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ABSTRACT

The Spectral Element Method (SEM) has gained tremendouslgdy within the

seismological community to solve the wave equation at allesc Classical SEM ap+
plications mostly rely on degrees 4 to 8 elements in eacloteriglirection. Higher

degrees are usually not considered due to two main reasarss, ltgh degrees im-
ply large elements, which makes the meshing of mechanisabdtinuities difficult.

Second, the SEM’s collocation points cluster toward theeedlgthe elements with
the degree, degrading the time marching stability crifengposing a small time step
and a high numerical cost. Recently, the homogenizationdétias been introduced
in seismology. This method can be seen as a pre-processipdystore solving the
wave equation which smooths out the internal mechanicabdiiuities of the elastic
model. It releases the meshing constraint and makes thef weeyohigh degree ele-
ments more attractive. Thus, we address the question of nyeand computing time
efficiency of very high degree elements in SEM, up to degreeNidmerical analy-
ses reveal that, for a fixed accuracy, very high degree elesmequire less computer
memory than low degree elements. With minimum sampling tsgo@r minimum
wavelength of 2.5, the memory needed for a degree 20 is abguarmer that of the
one necessary for a degree 4 in 2-D and about one eighth inN8eBeover, for the
SEM codes tested in this work, the computation time with degrl2 to 24 can be up
to twice faster than the classical degree 4. This makes SEN wery high degrees

attractive and competitive for solving the wave equatiomamny situations.

INTRODUCTION

Solving the acoustic and elastic wave equations numeyical critical step for many re-
search based on seismic data. It is especially importamést seismic imaging methods,

from the exploration scale to the global Earth scale. Evengdh the Finite Difference (FD)
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method still dominates in the seismic exploration commytite spectral element method
(SEM) (Maday and Patera, 1989; Seriani and Priolo, 1994; é&tdasch and Vilotte, 1998;
Komatitsch and Tromp, 1999; Chaljub et al., 2007) has beernirgamore and more pop-
ularity, especially in the academic community. It is oftée thosen method for global
or regional Earth scale seismic imaging developments baseatljoint methods and full
waveform inversion method (Capdeville et al., 2005; Tromplet2005; Fichtner et al.,
2009; Zhu et al., 2012; Monteiller et al., 2015; Wang et 1@ Beller et al., 2018; Trinh
etal., 2019).

SEM s afinite element type method and, as such, is based aretdeform of the wave
equation. Two versions of the SEM exist, one based on Chebysiignomials and one
based on Legendre polynomials. In the following, we onlythed_egendre version, which
is the basis for many available programs. Compared to ckddsw-degree finite elements,
the Legendre SEM is based on a tensorised high-degree poighapproximation per
element combined with a precise numerical quadrature eéedavith the so-called Gauss-
Lobatto-Legendre (GLL) points. It has a spectral convecgeanith the element polynomial
degree, thus leading to a low spatial dispersion. Moreatgetensorial formulation leads
to a diagonal mass matrix, which is a strong advantage fdiagxppne schemes. It can
naturally and accurately handle free surface and matdasabdtinuities. This capability to
accurately model interface waves such as surface wave®isfahe main reasons for its

popularity.

Despite its quality, the SEM has one critical drawback: torest the accuracy of
the method, each material discontinuity interface has texpdicitly meshed. Moreover,
because this method is based on a tensorial formulatiorm#ésh needs to be based on
quadrilateral (in 2-D) or hexahedron (in 3-D) elements. iifeshing difficulty can strongly
limit the applicability of the method, especially in 3-D. téahat some examples of SEM
based on triangles exist but their efficiency is lower andhaitimited polynomial degree

range (Komatitsch et al., 2001; Mercerat et al., 2006; Adaeet al., 2018).
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One of the key parameters when using SEM is the polynomiake#eyg used in each
tensorial direction for each element. In seismoloyjy= 4 is often chosen (Komatitsch
and Vilotte, 1998; Komatitsch and Tromp, 1999) and somedirsie= 8 (Chaljub et al.,
2003; Capdeville et al., 2003). Although it depends on thereésaccuracy, the propa-
gated distance and on how the minimum wavelength is estindte commonly admitted
number of grid points per minimum wavelength)(to obtain sufficient accuracy in a con-
stant velocity medium is approximately = 5 ~ 6 for N =4 andG =4 ~ 5for N = 8
(Priolo and Seriani, 1991; De Basabe and Sen, 2007; SeridnOaveira, 2008). A low
G is obviously an advantage as it lowers the required computgnory and maybe the
computing cost of a modeling. In particular, a léiwcan be important in the full waveform
inversion (FWI) context. Indeed, FWI schemes operate on tiveaii@ and adjoint wave-
field. To do so, some methods rely on the partial or compresteedge (Komatitsch et al.,
2016; Boehm et al., 2016) or even full storage to avoid bac#vgaopagation (Fichtner
et al., 2009). In 3-D, dividing= by 2 implies a storage requirement divided by 8, which
is significant. In the 1-D case, it has been shown,Nor= 60, G can be as low as about
2 ~ 2.5 (Priolo and Seriani, 1991). Nevertheless, the most widegdwlegreéV is still 4

not 60, which is for two reasons:

e Taking advantage of a largsf and a lowG imposes being able to use very large
elements. For example, an element for= 60 needs to be about 15 times larger
than an element foN = 4 (assuming a constaiit(N) for the sake of simplicity).
In most realistic situations, this is not possible becausth® necessity to mesh

mechanical discontinuities and the domain geometry;

e The GLL points are not evenly spaced. They cluster towarétlyes of the elements
and this clustering is stronger with largé as shown in Figure 1 (see Appendix A
for the detailed formula). Indeed, in@adimensional space, each elemerdf the

mesh is a deformed version through a transformafipof the reference element!
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Figure 1: Minimum distancd¢l. . between two GLL points for the 1-D reference element
A = [—1, 1] as a function of the degre¥€ with logarithmic scales.

