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Abstract  

A novel series of dihydronaphtalene, tetrahydronaphtalene and naphtalene derivatives as restricted-analogues of isoCA-

4 were designed, synthesized and evaluated for their anticancer properties. High cell growth inhibition against four 

tumor cell lines was observed at a nanomolar level with dihydronaphtalenes 1d,e and 1h, tetrahydronaphtalene 2c and 

naphtalene 3c. Structure activity relationships are also considered. These compounds exhibited a significant inhibitory 

activity toward tubulin polymerization (IC50 = 2-3 M), comparable to that of isoCA-4. The effect of the lead 

compounds 1e and 2c on the cancer cells tested was associated with cell cycle arrest in the G2/M phase. Docking studies 

reveal that these compounds showed a binding mode similar to those observed with their non-constraint isoCA-4 and 

isoerianin congeners. 
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1. Introduction 

Microtubules found in cytoskeleton of almost all eukaryotic cell types are hollow tubes formed by self-assembly of  

and  tubulin heterodimers. They are directly involved in a variety of cellular functions, such as cell movement, 

transport of organelles inside the cell, maintenance of cell shape as well as mitosis and cell replication. Consequently, 

perturbation of tubulin assembly/disassembly is a popular target for new chemotherapeutic agents.[1,2] The vinca 

alkaloids, typified by vinblastine and vincristine which inhibit microtubules assembly[3] as well as the taxanes, such as 

paclitaxel and docetaxel which promoted microtubules polymerization and inhibits microtubules depolymerization,[4,5] 

are the mostly used antimicrotubules agents introduced in clinical oncology.[6] However, despite their potent antitumor 

activities, these drugs have undesirable side effects[7,8] and are subject to multidrug resistance.[9,10] These last 

decades, there has been a strong enthusiasm for discovering tubulin polymerization inhibitors of small size, easy 

synthesis and low side effects. Combretastatin A-4 (CA-4, Figure 1), a cis-stilbene extracted from the South African 

willow Combretum caffrum[11,12] is arguably the most studied substance that displays a nanomolar level of 

cytotoxicity against a variety of human cancer cells, including multidrug resistant cell lines.[13,14] CA-4 binds at or 

near colchicine binding site of -tubulin and strongly interferes with the assembly of tubulin, leading to cell death.[15] 

It also exerts highly selective effects in proliferating endothelial cells and, as a consequence, demonstrates strong 

suppressive activity on tumor blood flow leading to tumor necrosis.[16] Two derivatives are currently in clinical trials: 

CA-4 disodium phosphate CA-4P,[17,18] a water soluble prodrug of CA-4 and the aminocombretastatin prodrug AVE-

8062 (3).[19,20] To date, CA-4P[21] either as a single agent or in combination therapy is undergoing several advanced 

clinical trials worldwide for the treatment of age-related macular degeneration or anaplastic thyroid cancer. 

Despite its remarkable anticancer activity, the main disadvantage of CA-4 is the ready isomerization of the Z-double 

bond to its inactive trans-form during storage, administration[22] and metabolism.[23] In an ongoing project aimed at 

developing novel tubulin assembly inhibitors,[24,25,26,27,28,29] we recently discovered isocombretastatin A-4 

(isoCA-4), a structural isomer of the natural product, which holds biological activities comparable to that of CA-4.[30] 

This substance having a 1,1-diarylethylene scaffold is easy to synthesize[31,32,33] at a multi grams scale without the 

need to control the olefin geometry and then definitively solving the Z double bond isomerization problem.[34]  

<Figure 1> 

By structural modifications on the B-ring, we have also identified other promising antiproliferative agents such as 

isoNH2CA-4 and isoFCA-4 (Figure 1).[35,36] We also demonstrated that the bioisosteric replacement of the (Z)-1,2-

ethylene by the 1,1-ethylene could be apply successfully to natural combretastatins CA-2, CA-3 and CA-5.[30] On the 

basis of these bioisosteric considerations, we also showed that isoerianin derivatives having a 1,1-diarylethane scaffold 

were as active as the natural product erianin.[37] A set of molecular docking calculations was performed with isoCA-4 

as well as isoerianin which showed a binding pose similar to those observed with CA-4 and the co-crystallized DAMA-

colchicine in the colchicine binding site.[38] In addition, the dihedral angles between the planes of the two A/B-

aromatic nucleus in isoCA-4 and isoerianin (68° and 77°, respectively)[30,37] were found to be close to that of CA-4 

(53°).[39] From all of these considerations, we are planning to rationalize the synthesis of three new series of rigid 

analogues of isoCA-4 and isoerianin namely, 4-aryldihydronaphtalenes 1 (e.g.; dihedral angle = 69° for 1e), 4-

aryltetrahydronaphtalenes 2 (e.g.; dihedral angle = 79° for 2c) and 1-arylnaphtalenes 3 (e.g.; dihedral angle = 70° for 

3d) with reduced mobility of the B-ring. We hypothesized that constrained analogues 1-3 with dihedral angles close to 

those of isoCA-4 and isoerianin would be as active as their non restricted congeners. In this paper we would like to 

describe the synthesis and evaluation of compounds 1-3 in terms of inhibition of tubulin assembly along with 

cytotoxicity studies against various cancer cell lines. 

<Scheme 1> 
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Reagents and conditions: (i) pTsNHNH2 (1.2 equiv), PTSA (0.2 equiv), MgSO4 (1 equiv), EtOH, 50 °C. (ii) ArI (1.1 

equiv), Pd2dba3 (10 mol%), XPhos (20 mol%), LiOtBu (2.2 equiv), dioxane 90 °C in a sealed tube. (iii) 3,4,5-

trimethoxyiodobenzene (1.1 equiv), Pd2dba3 (10 mol%), XPhos (20 mol%), LiOtBu (2.2 equiv), dioxane 90 °C in a 

sealed tube. (iv) NaN3 (2 equiv), CuI 10 mol%, DMEDA (15 mol%), sodium ascorbate (5 mol%), DMSO/H2O: 5/1, 60 

°C. (v) KOH (5 equiv), Pd2dba3 (10 mol%), tBuXPhos (20 mol%), dioxane/H2O: 1/1, 90 °C in a sealed tube. (vi) 

Alkyne (1.2 equiv), PdCl2(PPh3)2 (5 mol%), PPh3 (10 mol%), CuI (10 mol%), Et2NH (2 equiv), DMF, MWI, 120 °C. 

(vii) Methyl acrylate (10 equiv), PEPPSI (5 mol%), K2CO3 (2 equiv), NMP 140 °C in a sealed tube. (viii) H2, Pd/C in 

MeOH. (ix) DDQ (1.2 equiv), CH2Cl2, 20 °C. 

2. Results and discussion 

2.1. Chemistry. 

Scheme 1 outlines the convergent synthetic routes followed for the synthesis of the novel restricted analogues 1-3. The 

projected incorporation of a variety of substituents at the C3’ position of the B-ring 

bond, which can further be engaged into diverse coupling reactions. Thus, the preparation of the pivotal brominated 

precursors 1a and 1b was achieved from 5-bromo-6-methoxytetralone 4b[40] which was heated in EtOH at 50 °C with 

TsNHNH2 in the presence of PTSA. The resulting N-tosylhydrazone 5b was next coupled with aryl iodides under 

palladium catalysis[30,41,42] to afford the key intermediates 1a,b. By securing the required skeleton for the 

dihydronaphtalene analogues, the stage was ready for the installation of various functionalities in place of the bromine 

atom. The C(sp2
2 bond of 1d and 1i was formed from 1a and 1b, respectively, using sodium azide as the amino 

source[43,44] in the presence of a catalytic amount of CuI. Treating 1a,b with KOH in the presence of Pd2dba3, 

tBuXPhos in a mixture dioxane/H2O: 1/1 at 90 °C[45] delivered in good yields the C3’-hydroxy substituted analogues 

1e (63%) and 1h (62%). For the introduction of alkyne substituents on the B-aromatic ring,[36] we examined the 

Sonogashira-Linstrumelle reaction[46] of 1a with propargylic and homopropargylic alcohols. The coupling reaction of 

these alcohols with 1a proceeded in the presence of PdCl2(PPh3)2 and CuI catalysts under microwave irradiation (MWI) 

at 120 °C to give the corresponding alkynes 1f,g in good yields. Similarly, 1a underwent Heck coupling with methyl 

acrylate using [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl)palladium(II) dichloride (PEPPSI) as 

the catalyst in NMP at 140 °C to afford the corresponding 3’methyl (E)-cinnamate 1j in an unoptimized 35% yield. 

