>]
[, [DEFAULT VALUE] <value>]
[, [DESCRIPTION] <description_id>]) ;

The application domain experts also define the constraints re-
lated to each feature. Syntax 13 defines a condition as a set of state-
ments each having operands and an operator. We provide various
operators and allow users to import external operators/functions.

Syntax 13: Defining the structure of a Condition

CREATE CONDITION ([ID] <condition_id> [, { STATEMENT <statement_id> }]) ;

CREATE STATEMENT ([ID] <statement_id> ,
([OPERAND] <operand_id>, [OPERATOR] <op> [, [OPERAND] <operand_id>]));

CREATE OPERAND ([ID] <operand_id> ,
([TYPE] <type> = 'Temporal' | 'Spatial' | 'Other' , [VALUE] <val>)) ;

<val> = <string> | [LOCATION] <location_id> |
[TIMESTAMP] <ts> | [TIME INTERVAL] <ti> ;

<op> = [COMPARISON] <cop> | [TEMPORAL] <top> |
[SPATIAL] <sop> | FUNCTION <function_id>

<cop> = '=' | '<=' | '>=' | '<' | '>' | 'not' ;

<top> = 'hasBegining' | 'hasEnd' | 'inside' | 'intervalAfter' |
'intervalBefore' | 'intervalContains' | 'intervalDisjoint' |
'intervalDuring' | 'intervalEquals' | 'intervalFinishedBy' |
'intervalFinishes' | 'intervalIn' | 'intervalMeets' |
'intervalMetBy' | 'intervalOverlappedBy' | 'intervalOverlaps' |
'intervalStartedBy' | 'intervalStarts' |
[TEMPORAL RELATION] <temporal_relation_id> ;

<sop> = 'contains' | 'covers' | 'crosses' | 'equals' | 'includes' |
'isAbove' | 'isBelow' | 'isCloseTo' | 'isDisjointWith' |
'isFraFrom' | 'isLeftOf' | 'isRightOf' | 'overlaps' |
'touches' | [SPATIAL RELATION] <spatial_relation_id> ;

[FUNCTION] <function_id> ;

Finally, since the application domain description differs from one
context to another, one needs a generic definition of application
domain components and relationships that could be instantiated
in any context. Therefore, we define a component named Concept
(cf. Syntax 14), and an inter-concept relationship, denoted Relation
(cf. Syntax 15). Relations can also be used between environment,
sensor network, or event components.

Syntax 14: Defining the structure of a Concept

CREATE CONCEPT ([ID] <concept_id> [, { ELEMENT <element_id> }]) ;

ELEMENT [ID] <element_id> = COMPONENT <component_id> |
ATTRIBUTE (<name>, <datatype>) ;

Syntax 15: Defining the structure of a Relation

CREATE [<name>] RELATION ([ID] <relation_id>
[, { (CONCEPT SOURCE <concept_id> ,

CONCEPT TARGET <concept_id>) }]
[, { (COMPONENT SOURCE <component_id> ,

COMPONENT TARGET <component_id>) }]) ;

To conclude, one can define the structure of various connected
environment components (cf. Criterion 2 - Section 6). Also users
can rename, drop, or even alter the structure of a previously defined
component2.

5 ILLUSTRATION & EXPERIMENTAL SETUP
In this section, we rely on the component definitions provided in
Section 4 to illustrate the usage of EQL-CE in the Smart Mall (cf.
Figure 1). Then, we discuss the evaluation of the language.

2Syntax details for all definition queries is provided on the following link https://
github.com/eliomansour/EQL-CE/blob/master/EQL-CESyntax.pdf

5.1 EQL-CE Queries
5.1.1 Environment Queries. The mall is a platform of type infras-
tructure. It has a location map containing five locations (the Hall-
way, Movie Theater, Grocery Store, Coffee Shop, and Shop 1). The
locations and location map are instantiated in queries 1 and 2 re-
spectively. Each location instance specifies the relation between
the location and its neighbours.