whereA = [—1,1]. The GLL points¢/ for i € {0...N} are non-uniformly spaced
along the reference segmektand cluster near the edges. Wh¥rbecomes larger
and larger, the smallest grid distane&X,, = & — &) between the two nearest
GLL points becomes smaller and smaller. Once mapped intphizsical elements,
thisd¢l. becomes dzmin = min {F.(d¢,) }, which imposes a smaller and smaller
time stepdt to fulfill the stability condition of the explicit time schearclassically
used (e.g. Komatitsch and Vilotte (1998)). The Courant-efiohs—Lewy (CFL)
stability condition is governed by the minimum value of théa between the size of

the grid cells and the P-wave velocity expressed as:

dZmin

dt < C
= VP i

(1)

where(' is the courant constant angh is P-wave velocity. In the following, we refer

to dicp. as the largest stable time step of the Newmark scheme foea ¢pst case.

As a consequence, the possibility to use very high degreetrapelements has not
been considered as a valid option and has not been studieajat for finite differences

method (Liang et al., 2015). Nevertheless, in the forwardiefing context, the recent
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introduction of the non-periodic homogenization (Capdewt al., 2010; Cupillard and
Capdeville, 2018) has solved many of the meshing difficulied opens the door to the
use of very high degre#’. In the inverse problem context, models are generally smoot

and using very high degree elements has always been an option

The non-periodic homogenization is an asymptotic methaibded to compute effec-
tive media in the case of deterministic media with no scapassion such as geological
media. For a given maximum source frequency and a compleg™medium, this method
computes a smoothly varying effective medium in which thenpoted waveform is the
same as a reference solution computed in the true medium, aipdntrollable error. This
is true for all type of waves, including surface, refracteackscattered, etc, waves. In the
forward modeling context, homogenization can be seen as@quessing step upscaling

original media to the wavelength scale.

Regarding SEM, homogenization solves some aspects of theimgessue: indeed,
after homogenization, there is no more mechanical discoityi to honor, except for the
free surface. This makes the option of using very large elsneith a high degreév
possible, opening the door to a low@rthan for the classical degréé = 4 and therefore
allowing a lower memory. Nevertheless, about the computosg, the fact that GLL points
cluster toward the edges of the elements is still true anidgwiagainst the advantages of a
lower GG. The objective of this work is, therefore, to determine ihgsvery high degreév
can be an advantage, for both memory and computing time @sfgeSEM and if so, to

find if there is an optimal degre¥.

The paper is organized as follows: we first give informatibowt the different SEM
codes, the criteria for the different test configurationd #re methodology we use to ad-
dress the paper’s objective. We then perform our tests irePxD3-D homogeneous media.
Finally, we perform the same test in simple heterogeneowiant®efore concluding our

work. For each program, we limit ourselves to the standadero?2 Newmark scheme for
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the explicit time marching.

SEM CONSIDERATION AND NUMERICAL EXPERIMENTS
SETUP

SEM complexity consideration

As shown in the Appendix A, for a given accuracy, if the maximtime step allowed by
the CFL condition given in equation 1 can be reached, the cexitplC'(V), that is the

number of operations of any SEM program, as a function of dggek/N, is scaling as

C(N) < GY(N)N?, (2)

whered is the dimension of the problem. If the maximum time stepshoaibe reached
(typically for long time series for which the time step eroan be large), the complexity
scales as

C(N) < G*(N)N . (3)

In both cases, it shows that the decreadih@s a function of N is competing with the
increasing/V. Knowing that the decrease 6fas a function of N is non-linear and cannot
go below 2, it is already clear that there is a limit after whincreasing/V' will not be
efficient. But before that, an optim&V exists and needs to be determined numerically,

which is the purpose of the next sections.

SEM codes

For a given source maximum frequenfy.., geometry, elastic properties, and signal du-

rationtmayx, there are two aspects in assessing whether using the \ghnydbgree in SEM
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can be a good idea. First, we consider the amount of compgarary required to per-
form the simulation. This is directly related to the numbepaoints per wavelengthy and

does not depend much on the particular code implementafi®EM. Second, we con-
sider the computing time needed to perform the simulatidms iE strongly related to code

implementation. To mitigate a possible bias in our resultsyse three different programs:

e SPECDY. This program has originally been written by G. Festa (FasthVilotte,
2005) and has been widely modified over the years, but thesdphy and the core
of the original program are still the same. In particulas,efficiency has not been

seriously optimized.

e SEM3D: This program is a 3-D version of the above 2-D program. Itleesn orig-
inally written by G. Festa and E. Delavaud (Delavaud, 2007 contrast to its 2-D
version, its efficiency has then been optimized by a teameo2BA (Commissariat

i£j £jnergie atomique, France);

e SPECFEM(2D and 3D). These two programs are from the popsikEECFEMprogram
suites, both the 2-D and 3-D versions are well maintainedatichized (Komatitsch

and Vilotte, 1998; Komatitsch and Tromp, 1999).