Having achieved the preparation of dihydronaphtalenes 1, we next focused our attention on their catalytic reduction to 

give restricted isoerianin analogues 2. Thus, 4-aryltetrahydronaphtalenes 2a-e were obtained in acceptable yields using 

H2 in the presence of Pd/C in MeOH. Finally, aromatization of compound 1a into naphtalene derivative 3a was 

attempted using a variety of oxidizing species, including Pd/C, SeO2, o-chloranil, p-chloranil, and SO3-pyridine 

complex. However, the oxidation reactions were unsuccessful and gave 3a in very poor yields (<10 %). After several 

trials, we found that the oxidation of 1a with DDQ in CH2Cl2 afforded the desired naphtalene 3a but in a moderate 33% 

yield. Introduction of various substituents on 3a was next achieved in a similar manner as described above for 1d-j from 

1a,b. Using a similar route for the synthesis of 1d, dihydronaphtalene 1l bearing a NH2 substituent at the C-7 position 

was prepared from 7-bromo-6-methoxytetralone 4c[47] for structure-activity relation study (Scheme 2). 

<Scheme 2> 

Reagents and conditions: (i) pTsNHNH2 (1.2 equiv), PTSA (0.2 equiv), MgSO4 (1 equiv), EtOH, 50 °C. (ii) 3,4,5-

trimethoxyiodobenzene (1.1 equiv), Pd2dba3 (10 mol%), XPhos (20 mol%), LiOtBu (2.2 equiv), dioxane 90 °C in a 

sealed tube. (iii) NaN3 (2 equiv), CuI (10 mol%), DMEDA (15 mol%), sodium ascorbate (5 mol%), DMSO/H2O: 5/1, 

60 °C.  

<Table 1> 
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2.2. Biological results. 

In vitro antiproliferative activity of the synthesized naphthalene derivatives 1-3 was first determined against the human 

colon carcinoma cell line (HCT116) using CA-4[48] and isoCA-4[30] and isoerianin[37] as reference compounds. The 

results of this study are summarized in Table 1. On the exception of the amino derivative 3c (GI50 = 55 nM), naphtalene 

compounds 3 displayed only modest antiproliferative activity, which was affected with halogen (Br, 3a), alkynol (3e, 

3f), alkene (3g) and alkyl (3h) substituents at the C5 position. In contrast, dihydronaphtalenes 1 were significantly more 

active than their aromatic congeners. In particular, dihydronaphtalenes 1d and 1e[49] bearing the greatest resemblance 

to isoNH2CA-4 and isoCA-4, respectively, displayed a high antiproliferative activity at a nanomolar level (GI50 = 7 and 

85 nM). By comparison with 1d, the introduction of an amino substituent at the C7 position failed to improve the 

cytotoxic activity profile of 1l. One note that compounds 1h and 1i bearing two methoxy groups on the A-ring retained 

an important cytotoxicity in comparison with 1e and 1d, respectively. Nevertheless, on the contrary with previous 

reports,[36] decreased cytotoxic activity was observed with dihydronaphtalenes 1f,g and 1j bearing alkynol or alkene 

substituents at the C5 position.  

The reduction of 1 into tetrahydronaphtalenes 2 as restricted isoerianin analogues led to compounds that displayed 

similar cytotoxic activities in comparison with isoerianin (GI50 = 28 nM) and with their dihydronaphtalenes precursors. 

For example, 2c with a GI50 value of 20 nM was slightly more active than restricted isoCA-4 1e (85 nM), while the 

amino derivative 2b was about ten fold less active than its dihydronaphtalene analogue 1d. These results indicated that 

rigidifying isoCA-4 or isoerianin with the dihydro- or tetrahydronaphtalene system did not alter the reported SAR. 

These preliminary in vitro cytotoxic results prompted us to evaluate the most promising molecules in these series 

against other human cancer cell lines. The GI50 values of selected compounds obtained with K562 (chronic mylogenous 

leukemia), H1299 (non-small lung human carcinoma) and MDA-MB231 (human breast) cell lines are summarized in 

Table 2. 

<Table 2> 

Results from the cytotoxicity study provide evidence that dihydronaphtalenes 1d, 1e, 1h, 1i which retained a high level 

of cytotoxicity against HCT116 (Table 1) cells were also strongly cytotoxic against H1299, MDA-MB231 and K562 

cancer cell lines. Similarly, tetrahydronaphtalenes 2a-c as well as naphtalene derivative 3c displayed an equivalent level 

of cytotoxicity against the three tested cancer cells (30< GI50 <150 nM).  

To confirm that the antiproliferative activities of these compounds, like those in the isoCA-4[30] and isoerianin 

series,[37] were related to an interaction with the microtubule system, these selected compounds were evaluated for 

their inhibitory effects on tubulin assembly (Table 2). Except for dihydronaphtalenes 2a and 2b, the results 

demonstrated that the drug cytotoxicity correlated with the inhibition of tubulin polymerization. For instance, 

dihydronaphatalenes 1d,e, 1h,i, tetrahydronaphtalene 2c and naphtalene 3c were found to be as active as isoCA-4 and 

CA-4, displaying an IC50 at a micromolar level. One note that naphtol derivative 3d, bearing the greatest ressemblance 

to isoCA-4, showed a reduced antitubulin activity (IC50 = 6.9 M) which was consistent with the results of the growth 

inhibitory effect (310 nM< GI50<500 nM). 

Because molecules exhibiting effects on tubulin polymerization causes the alteration of cell cycle parameters, the effect 

of tetrahydronaphtalene 2c, dihydronaphtalene 1e, and naphtalene 3d on MDA-MB231, K562, HCT116 and H1299 

cellular cycle was investigated. The fluorescent propidium iodide intercalates with the DNA and hence, the amount of 

fluorescence measured per cell is proportional to the DNA content. Cells were harvested after 24 h and analyzed for 

DNA content by flow cytometry. Table 3 shows that a significant increased in G2/M peak is observed after treatment of 

the four cell lines with tetrahydronaphtalene 2c at a low concentration (5.10-9 M). Similarly, dihydronaphtalene 1e as 
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well as naphtalene derivative 3d arrest the majority of cells in the G2/M phase of the cell cycle but at concentrations 

smootly superiors (10-8 M and 5.10-7 M, respectively).  

<Table 3> 

2.3. Docking study. 

These results clearly demonstrated that tubulin is the target of these compounds; however, the specific binding site on 

tubulin was not investigated, for example, by use of a radiolabeled colchicine displacement assay. Nevertheless, a set 

molecular docking calculations was performed with 5-OH naphtalene derivatives to investigate the possible binding 

mode of 2c, 1e and 3d which were docked in the colchicine binding site of tubulin. For this purpose, the X-ray structure 

of tubulin DAMA-colchicine complex (Code PDB: 1sa0)[38] was used. Figure 2 illustrates from one hand, the docking-

derived superimposition of 2c and 1e, with isoCA-4 (blue), and on the other hand, the superimposition of 3d with 

isoerianin (green). As expected, these compounds showed a binding pose similar to the one observed with the reference 

compounds isoCA-4 and isoerianin with the trimethoxyphenyl ring placed in proximity of Cys241 and the OH 

substituent of the B-ring (naphtalene, dihydro- and tetrahydronaphtalene) which forms a hydrogen-bond with Val181. 