Query 1: Inserting the Locations

INSERT LOCATION ('Movie_Theater' , { ('touches' , 'Hallway') ,
('isRightOf' , 'Coffee_Shop') , ('touches' , 'Coffee_Shop') }) ;

INSERT LOCATION ('Coffee_Shop' , { ('touches' , 'Hallway') ,
('isLeftOf' , 'Movie_Theater') , ('touches' , 'Movie_Theater') }) ;

INSERT LOCATION ('Shop_1' , { ('touches' , 'Hallway') ,
('isLeftOf' , 'Grocery_Store') , ('touches' , 'Grocery_Store') }) ;

INSERT LOCATION ('Grocery_Store' , { ('touches' , 'Hallway') ,
('isRightOf' , 'Shop_1') , ('touches' , 'Shop_1') ,
('isAcrossOf', 'Movie_Theater') }) ;

INSERT LOCATION ('Hallway') ;

Query 2: Inserting the Location Map

INSERT LOCATION MAP ('Mall_Location_Map' ,
{ 'Movie_Theater', 'Coffee_Shop', 'Shop_1', 'Grocery_Store', 'Hallway' }) ;

The smart mall infrastructure hosts a mobile device dev1. The
device instance is shown in Query 3. We do not detail the represen-
tation of the hardware, software, or services. We only specify that
a temperature sensor (’s_6’) is embedded on the device.

Query 3: Inserting the Device, its hardware, software, and provided services

INSERT DEVICE ('dev_1' ,
{ 'dev_1_Hardware' } , { 'dev_1_Software' } , { 'dev_1_Service' }) ;

INSERT HARDWARE ('dev_1_Hardware' , { 's_6' }) ;

INSERT SOFTWARE ('dev_1_Software') ;

INSERT SERVICE ('dev_1_Service') ;

Since all infrastructure elements have been instantiated, one can
now insert the infrastructure instance (cf. Query 4).

Query 4: Inserting the Mall Infrastructure

INSERT INFRASTRUCTURE ('Mall_Infrastructure' , 'Mall_Location_Map' ,
{ 'dev_1' }) ;

The mall infrastructure and mobile device host sensors. There-
fore, they are also considered platforms. Queries 5 and 6 insert the
two platform instances.

Query 5: Inserting the Mall Platform

INSERT PLATFORM ('Mall_Platform' , <type> = 'infrastructure') ;

https://github.com/eliomansour/EQL-CE/blob/master/EQL-CESyntax.pdf
https://github.com/eliomansour/EQL-CE/blob/master/EQL-CESyntax.pdf

Query 6: Inserting the Device Platform

INSERT PLATFORM ('dev_1' , <type> = 'device') ;

5.1.2 Sensor Network Queries. In regards to the sensor network
related queries, we begin by instantiating the two properties that
are currently monitored in the example: (i) the scalar property
temperature; and (ii) the multimedia property video. This is shown
in queries 7 and 8 respectively.

Query 7: Inserting the temperature property

INSERT PROPERTY ('temperature_property' , <type> = 'scalar') ;

Query 8: Inserting the video property

INSERT PROPERTY ('video_property' , <type> = 'video') ;

These properties are monitored by various sensors. Six temper-
ature sensors exist in the smart mall. s1, s2,ands3 are deployed in
the movie theater, s4 in the grocery store, s5 in Shop 1, and s6 is the
only mobile sensor deployed on dev1 which is currently located in
the Coffee Shop. A surveillance camera cam1 is deployed in Shop 1.
Query 9 instantiates all the aforementioned sensors. Note that the
mobile sensor s6 has a previous/current location/coverage area.