Each of these three codes uses an order 2 Newmark time mgsdtheme.

Numerical experiments setup and models

In order to measure the numerical efficiency of SEM with deg¥e we set up a series of
2-D and 3-D numerical experiments in homogeneous and lggeemus elastic models. To
make the efficiency measurements meaningful, we need torpedur experiments for a
fixed accuracy. There are many ways to measure accuracy acklowsse one that is close
to many realistic situations: a rectangular dom@iwith a free surface on the top, shallow

sources and shallow receivers with recorded waveformsaininime domain.
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We perform our tests in three different models: 2-D homogese3-D homogeneous
and 2-D heterogeneous. We did not test the 3-D heterogemasadecause of large com-
puting resources necessary to obtain an accurate refesphdgon in that case, but we
believe that this does not detract from the main conclusfahie work. For the 2-D and
3-D homogeneous cases, we Wse= 3.4 km/s andVs = 2.0 km/s for theP and S wave
velocities andp = 2000 kg/m? for the density. For the heterogeneous case, a monochro-
matic oscillatory heterogeneity is added on top of the hoenegus model. The detailed

heterogeneity is defined in the 2-D heterogeneous expetiseetion below.

In the homogeneous case, the maximum frequencySawdve velocity makes it pos-

sible to define the minimum wavelength of the propagatingefield in the far-field as

In the following, we measure each spatial distances as difumof A\, and time as a

function of
1

tmin = [ )
The source is a vertical point force located &t &y, distance below the free surface and
its time wavelet is a Ricker function (second derivative ofau&sian) of central frequency
fo = 10 Hz with maximum frequencymax =~ 3f,. This estimation of the maximum fre-
quency is important because it determines the minimum eagth and thereforé'(N).
This estimate can be changed and it will change the obtaifiéd) and it implies the ab-

solute value of7 must be taken with caution. Nevertheless, this estimate dotaffect

the relative results between different degrees.

To measure the error, we rely on two bins of receivers at tfereént epicentral dis-
tances, a short one (2Qin) and a long one (20Q,;,). Each bin is wide enough to contain at

least one element, even for the largest degvebat we tested. The main reason for doing
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so is that error is not constant within an element and depena#ere exactly the receiver
is located (Moczo et al., 2011). To average out this effeetuge many receivers within at

least one element.

The boundary conditions are free normal stress conditiinrereund the domain to
fully exclude the influence of absorbing boundaries. Thesenalomain is wide enough to
ensure that no reflecting waves from boundaries affect #hdtee The time duration of the
signal is long enough to ensure that the full waveforms idelR, S and the Rayleigh wave

phases.

2-D homogeneous experiments

For the 2-D tests(2 is 2900 x 450 A2, rectangular domain. Each of the different epicentral
20 Amin and200 A\min receiver bin has a size @b x 15 A2, and contains 2601 receivei@.
and an example of energy snapshot of the wavefield-a270 ¢,y is displayed in Figure 2.
The recorded signal at each receiver lastfdt i, for the 20 A\, distance receiver bin and

300 tmin for the 200 \nin distance receiver bin.

3-D homogeneous experiment

For the 3-D test, we use a homogeneous media with the sanii @agperties as in the
2-D homogeneous case above. Here, because of computingeesdimitation, we only
use a relatively small model and a short distance receiver (@0 \,,). For this testf2

is 300 x 300 x 150 A3, parallelogram. The receiver bin is1a* A}, cube, just below
the surface20 A\min away from the source (see Figure 3), containing 1331 receivEhe

200 \y,in receiver bin case has not been studied in 3D because the tompesources
required to do so are beyond our capacity (indeed, to avawkdioborder reflections, for

the 200\, case an even larger domain is required).
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Figure 2: The 2-D homogeneous domain used in this work. Thecso(black star) is
located abouB\n, below the surface. The short and long distance receiver (biask
square) are represented. The kinetic energy snapshoHaf0 ¢, and a 66 30 elements
mesh, associated to a polynomial deghée- 40, are also displayed.
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Figure 3: The 3-D homogeneous domain and mesh used in this Whe source position
(black star) and the receiver bin (black square) are reptede The represented mesh has
26x26x 13 elements and is associated with a polynomial degree 40.
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2-D heterogeneous experiment

One of the main arguments promoting the use of high-degré& iSEhe fact that homog-
enization can remove the meshing difficulty by smoothingaluthe internal mechanical
discontinuities. The homogenized model is indeed smoathtsproperties are oscillating
with space. These spatial variation needs to be accuratiglgrated which usually implies
a larger spatial sampling than for homogeneous models. The smallest oscillatigref

the homogenized model depend on the heterogeneity speotfrilna original medium and

on the desired accuracy. Typically, lies in [Amin/2, Amin] (Capdeville et al., 2010).