These binding parallels and the dihedral angles values of 2c (79°), 1e (69°) and 3d (70°) probably rationalise the 

potency observed for these drugs in their tubulin effects which are seen to be close to that reported for isoCA-4 

(dihedral angle = 68°)[30] and isoerianin (dihedral angle = 77°).[37] 

<Figure 2> 

3. Conclusion 

We designed and synthesized by a convergent strategy, three new classes of synthetic inhibitors of tubulin 

polymerization based on the molecular skeleton of dihydronaphtalenes 1, tetrahydronaphtalenes 2 and naphtalenes 3. 

These restricted analogues of isoCA-4 and isoerianin were evaluated for their antiproliferative activity against various 

human cancer cell lines. The lead compounds, dihydronaphtalenes 1e-h, tetrahydronaphtalenes 2b,c and to a lesser 

extent naphtalene 3c displayed potent cytotoxicities with GI50 ranging from 15 to 110 nM. In these three series, six of 

the most cytotoxic compounds were evaluated for effects on tubulin polymerization and the IC50 values in a nearly 

range of 3 M are comparable to that of isoCA-4. The three most potent inhibitors of tubulin assembly having the 

greatest ressemblance to isoCA-4, 2c, 1e and 3d induced a prevalent block of cells in G2/M phase of the cell cycle at 

nanomolar concentrations. In addition, docking studies revealed that these compounds adopted an orientation similar to 

that of isoCA-4 and isoerianin in the colchicine binding-site. Biological results obtained in this study demonstrate that 

structural restrictions at this portion of isoCA-4 offers various permises for the design of novel heterocycle-containing 

restricted isoCA-4 derivatives. Synthesis and biological evaluation of such compounds are under investigation in our 

laboratory and will be reported in due course. 

4. Experimental 

4.1 General considerations 

Triethylamine was distilled from potassium hydroxide under argon prior to use. The compounds were all identified by 

usual physical methods, i.e. 1H-NMR, 13C-NMR, IR, MS and elemental analysis. 1H and 13C NMR spectra were 

measured in CDCl3 with a Bruker Avance 300. 1H chemical shifts are reported in ppm from an internal standard TMS 

or of residual chloroform (7.27 ppm). The following abbreviations are used: m (multiplet), s (singlet), d (doublet), br s 

(broad singlet), t (triplet). 13C chemical shifts are reported in ppm from the central peak of CDCl3 (77.14). IR spectra 

were measured on a Bruker Vector 22 spectrophotometer (neat, cm-1). Elemental analyses were performed with a 

Perkin-Elmer 240 analyser. Mass spectra were obtained with a LCT Micromass spectrometer. Analytical TLC was 
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performed on Merck precoated silica gel 60F plates. Merck silica gel 60 (230-400 mesh) was used for column 

chromatography.  

4.2. Bromination of 6-methoxytetralone was achieved according to literature to give 4b and 4c.[40] 

4.2.1 5-Bromo-6-methoxytetralone (4b) 

Yield: 49 %. TLC: Rf 0.52 (cyclohexane/EtOAc: 9/1). IR (neat) νmax/ cm-1: 3904, 3232, 1664, 1568, 1458, 1415, 1352, 

1327, 1280, 1232, 1188, 904, 826, 776, 729, 638. 1H NMR (300 MHz, CDCl3) δ ppm 8.06 (d, J = 8.7 Hz, 1H), 6.88 (d, 

J = 8.7 Hz, 1H), 3.97 (s, 3H), 3.03 (t, J = 6.2 Hz, 2H), 2.66 – 2.54 (m, 2H), 2.14 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 

196.9, 159.8, 145.6, 128.5, 127.7, 113.1, 109.7, 56.6, 38.1, 30.6, 22.6. MS (APCI, m/z) 255.1 ([M + H]+, 79Br), 257.0 

([M + H]+, 81Br). 

4.2.2 7-Bromo-6-methoxytetralone (4c) 

Yield: 7 %. Rf 0.45 (cyclohexane/ EtOAc: 9/1). IR (neat) νmax/ cm-1: 3628, 3238, 1668, 1568, 1459, 1413, 1352, 1327, 

1283, 1260, 1232, 1188, 902, 778, 733, 640. 1H NMR (300 MHz, CDCl3) δ ppm 8.21 (s, 1H), 6.69 (s, 1H), 3.94 (s, 3H), 

2.91 (t, J = 6.0 Hz, 2H), 2.75 – 2.41 (m, 2H), 2.12 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 196.0, 159.6, 159.4, 151.4, 

145.9, 132.6, 110.8, 56.4, 38.5, 29.9, 23.2. MS (APCI, m/z) 255.0 ([M + H]+, 79Br), 257.0 ([M + H]+, 81Br). 

4.3. General procedure for the formation of N-tosylhydrazones. 

To a solution of tetralone 4b,c (1 mmol), PTSA (0.2 mmol) and MgSO4 (1 mmol) in ethanol (20 mL) was added 4-

methylbenzenesulfonohydrazide (1.2 mmol). The resulting mixture was stirred under reflux for 2 h. After cooling at 

room temperature, the medium was diluted with EtOAc and filtered over a pad of Celite. The solvent was next removed 

and the residue was purified by crystallization in ethanol to afford 5b,c. 

4.3.1. N’-(5-Bromo-6-methoxy-3.4-dihydronaphtalen-1(2H)-ylidene)-4-methylbenzenesulfonohydrazide (5b) 

Yield: 100 %. M.p. 212.1°C Rf 0.5 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2249, 1054, 1025, 1006, 821, 758, 

623. 1H NMR (300 MHz, DMSO) δ ppm 10.51-10.03 (br s, 1H), 7.85 – 7.73 (m, 3H), 7.40 (d, J = 8.1 Hz, 2H), 7.01 (d, 

J = 8.9 Hz, 1H), 3.85 (s, 3H), 2.75 (t, J = 6.0 Hz, 2H), 2.52 - 2.47 (m, 2H), 2.37 (s, 3H), 1.77 (m, 2H). 13C NMR (75 

MHz, DMSO) δ 156.21, 152.15, 143.14, 140.06, 136.50, 129.39 (2C), 127.61 (2C), 126.37, 124.76, 112.31, 110.58, 

56.39, 29.29, 25.12, 21.03, 20.86.  

4.3.2. N’-(7-Bromo-6-methoxy-3.4-dihydronaphtalen-1(2H)-ylidene)-4-methylbenzenesulfonohydrazide (5c) 

Yield: 98 %. M.p. 236°C Rf 0.5 (cyclohexane/ EtOAc: 7/3). IR (neat) νmax/ cm-1: 2249, 1054, 1025, 1016, 992, 821, 

701, 654. 1H NMR (300 MHz, DMSO) δ ppm 10.39 (br s, 1H), 7.92 – 7.70 (m, 3H), 7.42 (d, J = 7.8 Hz, 2H), 6.91 (s, 

1H), 3.84 (s, 3H), 3.35 – 3.30 (m, 2H), 2.76 – 2.59 (m, 2H), 2.38 (s, 3H), 1.85 – 1.65 (m, 2H). 13C NMR (75 MHz, 

DMSO) δ 156.3, 152.1, 143.8, 141.8, 136.7, 129.9 (2C), 128.8, 127.9 (2C), 126.0, 112.5, 109.3, 56.8, 29.1, 25.9, 21.5, 

21.4. 