Query 9: Inserting all sensors

INSERT SENSOR ('s_1' , <type> = 'static' , WITH (
<location_history> = { ('Movie_Theater' , '19-04-2019 11:44:27 ; now') } ,
<coverage_history> = { ('Movie_Theater' , '19-04-2019 11:44:57 ; now') }) ,
SENSING ({ 'temperature_property' }]) , HOSTED ON ('Mall_Platform')) ;

INSERT SENSOR ('s_2' , <type> = 'static' , WITH (
<location_history> = { ('Movie_Theater' , '19-04-2019 11:54:27 ; now') } ,
<coverage_history> = { ('Movie_Theater' , '19-04-2019 11:55:27 ; now') }) ,
SENSING ({ 'temperature_property' }]) , HOSTED ON ('Mall_Platform')) ;

INSERT SENSOR ('s_3' , <type> = 'static' , WITH (
<location_history> = { ('Movie_Theater' , '19-04-2019 11:42:27 ; now') } ,
<coverage_history> = { ('Movie_Theater' , '19-04-2019 11:43:27 ; now') }) ,
SENSING ({ 'temperature_property' }]) , HOSTED ON ('Mall_Platform')) ;

INSERT SENSOR ('s_4' , <type> = 'static' , WITH (
<location_history> = { ('Grocery_Store' , '19-04-2019 11:44:27 ; now') } ,
<coverage_history> = { ('Grocery_Store' , '19-04-2019 11:44:57 ; now') }) ,
SENSING ({ 'temperature_property' }]) , HOSTED ON ('Mall_Platform')) ;

INSERT SENSOR ('s_5' , <type> = 'static' , WITH (
<location_history> = { ('Shop_1' , '19-04-2019 11:54:27 ; now') } ,
<coverage_history> = { ('Shop_1' , '19-04-2019 11:55:27 ; now') }) ,
SENSING ({ 'temperature_property' }]) , HOSTED ON ('Mall_Platform')) ;

INSERT SENSOR ('s_6' , <type> = 'mobile' , WITH (
<location_history> = { ('Coffee_Shop' , '19-04-2019 11:42:27 ; now')
('Shop_1' , '19-04-2019 10:43:27 ; 19-04-2019 11:23:20') } ,
<coverage_history> = { ('Coffee_Shop' , '19-04-2019 11:43:27 ; now') ,
('Shop_1' , '19-04-2019 10:43:27 ; 19-04-2019 11:23:20') }) ,
SENSING ({ 'temperature_property' }]) , HOSTED ON ('dev_1')) ;

INSERT SENSOR ('cam_1' , <type> = 'static' , WITH (
<location_history> = { ('Shop_1' , '19-04-2019 11:25:14 ; now') } ,
<coverage_history> = { ('Shop_1' , '19-04-2019 11:25:14 ; now') }) ,
SENSING ({ 'video_property' }) , HOSTED ON ('Mall_Platform')) ;

When the network becomes operational, sensors will start pro-
ducing observations. The latter are sent to a middle-ware that will

generate an insert query in order to push the observations into
the data model according to the observation syntax (cf. Section 4).
Then, the middle-ware will update both sensors and properties by
mapping them to their related observations. Query 10 shows an
insert query generated by the middle-ware for a temperature obser-
vation having a float value of ’20.3’ and two associated metadata
for time and location of capture. Similarly Query 11 shows another
temperature observation taken from the Coffee Shop. Query 12
instantiates a video observation taken from the surveillance cam-
era in Shop 1. This observation includes the video recording file,
temporal, location, and video length related metadata.

Query 10: Inserting a temperature observation taken in Shop 1

INSERT SCALAR OBSERVATION ('temperature_observation_1',
('20.3' , 'float') ,
{ ('timestamp' : '19-04-2019 11:34:54') , ('location' : 'Shop_1') }) ;

Query 11: Inserting a temperature observation taken in the Coffee Shop

INSERT SCALAR OBSERVATION ('temperature_observation_2',
('19.3' , 'float') ,
{ ('timestamp' : '19-04-2019 11:44:27') , ('location' : 'Coffee_Shop') }) ;

Query 12: Inserting a video observation taken in Shop 1

INSERT MEDIA OBSERVATION ('video_observation',
('recording.mpeg' , 'video') ,
{ ('timestamp' : '19-04-2019 11:35:14') , ('location' : 'Shop_1') ,
('duration' : '123 s')) ;