In order to further analyze the efficiency of SEM as a functibthe degreeV in the
heterogeneous 2-D case, we use the same geometry as foDtm@@ogeneous test and
only focus on the long epicentral distance bin (2@@,). To keep our analysis simple, the

heterogeneous mechanical properties have been chosetheviibilowing form:

A(x) = Aof(x)
p(x) = pof(x)
f(x)=1+ a(cos(?\—:kx - X) 4 cos(?\—:kz X)) (6)

k. = (cos(tim/180%), sin(tim/180°))

k. = (cos(tam/180°), sin(tym/180°))

where A and ;. are the Lamé elastic coefficients for the heterogeneous Isjotieand
1o the constant Lamé coefficients corresponding’to= 3.4 km/s Vs = 2.0 km/s p =
2000 kg/m?. The density is kept constant. We use= 0.05, ¢, = 45°, andt, = 135°,
corresponding to two orthogonal directions shown in Figdireln the following, only
three values fon, are tested, = 2Amin, Amin @Nd \yin/2. Note that a real model, once
homogenized, has a continuous spectrum of heterogeneityust a single wavelength
as here. In general, geological media lead to amplitudetepeaf heterogeneities that

decreases als'\. A\, = Amin/2 in equation 6 correspond to a strongly heterogeneous case,
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Figure 4: Same as Figure 2 but for the 2-D heterogeneous matia, = \n,in. The lower
left zoom displays a 14Xk, x 14.1\, area ofl’s. The 100<50 elements mesh associated
to the degreéV = 40 is displayed.

Ah = Amin IS representative of a typical geological model whergas: 2\, corresponds

to a full waveform inversion model.

SEM mesh

We base our experiments on a trivial regular mesh made, of n. square elements of
size L. in each direction. We keep, = 2n. and the domain size constant. The element
size L. can only be tuned by changing the number of horizontal elésnen In each
element, the polynomial expansion of degféés used in each direction. The mesh is fully

characterized by thel., N) quantities. For a given mesl.., V), we can computézn,
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the minimum distance between two GLL points:
Le v
dmmin<Le7 N) = 7d6min : (7)

The number of grid points per minimum wavelengthin one direction is defined as fol-

lows:
G(Le,N) = (N +1) AL”“” . (8)

Error measurement

There are several ways to measure the error of a given mgdeiih respect to a reference
solution. One could for example compute thenorm of the difference between computed
and reference wavefield all over the domain for the final titep.sHere, our choice is more
closely related to situations faced in geophysics: recgiaee located on the free surface or
at shallow depths (in boreholes), with relatively long tigegies and for different epicentral
distances. For a set &, receivers, located ifix,,r € {1..N,.}}, the errorE is computed

as
> Jo (@ — w2 (x,., ) di
Zr:l,Nr fotmax(urefy(xr, t)dt

whereu is the computed displacement including all the componaetitsis the reference

E? = , 9

solution.

The numerical error for a given model and receiver bin ist|giaffected by the mesh

design(L., V) and the time stefit:

E = E(L., N, dt) . (10)
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Reference Waveforms

The reference solution™" should ideally be an analytical solution. Unfortunatelygls
analytical solutions are only available for simple modélsmany cases, we need to rely
on “converged” numerical solutions computed with a very lktiae step and spatially
over-sampled numerical solution. Here, for the sake of detapess, we first show the
equivalence of analytical and “converged” numerical sohg for 2-D and 3-D homoge-
neous half spaces. Afterward, we assume this equivalerds fuw all our tests and all the

reference waveforms are “converged” numerical solutions.

We first perform a 2-D comparison between a converged SEMisnland an analytical
solution for the short distance receiver bin. The analygoéution was obtained using the
program “EX2DDIR” (the source code can be foundamwv. spi ce- t hn. or g), which
is based on the Caniard-de Hoop technique (De Hoop, 1960s30hth974). For the SEM
solution, a 18&90 \2,,, domain with a structural 10050 spectral elements with degree 12
is designed. The resulting value is about twice that recommended by Priolo and Seriani
(1991). We finally use a very small time stefi, ~ ﬁdtcpb The agreement between

the two solutions is displayed in Figure 5 for a represeveateceiver. The total misfit,

computed according to equation 9,As5= 1.5 x 1075,

We then perform a similar test, but in 3-D. For the analytisalution, we use the
program “CANHFS” (personal communication) which calcusatee Green function and is
also based on the Caniard-de Hoop technigue. For the SEMmulat180<180x90 A3, .
domain with a structural 100100x 50 spectral elements mesh with degree 12 is designed.
The resulting value is once again about twice that recommended by PriaddSamiani
(1991). We finally use a very small time stefp,~ ﬁdtcpb The agreement between the
two solutions is displayed in Figure 6 for a representataiver. The total misfit is here,

iSE =2.2x 1073,

From these two tests, we conclude that we can replace thgtigaakolutions by con-
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Figure 5: 2-D homogeneous model waveform displacement adsgn between the an-
alytical solution (gray line), the spectral element siniedbsolution (dashed line) for the
horizontal (top plot) and vertical components (bottom plcEhe residual x10%) is dis-
played in dotted line. The receiver is a typical receivenfrime short distance birR({ Amin
distance).
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Figure 6: 3-D homogeneous model waveform displacement adsgn between the an-
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verged numerical solution in our analysis. Indeed, our trttsfeshold is 1%, and the misfit
between converged and analytical solutions is much smihléer 1%. For the rest of the
paper, we assume that we can use converged numerical sslatsoreference solutions.
Finally, note the fact that the agreement between numeaimélanalytical solutions is not
as good in 3-D than in 2-D is more related to our difficulty ta@@ately use the analytical
solution, rather than related to a larger error in the 3-D aewical modeling. The 3-D misfit

is nevertheless still much smaller than 1% and we did notsinyate the code problems

any further.