4.4. General procedure for the coupling of N-tosylhydrazones with aryl iodides. 

To a dioxane (2 mL) solution of N-tosylhydrazone (0.24 mmol), tBuOLi (0.53 mmol), Pd2dba3 (0.02 mmol), and XPhos 

(0.04 mmol) was added the required aryl iodide (0.24 mmol). The mixture was stirred at 90 °C for 5 h. CH2Cl2 (5 mL) 

was then added to the cooled mixture which was filtered over a pad of Celite. After concentration, the residue was 

purified by silica gel chromatography to yield 1a-c, 1k. 

4.4.1. 8-Bromo-7-methoxy-4-(3,4,5-trimethoxyphenyl)-1,2-dihydronaphtalene (1a) 

Yield: 76 %. Rf 0.4 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2931, 1591, 1421, 1331, 1267, 1204, 1154, 1062, 

994, 906, 857, 729, 648. 1H NMR (300 MHz, CDCl3) δ 6.90 (d, J = 8.5 Hz, 1H), 6.60 (d, J = 8.5 Hz, 1H), 6.45 (s, 2H), 

5.91 (t, J = 4.6 Hz, 1H), 3.81 (s, 6H), 3.77 (s, 6H), 2.96 (t, J = 7.9 Hz, 2H), 2.33 (dt, J = 4.8 Hz, J = 7.9 Hz, 2H). 13C 

NMR (75 MHz, CDCl3) δ 154.9, 153.0 (2C), 139.2, 138.2, 137.3, 136.4, 129.8, 125.4, 125.4, 113.6, 108.8, 105.9 (2C), 

60.9, 56.3, 56.1 (2C), 28.1, 23.0. MS (APCI, m/z) 405.7 ([M + H]+, 79Br), 407.2 ([M + H]+, 81Br). Anal. Calcd for 

C20H21BrO4: C 59.27, H 5.22, found C 59.10, H 5.09. 
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4.4.2. 8-Bromo-4-(3,5-dimethoxyphenyl)-7-methoxy-1,2-dihydronaphtalene (1b) 

Yield: 84 %. Rf 0.47 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2931, 1591, 1421, 1267, 1204, 1154, 1062, 906, 

729, 648. 1H NMR (300 MHz, CDCl3) δ 6.98 (d, J = 8.5 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 6.49 – 6.40 (m, 3H), 6.00 (t, 

J = 4.7 Hz, 1H), 3.88 (s, 3H), 3.79 (s, 6H), 3.12 – 2.94 (m, 2H), 2.49 – 2.28 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 

160.62 (2C), 154.9, 142.8, 139.2, 138.1, 129.7, 125.5, 115.8, 113.6, 108.8, 106.9 (2C), 99.4, 56.3, 55.3 (2C), 28.1, 23.0. 

MS (APCI, m/z) 375.15 ([M + H]+, 79Br), 377.36 ([M + H]+, 81Br). Anal. Calcd for C19H19BrO3: C 60.81, H 5.10, found 

C 60.54, H 4.99. 

4.4.3. 7-Methoxy-4-(3,4,5-trimethoxyphenyl)-1,2-dihydronaphtalene (1c) 

Yield: 75%. Rf 0.57 (cyclohexane/EtOAc: 8/2). IR (neat) νmax/ cm-1: 2934, 2834, 1589, 1496, 1453, 1421, 1358, 1301, 

1278, 1249, 1203, 1150, 1117, 1062, 1039, 1000. 1H NMR (300 MHz, CDCl3) δ 6.93 (d, J = 8.5 Hz, 1H), 6.71 (d, J = 

2.6 Hz, 1H), 6.59 (dd, J = 2.6 Hz, J = 8.5 Hz, 1H), 6.49 (s, 2H), 5.89 (t, J = 4.7 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 6H), 3.74 

(s, 3H), 2.76 (t, J = 7.9 Hz, 2H), 2.31 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 158.6, 152.9, 139.5, 138.6 (2C), 137.1, 

136.7, 128.1, 126.7, 124.8, 113.8, 110.8, 105.7 (2C), 60.9, 56.1 (2C), 55.3, 28.8, 23.4. MS (APCI, m/z) 327.9 [M + 

H]+. Anal. Calcd for C20H22O4: C 73.60, H 6.79, found C 73.54, H 6.69. 

4.4.4. 6-Bromo-7-methoxy-4-(3,4,5-trimethoxyphenyl)-1,2-dihydronaphtalene (1k) 

Yield: 78 %. Rf 0.47 (cyclohexane/EtOAc: 8/2). IR (neat) νmax/ cm-1: 2934, 2833, 1580, 1505, 1490, 1465, 1449, 1411, 

1360, 1337, 1255, 1237, 1166, 1126, 1018, 1003, 907, 730, 646. 1H NMR (300 MHz, CDCl3) δ 6.78 (s, 1H), 6.66 (s, 

1H), 6.53 (s, 2H), 6.00 (t, J = 4.6 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.85 (s, 6H), 2.81 (t, J = 7.8 Hz, 2H), 2.39 (m, 

2H). 13C NMR (75 MHz, CDCl3) δ 154.5, 153.1 (2C), 138.7, 137.7, 137.3, 135.9, 130.1, 129.3, 125.7, 111.7, 108.6, 

105.6 (2C), 60.9, 56.3, 56.1 (2C), 28.5, 23.2. MS (APCI, m/z) 405,1 ([M+H]+, 79Br ), 407.4 ([M+H]+, 81Br).. Anal. Calcd 

for C20H21BrO4: C 59.27, H 5.22, found C 59.00, H 5.03. 

4.5. Synthesis of 3a and 3b. 

A CH2Cl2 solution (30 mL) of 1a or 1c (500 mg, 4.93 mmol) and DDQ (1.34 g, 5.91 mmol) was stirred at room 

temperature for 1 h. The medium was next washed three times with water and brine. The organic layer was dryed over 

MgSO4, filtered and evaporated to dryness. Purification by flash chromatography afforded 3a,b.  

4.5.1. 1-Bromo-2-methoxy-5-(3,4,5-trimethoxyphenyl)naphthalene (3a) 

Yield: 33 %. Rf 0.42 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 3663, 3324, 2974, 2934, 1672, 1659, 1579, 1499, 

1088, 1045, 730, 700. 1H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 8.6 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.59 (dd, J = 

8.6, 7.0 Hz, 1H), 7.35 (dd, J = 7.0, 1.1 Hz, 1H), 7.23 (d, J = 9.4 Hz, 1H), 6.66 (s, 2H), 4.03 (s, 3H), 3.95 (s, 3H), 3.87 (s, 

6H). 13C NMR (75 MHz, CDCl3) δ 153.8, 153.1 (2C), 140.7, 137.5, 136.2, 133.6, 128.3, 127.5, 127.3, 126.0, 125.3, 

113.5, 109.1, 107.4 (2C), 61.1, 57.1, 56.3 (2C). MS (APCI, m/z) 403.1 ([M+H]+, 79Br ), 405.1 ([M+H]+, 81Br).. Anal. 

Calcd for C20H19BrO4: C 59.57, H 4.75, found C 59.41, H 4.63. 

4.5.2. 6-Methoxy-1-(3,4,5-trimethoxyphenyl)naphtalene (3b) 

Yield: 99 %. Rf 0.3 (cyclohexane/EtOAc: 8/2). IR (neat) νmax/ cm-1: 2934, 1672, 1579, 1499, 1410, 1374, 1335, 1235, 

1168, 1124, 1031, 1007, 910, 835, 789, 730, 700, 667, 647. 1H NMR (300 MHz, CDCl3) δ 7.86 (d, J = 9.3 Hz, 1H), 

7.75 (d, J = 8.2 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 7.1 Hz, 1H), 7.21 (d, J = 1.9 Hz, 1H), 7.12 (dd, J = 9.3 

Hz, J = 1.9 Hz, 1H), 6.70 (s, 2H), 3.95 (s, 6H), 3.88 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 157.5, 152.9 (2C), 140.2, 

137.3, 136.5, 135.1, 127.6, 127.1, 126.5, 125.9, 124.5, 118.7, 107.2 (2C), 106.1, 60.9, 56.2 (2C), 55.3.  MS (APCI, m/z) 

325.2 [M + H]+. Anal. Calcd for C20H20O4: C 74.06, H 6.21, found C 73.80, H 6.13. 