5.1.3 Event Queries. In order to give an example of how an event
can be instantiated we define next an intrusion event in Shop 1.
The mall manager relies on video sensor cam1 for the detection of
this event. He/She defines the event as a face detected by cam1 in
the Shop after 8 PM. Three features define this event: (i) time with
a condition after 8 PM; (ii) location with a restriction to Shop 1;
and (iii) a detected face with a Boolean value equals true. In this
example, the manager uses our provided basic features for time,
location, and detected face (cf. Query 13) where we only define
the feature as an identifier assigned to a datatype. The manager
also creates the required conditions for each feature (cf. Query 14).
However, one can use the application domain queries to definemore
complex/advanced features/conditions if needed. Finally, query 15
details the event space, and query 16 instantiates the event.

Query 13: Inserting features for the intrusion event

INSERT FEATURE ('time_f' , 'date-time') ;

INSERT FEATURE ('location_f' , 'string') ;

INSERT FEATURE ('face_f' , 'Boolean') ;

Query 14: Inserting conditions for the intrusion event features

INSERT CONDITION ('condition_1' , { 'statement_1' }) ;
INSERT STATEMENT ('statement_1' ,

(cam_1.Observation.timestamp , After('8 PM'))) ;

INSERT CONDITION ('condition_2' , { 'statement_2' }) ;
INSERT STATEMENT ('statement_2' ,

(cam_1.Location , Equals('Movie_Theater'))) ;

INSERT CONDITION ('condition_3' , { 'statement_3' }) ;
INSERT STATEMENT ('statement_3' ,

(cam_1.Observation , face_detected('true'))) ;

Query 15: Inserting an event space for the intrusion event

INSERT EVENT SPACE ('event_space_1' ,
{ ('time_f' , 'condition_1') , ('location_f' , 'condition_2') ,

('face_f' , 'condition_3') }) ;

Query 16: Inserting the event definition

INSERT EVENT ('intrusion_in_shop_1' , 'event_space_1' ,
USING { 'cam_1' }) ;

5.2 Additional Queries
EQL-CE provides various query types. For the component definition
language one could rename/drop (cf. Query 17), or alter (cf. Query
18) a component's structure. Note that one could alter a definition
by adding, removing, or modifying its content.

Query 17: RENAME/DROP query examples

RENAME COMPONENT ('SENSOR' TO 'SENS') ;
DROP COMPONENT ('SENSOR') ;

Query 18: ALTER Query - Infrastructure example

ALTER INFRASTRUCTURE ([ID] <infrastructure_id> ,
ADD | REMOVE ([, [LOCATION MAP] <location_map_id>]

[, { [PLATFORM] <platform_id> }])) ;

ALTER INFRASTRUCTURE ([ID] <infrastructure_id> ,
MODIFY ([, [LOCATION MAP] [<name>] <location_map_id>]

[, { [PLATFORM] [<name>] <platform_id> }])) ;

In regards to the data manipulation language, one could also
select, update, or delete component instances. Examples are shown
in queries 19, 20, and 21 respectively.

Query 19: SELECT all platforms of type device

SELECT PLATFORM <platform_id>
FROM PLATFORM WHERE PLATFORM TYPE <platform_type> = 'device' ;

Query 20: UPDATE a platform - Change type to device

UPDATE PLATFORM CHANGE <platform_type> = 'device'
WHERE <platform_id> = 'Platform_1' ;

Query 21: DELETE all platforms of type device

DELETE PLATFORM WHERE <platform_type> = 'device' ;

5.3 Experimental Setup
We are currently implementing the EQL-CE query run engine that
executes the queries. It is part of an online platform for event
detection in connected environments. Since the development is
still ongoing, we propose here the experimental protocol that we
will use to evaluate the query language. We propose the following
experiments:

• Query Cost Evaluation: Providing the user with the ability
to define the entire connected environment allows him/her
to manage all its components from scratch. However, this
might be costly in terms of the number of ’steps’ (i.e., queries)
required to achieve a specific task/objective. In this exper-
iment, we set a list of objectives (e.g., defining a platform,
a sensor, a location map) and quantify the required query
batch size and the total cost of achieving the task.