G AS AFUNCTION OF THE DEGREE N

Here, we study the minimum number of GLL points per wavelerigtrequired to reach
the 1% error threshold. To do so, we start by choosing a tiedtsmall enough so that
the error due to the time marching scheme can be ignored. rfbiei® then dominated by
the spatial error and only dependsbnandN (£ = E(L., N)). Knowing that a fixed size
domain is used, the elements sizgis controlled by the number of elements in the z
direction (the number of elements in thealirection is tied tan, by the relatiom, = 2n.).
For given degreé€V, receiver bin (2Q,, or 200\,i;) and model, we proceed as follow to

determine so that the errofy = 1%:

e we start with a largex, so that the error is below 1%;

e we then gradually decreasg until we find its values so that the error is just below

and just above 1%;

e we computes for eachn, available (discrete) values and we finally obtain ¢héo

reach exactly 1% using a quadratic interpolation.

An example of the procedure fo¥ = 40 is given in Figure 7.
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Figure 7: Error (see equation 9) as a function(fdotted line) for the short distance
receiver bin and for degre® = 40 and a very smalfz. The triangles are measured values
and the dashed line shows the quadratic interpolation astmof( to obtain a 1% error.
Here,G ~ 2.35.

Following this procedure, we compute the 1% erkdor a set of degred’ (4, 8, 12, 16, 20, 24, 30
and40), in our four 2-D models (homogeneous, heterogeneous With 2\yin, Amin @and
0.5 min) and the 3-D homogeneous model for the two receiver bins.résats are given

in Figure 8, Figure 9 and Table 1.

For the homogeneous case, it can be noted thatiNfes 40, G ~ 2.5 is reached in

2-D as well as in 3-D and for both short and long-distance .bifgr the long-distance

Information for 200\, distance
N 4 [8 [12 |16 [20 [24 [30 [40
nz 505.9 186.2 111.7 79.9 | 61.9 | 50.3 | 39.5 | 28.9
o)l /dael |1 | 3.45]7.40] 12.85 19.87 28.24 43.81 77.20
Gn/Gn—s 1 | 0.662 0.574 0.537 0.514 0.497 0.484 0.469
dtn—/dt 1 | 1.270 1.634 2.028 2.426 2.812 3.419 4.413

Table 1: The number aVs, nz (number of elements in z direction), minimdmratio and
maximumdt ratio in 2-D homogeneous half space case for the 2@0epicentral distances
case.
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Figure 8:G as a function of the degre¥ for the 2-D and 3-D homogeneous models and
for the 20 and 200\, epicentral distance receiver bins.

bin, it corresponds to twice fewer points per wavelength/or= 40 than N = 4. This

implies that factor of 4 in 2-D and 8 in 3-D of computer memoande saved using high

degrees compared to low degrees. As expectad,lower for short distance than for long,

but this difference is significant only for low degree. Foe tieterogeneous case, Figure 9

displays a comparison of th& obtained in the three heterogeneous models versus the one

obtained in the homogeneous case. It is worth noting thagah®ling rule of thumbs used

in homogenization (Capdeville and Cance, 2014) is

G ~ Ghomo(

1
14+ —),

2o (12)

whereGhome IS GG In the homogeneous cagés’ is G in the heterogeneous case apd=

An/Amin- Here we have, = 2, 1 and0.5 , which leads to &*° /Ghomoratio of 1.2, 1.5 and

2.0 respectively, which is roughly what is observed in Fe&gfr at least for largev. The

fact that this rule of thumb is less accurate for low degreemt understood yet.
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Figure 9: Heterogeneous modélgatio with the corresponding homogeneous madeis
a function of the degred&’. Three different heterogeneity roughness are displaygdH
{0.5,1, 2} Amin)-

OPTIMAL TIME STEP AS A FUNCTION OF THE DEGREE N

In this work, we only use the standard second-order exfpliewmark scheme. The error
is therefore a quadratic function @f. The time step is always subject to the CFL condition

equation 1dt < dtcry.

For a given degreé/, we proceed in a similar way to the previous section to find the
maximum time steplt. such that the error remains just below 1%. We first choosege lar
G (twice the optimalG) so that the spatial error is much smaller than 1%. In thag,cas
the error is only dependent updn We then finddt. by the method of trial and error and
a quadratic interpolation. We finally check that the obtdit&. leads to an error indeed
just below 1%. An example is given in Figure 10 fr = 4. However, this procedure is
limited by the CFL condition. Indeed, for high degrees, therecannot reach 1% even for
dt = dtcrL. In that casedt,. cannot be determined and is setltgr . For low degrees, it

appears thatt. is almost independent of the degree and that it only depemtiseaeceiver



Lyu & al 21 Efficienthigh degreespectralelement

0.05

0.04+

0.0Lf mmmmm e e

0.00] A

dt (s)

Figure 10: Error (see equation 9) as a function of the timp gte(dotted line), for a
large G (spatially over sampled)y=4 in the 2-D homogeneous model and for the long
distance receiver bin (20@,). The 1% error threshold and its corresponding time step
(heredt, = 4.7 x 10~4s) are displayed (dashed line).

bin distance. Finally, combining the optim@landdt., we obtain an error lying between
1% and 2% as shown in Figure 11 for the 2-D homogeneous modehariong distance

bin.