4.6. General procedure for the preparation of anilines 1d, 1i, 1l and 3c. 

A solution of 1a, 1b, 1k or 3a (1 mmol), NaN3 (2 mmol), CuI (0.1 mmol), DMEDA (0.15 mmol) and sodium ascorbate 

0.05 mmol) in a mixture of DMSO/H2O: 5/1 was stirred at 60 °C in a sealed tube. After 12 h, the medium was cooled, 
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quenched with NH4Cl and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO4, 

filtered and evaporated to dryness. Purification by flash chromatography afforded compounds 1d, 1i, 1l and 3c. 

4.6.1. 2-Methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronahtalen-1-amine (1d) 

Yield: 59 %. Rf 0.6 (cyclohexane/EtOAc: 5/5). IR (neat) νmax/ cm-1: 3663, 3324, 2974, 1659, 1088, 1045. 1H NMR (300 

MHz, CDCl3) δ 6.52 (d, J = 8.4 Hz, 1H), 6.48 (s, 2H), 6.43 (d, J = 8.4 Hz, 1H), 5.84 (t, J = 4.6 Hz, 1H), 3.81 (s, 3H), 

3.77 (s, 3H), 3.76 (s, 6H), 2.60 (t, J = 7.9 Hz, 2H), 2.34 (m, 2H), NH2 not seen. 13C NMR (75 MHz, CDCl3) δ 152.9 

(2C), 147.2, 140.1, 137.3, 132.7, 128.3, 124.2, 121.2, 116.7, 107.2, 106.2 (2C), 61.0, 56.2 (2C), 55.7, 23.0, 21.7 (1C 

missing). MS (APCI, m/z) 342.2 [M + H]+. Anal. Calcd for C20H23NO4: C 70.36, H 6.79, N 4.10 found C 70.01, H 6.48, 

N 3.98. 

4.6.2. 5-(3,5-Dimethoxyphenyl)-1-amino-2-methoxy-1,2-dihydronaphtalene (1i) 

Yield: 73 %. Rf 0.8 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 3669, 3324, 2974, 1670, 1088, 1045. 1H NMR (300 

MHz, CDCl3) δ 6.49-6.42 (m, 4H), 6.35 (t, J = 2.3 Hz, 1H), 5.84 (t, J = 4.6 Hz, 1H), 3.75 (s, 3H), 3.72 (m, 2H), 3.69 (s, 

6H), 2.58 (t, J = 7.9 Hz, 2H), 2.32 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 160.5 (2C), 147.2, 143.8, 140.1, 132.7, 128.2, 

124.3, 121.2, 116.8, 107.0 (3C), 99.4, 55.7, 55.5 (2C), 23.0, 21.7. MS (APCI, m/z) 312.9 [M + H]+. Anal. Calcd for 

C19H21NO3: C 73.29, H 6.80, N 4.50 found C 73.04, H 6.62, N 4.40. 

4.6.3. 3-Methoxy-8-(3,4,5-trimethoxyphenyl)-5,6-dihydronaphtalen-2-amine (1l) 

Yield: 72 %. Rf 0.6 (cyclohexane/EtOAc: 5/5). IR (neat) νmax/ cm-1: 2934, 2251, 2157, 1978, 1578, 1508, 1462, 1410, 

1366, 1339, 1285, 1243, 1214, 1158, 1124, 1006, 909, 823, 731. 1H NMR (300 MHz, CDCl3) δ 6.68 (s, 1H), 6.55 (s, 

2H), 6.49 (s, 1H), 5.94 (t, J = 4.6 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.84 (s, 6H), 2.76 (t, J = 7.7 Hz, 2H), 2.35 (m, 

2H), NH2 not seen. 13C NMR (75 MHz, CDCl3) 153.0 (2C), 146.5, 145.9, 139.7, 137.1, 133.4, 128.0, 127.8, 125.2, 

113.6, 110.5, 105.9 (2C), 61.0, 56.3 (2C), 55.8, 28.2, 23.9. MS (APCI, m/z) 342.0 [M + H]+. Anal. Calcd for 

C20H23NO4: C 70.36, H 6.79, N 4.10 found C 69.88, H 6.39, N 3.89. 

4.6.4. 2-Methoxy-5-(3,4,5-trimethoxyphenyl)naphtalen-1-amine (3c) 

Yield: 46 %. Rf 0.33 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 3663, 3324, 2974, 2934, 1672, 1659, 1579, 1088, 

1045. 1H NMR (300 MHz, CDCl3) δ 7.72 (d, J = 8.5 Hz, 1H), 7.36 (m, 2H), 7.20 (d, J = 7.0 Hz, 1H), 7.12 (d, J = 9.2 

Hz, 1H), 6.62 (s, 2H), 4.27 (br s, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.79 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 153.1 (2C), 

142.6, 140.8, 137.2, 137.0, 129.8, 127.7, 124.6 (2C), 124.4, 120.1, 116.9, 113.4, 107.3 (2C), 61.1, 56.7, 56.3 (2C). MS 

(APCI, m/z) 362 [M + Na]+. Anal. Calcd for C20H21NO4: C 70.78, H 6.24, N 4.13, found C 70.55, H 6.15, N 4.01. 

4.7. General procedure for the preparation of naphtols 1e, 1h and 3d. 

A solution of 1a,b, and 3a (1 mmol), KOH (5 mmol), Pd2dba3 (0.1 mmol) and tBuXPhos (0.2 mmol) in a mixture of 

dioxane/H2O: 1/1 was stirred at 90 °C in a sealed tube. After 1 h, the medium was cooled to room temperature, 

quenched with NH4Cl and extracted with EtOAc (3 x 10 mL). The combined organic layers were then dried over 

MgSO4, filtered and evaporated to dryness. Purification by flash chromatography afforded compounds 1e, 1h and 3d. 

4.7.1. 2-Methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphtalen-1-ol (1e) 

Yield: 63 %. Rf 0.52 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2941, 2177, 1581, 1489, 1355, 1234, 1126, 905, 

726, 652, 610. 1H NMR (300 MHz, CDCl3) δ 6.63 (d, J = 8.5 Hz, 1H), 6.59 (d, J = 8.5 Hz, 1H), 6.56 (s, 2H), 5.97 (t, J 

= 4.6 Hz, 1H), 5.72 (s, 1H), 3.89 (s, 6H), 3.84 (s, 6H), 2.89 (t, J = 7.9 Hz, 2H), 2.38 (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ 153.0 (2C), 146.0, 142.1, 139.7, 137.0, 129.1, 125.5, 122.4, 117.6, 107.4, 106.1 (2C), 61.1, 56.3 (2C), 56.1, 

23.0, 20.4, (1 C missing). MS (APCI, m/z) 343.2 [M + H]+. Anal. Calcd for C20H22O5: C 70.16, H 6.48, found C 70.00, 

H 6.32. 

4.7.2. 5-(3,5-Dimethoxyphenyl)-2-methoxy-7,8-dihydronaphtalen-1-ol (1h) 

Yield: 62 %. Rf 0.46 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2934, 1590, 1489, 1353, 1276, 1204, 1152, 1095, 

1069, 826. 1H NMR (300 MHz, CDCl3) δ 6.60 (s, 1H), 6.58 (d, J = 2.3 Hz, 1H ), 6.50 (d, J = 2.3 Hz, 2H), 6.44 (t, J = 
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2.3 Hz, 1H), 5.98 (t, J = 4.7 Hz, 1H), 5.71 (s, 1H), 3.88 (s, 3H), 3.79 (s, 6H), 2.88 (t, J = 8.0 Hz, 2H), 2.37 (m, 2H). 13C 

NMR (75 MHz, CDCl3) δ 160.6 (2C), 145.9, 143.4, 142.1, 140.0, 129.0, 125.7, 122.4, 117.6, 107.4, 107.0 (2C), 99.5, 

56.1, 55.5 (2C), 23.0, 20.4. MS (APCI, m/z) 313.2 [M + H]+. Anal. Calcd for C19H20O4: C 73.06, H 6.45, found C 

72.99, H 6.39. 