• Re-usability Evaluation: In this test we evaluate the physical
layer's ability to parse EBNF into various other languages
(e.g., SQL, SPARQL). We re-iterate this experiment for each
query type (i.e., SELECT, INSERT, UPDATE, DELETE, CRE-
ATE, ALTER, RENAME, DROP).

• Performance Evaluation: In this test, we measure the run-
time, and the resource consumption (CPU/RAM) when exe-
cuting EQL-CE queries. We measure performance for indi-
vidual queries and for batches (required for specific tasks).

6 RELATEDWORK
To compare existing approaches, we propose the following criteria
based on the challenges and limitations discussed in Section 2:

• Criterion 1. Basic Querying: Stating if the EQL allows com-
mon query types for component definition, and component
instance manipulation (cf. Need 1).

• Criterion 2. Component Coverage: Denoting if the EQL is
capable of covering the entire connected environment. This
includes environment, sensor network, application domain,
and event related components (cf. Need 2).

• Criterion 3.Data Diversity: Specifying if the EQL is capable
of integrating various datatypes related to the scalar/multimedia
sensed properties/sensor observations (cf. Need 3).

• Criterion 4.Handling EnvironmentDynamicity: Indicat-
ing if the EQL provides the means to modify the structure
of previously defined components (e.g., events) in order to
cope with the environment's dynamicity. This is useful in
a dynamic setup, where sensor mobility causes gain/loss of
data in certain areas of the environment (cf. Need 4).

In the following, we evaluate some works for each criterion (we do
not detail here every existing EQL for the sake of brevity).

6.1 Basic Querying
Here we evaluate some works' capability to provide various query
types to allow component definition, and management (cf. Need

1). In [8], the authors propose an intuitive event query language
denoted SNOOP. They define three event attributes: (i) a name;
(ii) a set of conditions (the pattern); and (iii) a set of actions to be
triggered once the event is detected. SNOOP integrates operators
for inter-condition relations (e.g., conjunction, dis-junction, and
sequence) and represents repetitive events through the usage of the
periodic/aperiodic operators. In [6], the authors propose a language
denoted CeDR. In comparison with SNOOP, CeDR adds a WHERE
clause for filtering statements and has a wider range of operators.
Therefore, CeDR is considered more expressive in terms of event
pattern description. CeDR also includes an event lifetime operator
and a detection window operator. CQL[4] is another language that
can be used for event definition/retrieval. CQL extends SQL by
emphasizing on continuous data streams/queries. The authors add
temporal operators, sliding windows, and window parameters to
better handle continuous data.

Discussion: The aforementioned works are intuitive, practical,
and allow various composition operators for event definition. How-
ever, [6, 8] mainly focus on the definition and retrieval of events
and neglect other tasks such as updating definitions or inserting
data (cf. Criterion 1). CQL provides various query types and covers
different functionality since it extends SQL.

6.2 Component Coverage
Here we evaluate someworks' capability to cover various connected
environment components (cf. Need 2). The authors in [11] propose
an event query language for data streams called SaSE. They include
the WITHIN and RETURN statements to respectively declare slid-
ing time windows and the required output. SaSE also allows event
pattern operators (similar to CeDR) in a WHERE clause. ETALIS[3]
is an EQL that describes events as rules. Its syntax is based on
logic style formulas. The authors propose a set of temporal rela-
tions and composition operators to define the event patterns. The
syntax of the rules is independent of any underlying data model.
EP-SPARQL[2] extends SPARQL to provide an EQL for linked data
management systems. It integrates event processing operators (e.g.,
sequence) into the SPARQL syntax. This work allows the definition
of simple and complex event patterns.