It can be seen from Figure 10 that, for = 4, dt = dtcr. leads to an error of 4.5%,
which is large. In such a case, a higher order time schemednmelnecessary to take

advantage of a large time step.

From this section, we can conclude that the error in time padeare almost indepen-

dent.

GLOBAL COMPUTING TIME AS A FUNCTION OF DEGREE N

We finally evaluate the computing time as a function of therdeg/ for the optimal sam-

pling G and time stepit determined in the two previous sections. If the gain in mgmor
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Figure 11: Error as a function of the time stépwith the optimalG(N) (in Figure 7).
Three different degrees are displayéd £ 4, 8 and40). The optimalit, = 4.7 x 10~ 4s is
displayed (dashed line). Fo¥ = 40, thedtcr, is reached before the optimé..
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Figure 12: Computing time as a function of the degheéor the 2-D homogeneous case,
for the short distance bin (28,,) and for theSPEC2DY andSPECFEMD programs. Sym-
bols with an extra black circle correspond to measuremeonis tithdt = ditcr,.

of high degreeN with respect to low degrees is only determined®ythe computing
time strongly depends on particular code implementatidrer&fore, the results presented
here only give an idea of what can be done at the present tichea@rid be changed with

different implementation or hardware. It neverthelesggian indication.

For each case, we choose as reference the computing timeesbtesingSPECFEMD
or 3p programs withN = 4, normalized to one. In this section, the gains or losses in
computing time are always in comparison to this referencechEcomputing time mea-
surement is obtained using the optindalanddt, performing five runs and averaging the
obtained elapsed computing time. We used 40, 280 and 100worgores for the 2D

homogeneous, 3D homogeneous model and 2D heterogeneoetsmexpectively.
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Figure 13: Computing time as a function of the degheéor the 2-D homogeneous case,
for the long distance bin (208;,) and for thesPEC2DY andSPECFEMD programs. Sym-
bols with an extra black circle correspond to measuremeonis withdt = ditcr,.

2-D homogeneous model case results

Figures 12 and 13 show the results for the homogeneous 2&) fraghe short and long
distance bins respectively. For the short distance recbive it can be seen that the com-
puting time decreases with the increasing degree for bathrpms until degree 16 or 20
and then increases again. To its maximum, the high degreputorg time gain compared
to the low degree one is about a factor of 2. For the long digtdnn, a similar pattern
can be observed. Nevertheless, the computing time doesioci@aise much after a de-
gree 16. The pattern is slightly different for each progrhuat,the overall result is similar:
the computing time almost constantly decreases with theedegnd a maximum gain in

the computing time by a factor of 2 can be achieved.
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Figure 14: Computing time as a function of the degheéor the 3-D homogeneous case,
for the short distance bin (20,,,) and for thesEM3D andSPECFEMD programs. Symbols
with an extra black circle correspond to measurements dathedtv= dtcr, .

3-D homogeneous model case results

For the 3-D case, we performed only the short distance bia, d@cause of computing
resources limitation. The computing time as a functiowadbtained for the two programs
is displayed in Figure 14. First, it can be noted that thereadundamental difference
in computing time between the two programs. Next, the trengery similar to the 2-D
homogeneous short distance receiver case: first a decreimeammputing time with the
degree and then an increase after a minimum. The minimum wmgdime is obtained in

the 12-16 degree range.

For the 3-D long range case, we can only speculate that thégeguld be similar to
the 2-D results. The short distance bin results are sinalad, there is no specific reason
to expect a difference for the long distance. It is nevees®lunfortunate that we can not

check this point.
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Figure 15: Computing time as a function of the deghe®r the 2-D heterogeneous cases
for the long distance bin (208,,,) and for thesPE@DY program. Symbols with an extra
black circle correspond to measurements done wtith dtcr,.

2-D heterogenous case results

We finally perform a test in the heterogeneous models destelarlier. This test is only
performed in 2-D for the long distance bin using #rRE@DY program. We did not test
the 3-D model because of computing resource limitation. \&& @d not teSsPECFEM2D

in that test because there is no simple way to input osaitiatodels in this program.