4.7.3. 2-Methoxy-5-(3,4,5-trimethoxyphenyl)naphtalen-1-ol (3d) 

Yield: 82 %. Rf 0.39 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2936, 1579, 1500, 1461, 1403, 1340, 1235, 1123, 

1073, 1005, 896, 797, 729. 1H NMR (300 MHz, CDCl3) δ 8.20 (d, J = 7.0 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.31 (dd, J = 

7.0 Hz, J = 1.2 Hz, 1H), 7.22 (d, J = 9.3 Hz, 1H), 6.70 (s, 2H), 4.00 (s, 3H), 3.94 (m, 3H), 3.87 (s, 6H), OH not seen. 

13C NMR (75 MHz, CDCl3) δ 153.0 (2C), 141.2, 139.9, 139.8, 137.2, 136.8, 127.8, 125.2, 125.0, 124.5, 121.0, 118.0, 

113.1, 107.3 (2C), 61.1, 57.2, 56.3 (2C). MS (APCI, m/z) 341 [M + H]+. Anal. Calcd for C20H20O5: C 70.57, H 5.92, 

found C 70.30, H 5.67. 

4.8. General procedure for the synthesis of alkynes 1f, 1g, 3e and 3f. 

A DMF solution of 1a and 3a (1 mmol), alkyne (1.2 mmol), PdCl2(PPh3)2 (0.05 mmol), PPh3 (0.1 mmol), CuI (0.05 

mmol) and Et2NH (2 mmol) was stirred at 120 °C under microwave irradiation. After 25 min, the medium was cooled 

down to room temperature, quenched with NH4Cl and extracted with EtOAc (3 x 10 mL). The combined organic layers 

were then dried over MgSO4, filtered and evaporated to dryness. Purification by flash chromatography afforded 

compounds 1f, 1g, 3e and 3f. 

4.8.1. 4-(2-Methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphtalen-1-ul)but-3-yn-1-ol (1f) 

Yield: 41 %. Rf 0.6 (cyclohexane/EtOAc: 4/6). IR (neat) νmax/ cm-1: 2922, 1590, 1489, 1413, 1353, 1267, 1128, 905, 

812, 738. 1H NMR (300 MHz, CDCl3) δ 6.97 (d, J = 8.6 Hz, 1H), 6.63 (d, J = 8.6 Hz, 1H), 6.53 (s, 2H), 5.98 (t, J = 4.5 

Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.84 (m, 8H), 3.02 (t, J = 7.8 Hz, 2H), 2.81 (t, J = 6.0 Hz, 2H), 2.39 (m, 2H), OH 

not seen. 13C NMR (75 MHz, CDCl3) 159.3 (2C), 152.9, 140.6, 139.2, 137.1, 136.5, 128.2, 126.2, 125.3, 111.2 (2C), 

107.3, 105.7, 95.1, 77.7, 61.1, 60.9, 56.1, 55.8 (2C), 26.3, 24.4, 23.0. MS (APCI, m/z) 395.6 [M + H]+. Anal. Calcd for 

C24H26O5: C 73.08, H 6.64, found C 72.79, H 6.38. 

4.8.2. 3-(2-Methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphtalen-1-yl)prop-2-yn-1-ol (1g) 

Yield: 25 %. Rf 0.57 (cyclohexane/EtOAc: 4/6). IR (neat) νmax/ cm-1: 2922, 1590, 1489, 1413, 1353, 1267, 1128, 905, 

805, 726, 649. 1H NMR (300 MHz, CDCl3) δ 7.00 (d, J = 8.6 Hz, 1H), 6.64 (d, J = 8.6 Hz, 1H), 6.53 (s, 2H), 5.99 (t, J 

= 4.3 Hz, 1H), 4.61 (s, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.84 (s, 6H), 3.04 (t, J = 7.7 Hz, 2H), 2.38 – 2.19 (m, 2H). OH 

not seen. 13C NMR (75 MHz, CDCl3) 159.3, 152.9 (2C), 141.2, 139.1, 137.1, 136.5, 127.9, 126.7, 125.4, 110.4, 107.4, 

105.8 (2C), 95.8, 80.2, 60.9, 56.1 (2C), 55.8, 51.9, 26.2, 22.9. MS (APCI, m/z) 381.8 [M + H]+. Anal. Calcd for 

C23H24O5: C 72.61, H 6.36, found C 72.56, H 6.12. 

4.8.3. 3-(2-Methoxy-5-(3,4,5-trimethoxyphenyl)naphtalen-1-yl)but-3-yn-1-ol (3e) 

Yield: 52 %. Rf 0.22 (cyclohexane/EtOAc: 6/4). IR (neat) νmax/ cm-1: 2934, 1580, 1501, 1463, 1409, 1320, 1266, 1236, 

1183, 1124, 1060, 1005, 910, 850, 730, 686. 1H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 9.4 

Hz, 1H), 7.60 – 7.48 (m, 1H), 7.31 (d, J = 6.8 Hz, 1H), 7.19 (d, J = 9.4 Hz, 1H), 6.66 (s, 2H), 4.01 (s, 3H), 3.98 – 3.89 

(m, 5H), 3.87 (s, 6H), 2.92 (t, J = 6.1 Hz, 2H), OH not seen. 13C NMR (75 MHz, CDCl3) 158.7, 152.9 (2C), 140.5, 

137.3, 136.2, 134.9, 127.9, 126.8, 126.7, 124.9 (2C), 112.4, 107.3 (2C), 106.5, 96.4, 77.3, 61.2, 60.9, 56.5, 56.2 (2C), 

24.6. MS (APCI, m/z) 393.3 [M + H]+. Anal. Calcd for C24H24O5: C 73.45, H 6.16, found C 73.34, H 6.02. 

4.8.4. 3-(2-Methoxy-5-(3,4,5-trimethoxyphenyl)naphthalen-1-yl)prop-2-yn-1-ol (3f) 

Yield: 49 %. Rf 0.14 (cyclohexane/EtOAc: 2/8). IR (neat) νmax/ cm-1: 2922, 1501, 1463, 1413, 1267, 1128, 905, 805, 

726, 649. 1H NMR (300 MHz, CDCl3) δ 8.35 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 9.4 Hz, 1H), 7.63 (dd, J = 8.4 Hz, J = 7.0 

Hz, 1H), 7.39 (d, J = 7.0 Hz, 1H), 7.26 (d, J = 9.5 Hz, 1H), 6.73 (s, 2H), 4.80 (s, 2H), 4.08 (s, 3H), 4.01 (s, 3H), 3.94 (s, 

6H), OH not seen. 13C NMR (75 MHz, CDCl3) 158.1 (2C), 152.1, 139.8, 135.3, 134.2, 127.9, 126.1, 125.9, 124.2, 
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124.0, 115.5, 106.3 (2C), 96.2, 79.3, 60.2, 55.6, 55.4 (2C), 51.3, two C missing. MS (APCI, m/z) 379.5 [M + H]+. Anal. 

Calcd for C23H22O5: C 73.00, H 5.86, found C 72.87, H 5.76. 

4.9. General procedure for the synthesis of compounds 1j and 3g. 

A NMP solution of 1a or 3a (1 mmol), methyl acrylate (10 mmol), PEPPSI (0.05 mmol) and K2CO3 (2 mmol) was 

stirred at 140 °C in a sealed tube. After 1 h, the medium was cooled down to room temperature, quenched with NH4Cl 

and extracted with EtOAc (3 x 10 mL). The combined organic layers were then dried over MgSO4, filtered, and the 

solvent was then removed. Purification by flash chromatography afforded compounds 1j and 3g. 