Discussion: The aforementioned works cover the majority of
temporal and composition operators. ETALIS and SASE provide a
re-usable syntax, however EP-SPARQL is restricted to semantic data
models since it extends SPARQL. In terms of component coverage,
SASE and ETALIS heavily focus on events and do not consider other
connected environment components (cf. Criterion 2). EP-SPARQL
has the ability to define structures for various components (e.g.,
related to the environment, sensor network).

6.3 Data Diversity
Here we evaluate some works' capability to integrate different data
and datatypes in their syntax (cf. Need 3). SPARQL-ST[14] extends
SPARQL by adding operators for spatial/temporal queries. This
covers the definition and manipulation of spatial shapes and tem-
poral entities. [12] also extends SPARQL. It considers multimedia
data, and media fragments. This language aims to improve seman-
tic multimedia data retrieval. XChangeEQ[7] is a logic style based

language. It allows: (i) data-related operations such as variable bind-
ings and conditions containing arithmetic operations; (ii) event
composition operators such as conjunction, dis-junction, and order;
(iii) temporal and causal relations between events in the queries;
and (iv) event accumulation, for instance aggregating data from
previous events to discover new ones.

Discussion: All the aforementioned works provide expressive
tools for event definition. Languages extending SPARQL [12, 14]
are all user friendly since they are based on a known language.
Even though, these works handle various datatypes for scalar data
(e.g., integer, float, string, date), SPARQL-MM[12] is the only one
that integrates multimedia data as well.

6.4 Handling Environment Dynamicity
Here we evaluate some works' capability to cope with the dy-
namicity of a connected environment (cf. Need 4). ESPER[9] is
an implementation for event detection in database systems. The au-
thors proposed an SQL-like syntax for event processing. Therefore,
known operators such as CREATE, SELECT, INSERT, UPDATE, and
DELETE are available for event definition and detection. ESPER
also includes temporal operators and a specific statement for event
definition (i.e., the pattern). In addition to the aforementioned ad-
vantages, this language has a fast learning curve since it is highly
similar to traditional SQL. In [10], the authors present an extension
of SPARQL to integrate temporal features (e.g., annotating triples
with time stamps) for better querying of RDF triples over time. C-
SPARQL[5] extends SPARQL to consider stream data in the queries.
To do so, the authors integrate sliding time windows.

Discussion: The aforementioned works integrate temporal oper-
ators, and some of them consider data streams. Also, some provide
users with update queries to modify the data over time. However,
none provides the means to automatically discover and re-write
queries that have become obsolete due to sensor mobility. This en-
tails measuring sensor/data similarities in order to replace missing
the elements with correct alternatives.

Since none of the mentioned works fully considers our entire list
of criteria, we examine next the Extended Backus-Naur Form meta-
language (EBNF). We provide some background and preliminaries,
discuss its usage, syntax, and notations.

7 CONCLUSION & FUTUREWORK
Many challenges emerge when considering an EQL for connected
environments. Here, we addressed the issues of covering various
components, query types, datatypes, and coping with the environ-
ment's dynamicity. Our proposal provides a generic and re-usable
syntax. EQL-CE considers various connected environment compo-
nents (e.g., environment, sensor network, events, and application
domain), offers common query types (e.g., for definition and ma-
nipulation of components/instances), and allows the definition of
scalar/multimedia data structures.
As future work, our first priority is to finish the implementation and
evaluation of EQL-CE. Then, we would like to address the following
issues. First, we aim to define the security/privacy related query
types (e.g., access control). Then, we would like to develop the

query optimizer by integrating advanced spatial/temporal elements
to the queries for specific event definitions. Moreover, we would
like to evaluate our query re-writing engine and test it in various
scenarios. Furthermore, we still need to consider composite events
in EQL-CE by integrating event composition operators. Finally, we
would like to test the language in a real connected environment
setup.

REFERENCES
[1] Giuseppe Amato et al. 2015. Querying moving events in wireless sensor networks.