In Figure 15 the computing times as a function of the degyefer three 2-D hetero-
geneous models are shown (foy = 0.5 min, Amin@nd2Amin) for the long distance bin. In
Figure 13, it can be noted that the caggs= \min and A, = 2\y,n display little differences
compared to the homogeneous long distance case. The remdliffierences are mostly
due to the fact that the heterogeneous models have a sni&dlgr(because of a denser
mesh) compared to the long receiver homogeneous case. 3@&.ca 0.5\, IS similar,
but the minimum computing time occurs for lower degrees2@6eompared to 20-24 for

the previous cases.
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DISCUSSION

In this work, to assess if using very high degréé £ 8) in SEM is of any interest, we had
to make several choices. This first one is the error thresthatidwe chose to 1%. Obvi-
ously, one could have made a different choice and this woaNe laffected the optimél,

dt and measured computing time results. For example, for tbe distance bin, using a
threshold to 5% moves the optim@lfor N = 40 from 2.4t0 1.97. Nevertheless, it does not
change either the observed trend or the conclusions of thik.Whe way of estimating the
source maximum frequendgi,.x has the same effect @r, but does not change the conclu-
sions either. The second one is about the chosen progranesftom the computing time
measurements. This aspect is problematic as different@mgand different hardware can
potentially significantly affect the computing time resulEor example, we did not try the
GPU spectral element implementations for which the bemaaa be different. This work
shows that very high degree SEM can be interesting, but cm@dkeep in mind that, for
a significantly new or different SEM implementation, or sfgrantly different hardware, a
benchmark should be run to determine which degree is theffoesithe point of view of

computing time. Nevertheless, the memory gain results dverhain unchanged.

Using very high degree SEM implies using very large elemantsch larger than for
low degrees. In a forward modeling context, the interestesf\nigh degree SEM there-
fore strongly relies on the homogenization technique. theskey to remove mechanical
discontinuities: it allows to release the mesh constrants thus allows the use of large
elements. In the inversion context, the models are smogtvanand it is usually simple
to use very large elements. In both cases, the elastic gregpare not constant per pieces
but continuous and oscillatory with space. In this work, viek bt test any realistic ho-
mogenized model such as the Marmousi model in Capdeville ¢€2@10). Such models
make it difficult to draw any general conclusion becauselteare then strongly dependent

on the source and receiver locations. Instead, we testgtésiavenumber heterogeneity
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models in order to obtain a referen€eas a function of the degre¥ for three different
model roughness. Because realistic geological elastic lmaaeplitude spectra decrease
with the wavenumber, these periodic tests can be seen ascahdite expected at worst.
The test modeh, = A\min/2 is an upper bound and a realistic geological model is exdecte
to behave more like thg, = A\min case. In the context of inversion, models are rather
smooth and we expect they behave like Mpe= 2\, case. Finally, let us mention that
homogenization cannot remove free-surface or solid-floidrface topographies, even if
they can be homogenized (Capdeville and Marigo, 2012). Tdnsbe a complication, but

it can be handled generally by deforming the elements in @r&cal direction to match
the topography. This comes at the price of a high degree eletrasformation (where a

linear or quadratic element are classically used).

Regarding the number of points per wavelen@thour work confirms that it can be as
low as 2.5 usingV = 40 for both 2-D and 3-D homogeneous or smooth media. Note that
our (G is an average number meaning that, for example, it is p@s®ltast about 16,
within one degree 40 element direction. For rough heteregas media(z increases more
or less following the rule of thumb of equation 11. Compared ttegree 4, a high degree
G can be twice smaller. This implies that a factor up to 4 in 2Ad 8 in 3-D in memory
can be gained by using a very high degree. This aspect canmtiufzly interesting in the
adjoint inversion context where storing the wavefield ordrdisks can be necessary either
partially (Komatitsch et al., 2016) or fully to avoid backugropagation (Fichtner et al.,
2009).

It is well known that the GLL points cluster near the edge @& #iements for high
degrees. This fact a prioriimplies a dramatically smalkistep to respect the CFL stability
condition. Nevertheless, this effect is not that dramagicause~ also decreases for high
degrees and this partly compensates the clustering of thepBints. For example, even if
the closest distance between two GLL point§idimes smaller in the reference element

for N = 40 compared taQV = 4, the time step is only.4 times smaller. Then, a oW
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also implies a lower number of degrees of freedom and therdééss computation.

Finally, it is important to note that'(/V') strongly depends on the Poisson’s ratio (Se-
riani and Oliveira, 2008). For a fixed degrég G is degraded (larger) for Poisson’s ratio
close to 0.5 (in this work, we used a Poisson’s ratio of 0.88riani and Oliveira (2008)
also have shown thdt is less degraded for large degrees than for low degrees pligs
that high degree element is even more interesting comparkxvtdegrees for Poisson’s

ratio close to 0.5.

CONCLUSIONS

In the end, high-degree SEM is often more effective than iaegrees and when it is not,
the losses in computing time is not dramatic whereas theiganemory is significant. For
example, the memory needed for a degree 20 is about a quzaterdcessary for a degree
4 in 2-D and about one eighth in 3-D in our numerical experiteenhe computation time
with degree 12 to 24 can be up to twice faster than the cldsseécaee 4. To conclude,
considering using SEM with a significantly higher degreathsual is a good idea in some

situations such as full waveform inversion.
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APPENDIX A