4.9.1. Methyl-3-(2-methoxy-5-(3,4,5-trimethoxyphenyl)-7,8-dihydronaphtalen-1-yl)acrylate (1j) 

Yield: 35 %. 0.41 Rf (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 2945, 2500, 1714, 1579, 1504, 1463, 1412, 1352, 

1252, 1169, 1124, 1007, 911. 1H NMR (300 MHz, CDCl3) δ 7.99 (d, J = 16.2 Hz, 1H), 7.05 (d, J = 8.6 Hz, 1H), 6.69 (d, 

J = 8.6 Hz, 1H), 6.53 (s, 2H), 6.45 (d, J = 16.2 Hz, 1H), 6.01 (t, J = 4.1 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.83 (s, 6H), 

3.81 (s, 3H), 2.96 (t, J = 7.7 Hz, 2H), 2.33 (m, 2H). 13C NMR (75 MHz, CDCl3) 167.9, 157.7, 153.0 (2C), 139.6, 139.1, 

138.1, 137.1, 136.7, 128.6, 127.9, 125.1, 123.4, 121.8, 107.8, 105.8 (2C), 60.9, 56.1 (2C), 55.5, 51.6, 25.3, 23.2. MS 

(APCI, m/z) 411.8 [M + H]+. Anal. Calcd for C24H26O6: C 70.23, H 6.38, found C 70.11, H 6.31. 

4.9.2. Methyl-3-(2-methoxy-5-(3,4,5-trimethoxyphenyl)naphtalen-1-yl)acrylate (3g) 

Yield: 22 %. Rf 0.44 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 3976, 3412, 2939, 2185, 1713, 1579, 1503, 1464, 

1414, 1278, 1171, 1153, 1126, 1063, 1008, 806. 1H NMR (300 MHz, CDCl3) δ 8.38 (d, J = 16.2 Hz, 1H), 8.20 (d, J = 

8.9 Hz, 1H), 7.96 (d, J = 8.9 Hz, 1H), 7.54 (t, J = 7.2 Hz, 1H), 7.33 (d, J = 7.2 Hz, 1H), 7.24-7.10 (m, 1H), 6.77 (d, J = 

16.2 Hz, 1H), 6.66 (s, 2H), 3.99 (s, 3H), 3.94 (s, 3H), 3.87 (s, 9H). 13C NMR (75 MHz, CDCl3) 168.4, 156.5, 153.1 

(2C), 141.1, 138.3, 137.4, 136.5, 133.3, 129.9, 127.3, 126.9, 124.9, 123.4, 123.1, 116.9, 112.7, 107.3 (2C), 77.2, 61.1, 

56.3 (2C), 51.8. MS (APCI, m/z) 409.7 [M + H]+. Anal. Calcd for C24H24O6: C 70.57, H 5.92, found C 70.21, H 5.68. 

4.10. General procedure for catalytic hydrogenation. 

A solution of suitable precursor (50 mg) and Pd/C (5 mg) in MeOH (8 mL) was stirred under a H2 atmosphere at room 

temperature. After 4 h, the medium filtered over a pad of Celite and the solvent was removed in vacuo. Purification by 

flash chromatography afforded compounds 2a-e and 3h. 

4.10.1. 6-Methoxy-1-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydronaphthalene (2a) 

Yield: 76 %. Rf 0.6 (cyclohexane/EtOAc: 8/2). IR (neat) νmax/ cm-1: 2931, 1589, 1500, 1462, 1417, 1328, 1232, 1124, 

1038, 1007, 908, 826, 727, 647. 1H NMR (300 MHz, CDCl3) δ 6.80 (d, J = 8.3 Hz, 1H), 6.68 – 6.58 (m, 2H), 6.31 (s, 

2H), 4.01 – 3.94 (m, 1H), 3.83 (s, 3H), 3.78 (s, 9H), 2.93 – 2.79 (m, 2H), 2.19 – 2.07 (m, 1H), 1.95 – 1.84 (m, 2H), 1.84 

– 1.68 (m, 1H). 13C NMR (75 MHz, CDCl3) 157.7, 153.0 (2C), 143.5, 138.7, 136.2, 131.6, 131.2, 113.3, 112.1, 105.8 

(2C), 60.9, 56.2 (2C), 55.3, 45.6, 33.6, 30.2, 21.5. MS (APCI, m/z) 329.1 [M + H]+. Anal. Calcd for C20H24O4: C 73.15, 

H 7.37, found C 72.89, H 7.13. 

4.10.2. 2-Methoxy-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydronaphtalen-1-amine (2b) 

Yield: 47 %. Rf 0.49 (cyclohexane/EtOAc: 6/4). IR (neat) νmax/ cm-1: 2933, 1600, 1492, 1458, 1233, 1127. 1H NMR 

(400 MHz, CDCl3) δ 6.60 (d, J = 8.2 Hz, 1H), 6.31 (d, J = 8.1 Hz, 1H), 6.32 (s, 2H), 3.99 (m, 1H), 3.83 (s, 3H), 3.83 (s, 

3H), 3.78 (s, 6H), 2.59 (m, 2H), 2.07 (m, 1H), 1.96 (m, 1H), 1.83-1.81 (m, 2H), NH2 not seen. The presence of an 

impurity complicates the NMR spectra and despite our best efforts, we were not able to obtain 2b with a satisfactory 

elemental analysis 13C NMR (100 MHz, CDCl3) 153.0 (2C), 145.1, 143.5, 136.2, 133.2, 132.3, 122.8, 119.6, 108.2, 

106.0 (2C), 61.0, 56.2 (2C), 55.7, 46.0, 32.7, 24.7, 20.8. MS (APCI, m/z) 344.2 [M + H]+. 

4.10.3. 2-Methoxy-5-(3,4,5-trimethoxyphenyl)-5,6,7,7-tetrahydronaphtalen-1-ol (2c) 

Yield: 50 %. Rf 0.66 (cyclohexane/EtOAc: 7/3). IR (neat) νmax/ cm-1: 3518, 2930, 2004, 1589, 1492, 1459, 1280, 1234, 

1126, 907, 731, 624. 1H NMR (300 MHz, CDCl3) δ 6.63 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 8.5 Hz, 1H), 6.32 (s, 2H), 5.69 

(br s, 1H), 3.96 (m, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.79 (s, 6H), 2.96 – 2.65 (m, 2H), 2.17 – 1.73 (m, 4H). 13C NMR (75 
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MHz, CDCl3) 153.0 (2C), 144.0, 143.4, 142.6, 133.0, 124.3, 120.9, 108.2, 105.9 (2C), 61.0, 56.2 (2C), 56.1, 45.9, 33.0, 

23.3, 20.7 (one C missing). MS (APCI, m/z) 345.2 [M + H]+. Anal. Calcd for C20H24O5: C 69.75, H 7.02, found C 

69.51, H 6.85. 

4.10.4. 4-(2-Methoxy-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydronaphtalen-1-yl)butan-1-ol (2d) 

Yield: 34 %. Rf 0.31 (cyclohexane/EtOAc: 6/4). IR (neat) νmax/ cm-1: 2004, 1589, 1492, 1459, 1280, 1234, 1154, 1126, 

1064, 1007, 806, 730, 613. 1H NMR (300 MHz, CDCl3) δ 6.71 (d, J = 8.4 Hz, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.31 (s, 

2H), 4.04 – 3.94 (m, 1H), 3.84 (s, 3H), 3.78 (s, 9H), 3.71 (t, J = 6.6 Hz, 1H), 2.82 (t, J = 6.6 Hz, 2H), 2.68 (dd, J =12.7 

Hz, J =6.4 Hz, 2H), 2.16 – 1.48 (m, 10H). 13C NMR (75 MHz, CDCl3) 155.6, 153.1 (2C), 143.6, 136.5, 136.3, 131.9, 

128.5, 128.4, 108.4, 106.1 (2C), 63.0, 60.9, 56.2 (2C), 55.6, 46.4, 33.0, 32.8, 26.8, 25.4, 25.4, 21.5. MS (APCI, m/z) 

423.3 [M + Na]+. Anal. Calcd for C24H32O5: C 71.97, H 8.05, found C 71.59, H 7.83. 