Pervasive and Mobile Computing 16 (2015), 51–75.
[2] Darko Anicic et al. 2011. EP-SPARQL: a unified language for event processing

and stream reasoning. In Proceedings of the 20th international conference on World
wide web. ACM, New York, NY, USA, 635–644.

[3] Darko Anicic et al. 2011. Etalis: Rule-based reasoning in event processing. In Rea-
soning in event-based distributed systems. Springer, Berlin, Heidelberg, Germany,
99–124.

[4] Arvind Arasu et al. 2006. The CQL continuous query language: semantic founda-
tions and query execution. The VLDB Journal 15, 2 (2006), 121–142.

[5] Davide Francesco Barbieri et al. 2009. C-SPARQL: SPARQL for continuous
querying. In The 18th international conference on World wide web-WWW’09. ACM,
New York, NY, USA, 1061–1062.

[6] Roger S Barga and Hillary Caituiro-Monge. 2006. Event correlation and pattern
detection in CEDR. In International Conference on Extending Database Technology.

Springer, Berlin, Heidelberg, Germany, 919–930.
[7] François Bry and Michael Eckert. 2007. Rule-based composite event queries:

the language XChange EQ and its semantics. In International Conference on Web
Reasoning and Rule Systems. Springer, Berlin, Heidelberg, Germany, 16–30.

[8] Sharma Chakravarthy and Deepak Mishra. 1994. Snoop: An expressive event
specification language for active databases. Data & Knowledge Engineering 14, 1
(1994), 1–26.

[9] EsperTech. 2006. EsperTech. Chapter 5. EPL reference:Clauses.
http://esper.espertech.com/release-5.3.0/esper-reference/html_single/index.
html#epl_clauses. Accessed: 2019-02-07.

[10] Fabio Grandi. 2010. T-SPARQL: A TSQL2-like Temporal Query Language for
RDF.. In ADBIS (Local Proceedings). Citeseer, 21–30.

[11] Daniel Gyllstrom et al. 2006. SASE: Complex Event Processing over Streams. CoRR
abs/cs/0612128 (2006), 407–411. arXiv:cs/0612128 http://arxiv.org/abs/cs/0612128

[12] Thomas Kurz, Sebastian Schaffert, Kai Schlegel, Florian Stegmaier, and Harald
Kosch. 2014. SPARQL-MM-extending SPARQL to media fragments. In European
Semantic Web Conference. Springer, Berlin, Heidelberg, Germany, 236–240.

[13] Elio Mansour, Richard Chbeir, and Philippe Arnould. 2019. EQL-CE: an event
query language for connected environments. In Proceedings of the 23rd Interna-
tional Database Applications & Engineering Symposium. ACM, 7.

[14] Matthew Perry et al. 2011. Sparql-st: Extending sparql to support spatiotemporal
queries. In Geospatial semantics and the semantic web. Springer, Boston, MA,
USA, 61–86.

[15] Nicholas Poul Schultz-Møller et al. 2009. Distributed complex event processing
with query rewriting. In Proceedings of the Third ACM International Conference
on Distributed Event-Based Systems. ACM, New York, NY, USA, 4.

http://esper.espertech.com/release-5.3.0/esper-reference/html_single/index.html#epl_clauses
http://esper.espertech.com/release-5.3.0/esper-reference/html_single/index.html#epl_clauses
http://arxiv.org/abs/cs/0612128
http://arxiv.org/abs/cs/0612128

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Background & Preliminaries
	4 EQL-CE Proposal
	4.1 EQL-CE Framework
	4.2 EQL-CE Syntax

	5 Illustration & Experimental Setup
	5.1 EQL-CE Queries
	5.2 Additional Queries
	5.3 Experimental Setup

	6 Related Work
	6.1 Basic Querying
	6.2 Component Coverage
	6.3 Data Diversity
	6.4 Handling Environment Dynamicity

	7 Conclusion & Future Work
	References