COMPUTATIONAL COMPLEXITY ANALYSIS OF
CODE-INDEPENDENT FEATURES FOR SEM

In this appendix, we estimate the theoretical scaling ofilnaerical complexity of a SEM
simulation as a function of the element degrée The overall numerical complexity of
such a simulation is the product of the cost at the elemeet tanes the number of ele-
ments times the number of time steps. At the element levelntimerical complexity is
dominated by the stiffness matrix multiplication, whictaks asV*!'. This is usually
where the main optimization effort is mainly put into, follmg matrix-matrix multiplica-
tion strategy (Deville et al., 2002). We have numericallgcked that the calculation of the
internal forces (the product between elemental stiffneairnand displacement vector)
indeed behaves iv?*! for the SEM code used in this work. Regarding the number of
elementsN,, assuming a domain size @f/, we haveL? = (NyAmin)?, WwhereN, is the
number of the minimum wavelength. We also havg, = G(N)A, whereA, the aver-
age distance between GLL points within each spectral eleméme element size in one

direction isL, = NA, and therefore

N, x (NAG(N ))d. (A-1)

N

The number of time steps is controlled by equation 1 and thexdy 1/dzn,. Because
of the GLL points cluster near the element edgés,, scales as\,/N (see Figure 1)

and therefore aéNG(N))~!. Gathering those estimates, one finds the SEM numerical
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complexityC'(/N) scales as

C(N) oc G*H(N)N?. (A-2)

This formula has a limit: it doesn’t account for the fact thatorder to reach a given accu-
racy, it may happen that the maximum time steps allowed byC#ie cannot be reached.

In that case, SEM numerical complexity( V) scales as

C(N) oc GYN)N . (A-3)
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Table Caption

Table 1: The number aVs, nz (hnumber of elements in z direction), minimdmratio
and maximumdt ratio in 2-D homogeneous half space case for the 2QQ epicentral

distances case.
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Figure Captions

e Figure 1: Minimum distancé¢’,, between two GLL points for the 1-D reference

elementA = [—1, 1] as a function of the degre® with logarithmic scales.

e Figure 2: The 2-D homogeneous domain used in this work. Theceqblack star)
is located abous )\, below the surface. The short and long distance receiver bins
(black square) are represented. The kinetic energy snafmho = 270 i, and
a 60x30 elements mesh, associated to a polynomial de§jree 40, are also dis-

played.

e Figure 3: The 3-D homogeneous domain and mesh used in this Wdre source
position (black star) and the receiver bin (black square)rapresented. The rep-
resented mesh has 286x 13 elements and is associated with a polynomial degree

N = 40.

e Figure 4: Same as Figure 2 but for the 2-D heterogeneous métiia\, = Anin.
The lower left zoom displays a 144, x14.1\n,i, area ofls. The 100<50 elements

mesh associated to the degrée= 40 is displayed.

e Figure 5: 2-D homogeneous model waveform displacement aasgn between the
analytical solution (gray line), the spectral element dated solution (dashed line)
for the horizontal (top plot) and vertical components (bwttplot). The residual
(x10%) is displayed in dotted line. The receiver is a typical reeefrom the short

distance binZ0 A\, distance).

e Figure 6: 3-D homogeneous model waveform displacement aasgn between the
analytical solution (gray line) and the spectral elememtusated solution (dashed
line) for the horizontal (top plot) and vertical compondmbitom plot). The residual
(x500) is displayed in dotted line. The receiver is a typical reeefrom the short

distance binZ0 A\, distance).
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Figure 7: Error (see equation 9) as a functiortzofdotted line) for the short distance
receiver bin and for degre® = 40 and a very smallit. The triangles are measured
values and the dashed line shows the quadratic interpolesitmation of~ to obtain

a 1% error. Here(Z ~ 2.35.

Figure 8:G as a function of the degre€ for the 2-D and 3-D homogeneous models

and for the 20 and 208,,i, epicentral distance receiver bins.

Figure 9: Heterogeneous modélsatio with the corresponding homogeneous model

G as a function of the degre¥. Three different heterogeneity roughness are dis-

played ¢, = {0.5, 1, 2} Amin)-

Figure 10: Error (see equation 9) as a function of the timp étddotted line), for
a largeG (spatially over sampled)y=4 in the 2-D homogeneous model and for the
long distance receiver bin (20@Q;,). The 1% error threshold and its corresponding

time step (herdt. = 4.7 x 10~%s) are displayed (dashed line).

Figure 11: Error as a function of the time st&pwith the optimalG(NV) (in Figure 7).
Three different degrees are displayéd & 4,8 and40). The optimaldt, = 4.7 x
10~*s is displayed (dashed line). FaF = 40, thedtcr, is reached before the optimal
dt..

Figure 12: Computing time as a function of the deghééor the 2-D homogeneous
case, for the short distance bin (2Q;,) and for thesPEC@DY and SPECFEMD
programs. Symbols with an extra black circle correspond ¢éasurements done

with dt = dtCFL-

Figure 13: Computing time as a function of the deghééor the 2-D homogeneous
case, for the long distance bin (20Q,,) and for thesSPE@DY and SPECFEMD
programs. Symbols with an extra black circle correspond ¢éasurements done

with dt = dtCFL-
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e Figure 14: Computing time as a function of the degheéor the 3-D homogeneous
case, for the short distance bin (2@i,) and for theseM3D and SPECFEMD pro-
grams. Symbols with an extra black circle correspond to omeasents done with

dt = dtCFL-

e Figure 15: Computing time as a function of the deghe®r the 2-D heterogeneous
cases for the long distance bin (2@Qi,) and for thesPE@DY program. Symbols

with an extra black circle correspond to measurements dathedtv= dtcr, .