4.10.5. 1-(3,5-Dimethoxyphenyl)-6-methoxy-1,2,3,4-tetrahydronaphtalene (2e) 

Yield: 72 %. Rf 0.25 (cyclohexane/EtOAc: 8/2). IR (neat) νmax/ cm-1: 2939, 2835, 2049, 2000, 1595, 1501, 1462, 1427, 

1323, 1254, 1204, 1154, 1064, 832, 697. 1H NMR (300 MHz, CDCl3) δ 6.80 (d, J = 8.3 Hz, 1H), 6.68 – 6.54 (m, 2H), 

6.31 (t, J = 2.3 Hz, 1H), 6.26 (d, J = 2.2 Hz, 2H), 3.99 (t, J = 6.7 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 6H), 2.96 – 2.71 (m, 

2H), 2.20 – 2.03 (m, 1H), 1.95 – 1.79 (m, 2H), 1.79 – 1.65 (m, 1H). 13C NMR (75 MHz, CDCl3) 160.5 (2C), 157.6, 

150.2, 138.6, 131.4, 131.3, 113.2, 112.1, 107.1 (2C), 97.6, 55.2 (2C), 55.2, 45.2, 33.1, 30.1, 21.0. MS (APCI, m/z) 

299.1 [M + H]+. Anal. Calcd for C19H22O3: C 76.48, H 7.43, found C 76.09, H 7.23. 

4.10.6. 3-(2-Methoxy-5-(3,4,5-trimethoxyphenyl)naphtalen-1-yl)propan-1-ol (3h) 

Yield: 82 %. Rf 0.2 (cyclohexane/EtOAc: 3/7). IR (neat) νmax/ cm-1: 2932, 2035, 1582, 1501, 1462,  1415, 1332, 1257, 

1126, 1040, 1007, 806, 730, 613. 1H NMR (300 MHz, CDCl3) δ 8.01 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 9.4 Hz, 1H), 7.53 

(dd, J = 8.6 Hz, J = 7.0 Hz, 1H), 7.31 (d, J = 6.9 Hz, 1H), 7.24 (d, J = 10.4 Hz, 1H), 6.68 (s, 2H), 3.98 (s, 3H), 3.95 (s, 

3H), 3.87 (s, 6H), 3.59 (t, J = 5.8 Hz, 2H), 3.27 (t, J = 7.0 Hz, 2H), 1.98 (m, 2H), OH not seen. 13C NMR (75 MHz, 

CDCl3) 154.2, 152.9 (2C), 140.9, 136.7, 133.3, 127.7, 126.2, 125.9, 124.3, 122.8, 122.5 (2C), 112.9, 107.2 (2C), 61.6, 

60.9, 56.7, 56.2 (2C), 32.2, 20.6. MS (APCI, m/z) 383.8 [M + H]+. Anal. Calcd for C23H26O5: C 72.23, H 6.85, found C 

72.00, H 6.58. 

4.11. Biolology 

4.11.1. Cell Culture and Proliferation Assay. 

Cancer cell lines were obtained from the American type Culture Collection (Rockville, MD) and were cultured 

according to the supplier’s instructions. Briefly MDA-MB-231 and H1299 cells were grown in Dulbecco minimal 

essential medium (DMEM) containing 4.5 g/L glucose supplemented with 10% FCS and 1% glutamine. Human K562 

leukemia and HCT116 colorectal carcinoma cells were grown in RPMI 1640 containing 10% FCS and 1% glutamine. 

Cell lines were maintained at 37 °C in a humidified atmosphere containing 5% CO2. Cell viability was assessed using 

Promega CellTiter-Blue TM reagent according to the manufacturer’s instructions. Cells were seeded in 96-well plates 

(5 × 103 cells/well) containing 50 μL growth medium. After 24 h of culture, the cells were supplemented with 50 μL of 

the tested compound dissolved in DMSO (less than 0.1% in each preparation). After 72 h of incubation, 20 μL of 

resazurin was added for 2 h before recording fluorescence (λex = 560 nm, λem = 590 nm) using a Victor microtiter 

plate fluorimeter (Perkin-Elmer,USA). The GI50 corresponds to the concentration of the tested compound that caused a 

decrease of 50% in fluorescence of drug treated cells compared with untreated cells. Experiments were performed in 

triplicate. The GI50 values for all compounds were compared to the GI50 of CA4, isoCA-4 and isoerianin and measured 

the same day under the same conditions. 

4.11.2. Tubulin Binding Assay 

Sheep brain tubulin was purified according to the method of Shelanski[41] by two cycles of assembly-disassembly and 

then dissolved in the assembly buffer containing 0.1 M MES, 0.5 mM MgCl2, 1 mM EGTA, and 1 mM GTP, pH 6.6 
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(the concentration of tubulin was about 2-3 mg/mL). Tubulin assembly was monitored by fluorescence according to 

reported procedure[50] using DAPI as fluorescent molecule. Assays were realized on 96-well plates prepared with 

Biomek NKMC and Biomek 3000 from Beckman Coulter and read at 37°C on Wallac Victor fluorimeter from 

Perkin Elmer. The IC50 value of each compound was determined as the concentration which decreased the maximum 

assembly rate of tubulin by 50% compared to the rate in the absence of compound. The IC50 values for all compounds 

were compared to the IC50 of CA4, isoCA-4 and isoerianin and measured the same day under the same conditions. 

Acknowledgments 

The CNRS (Centre National de la Recherche Scientifique) is gratefully acknowledged for financial support of this 

research. We thank the MRES (Ministère de la Recherche et de l’Enseignement Supérieur) for a financial fellowship to 

E.R. Our laboratory BioCIS-UMR 8076 is a member of the Laboratory of Excellence LERMIT supported by a grant 

from ANR (Agence Nationale de la Recherche, ANR-10-LABX-33). The work on tubulin was supported by a grant 

from ANR (ANR-09-BLAN-0071). 

References

                                                 
[1]  A. Jordan, J. A. Hadfield, N. J. Lawrence, A. T. Mc Gown, Med. Res. Rev. 18 (1998) 259-296. 
[2]  T. Beckers, S. Mahboobi, Drug Future 28 (2003) 767-785. 

[3]  J. A. Hadfield, S. Ducki, N. Hirst, A. T. Mc Gown, Prog. Cell Cycle Res. 5, (2003) 309-325. 

[4]  F. Gueritte, J. Fahy, Anticancer Agents from Natural Products; G. M. Cragg, D. G. I. Kingston, D. J. Newman, Eds.; CRC Press: L. Boca 
Raton, (2005) 123-135. 

[5] M. A. Jordan, L. Wilso, Nat. Rev. Cancer 4 (2004) 253-265. 

[6]  E. K. Rowinsky, R. C. Donehower, Pharmacol. Ther. 52 (1992) 35-84. 
[7] R. J. Freilich, C. Balmaceda, A. D. Seidman, M. Rubin, L. M. DeAngelis, Neurology 47 (1996) 115-118. 

[8]  P. H. Hilkens, J. Verweij, C. J. Vecht, G. Stoter, M. J. van den Bent, Ann. Oncol. 8 (1997) 187-190. 

[9]  A. T. Fojo, M. Menefee, Semin. Oncol. 32 (2005) S3-S8. 

[10] C. Dumontet, B. I.; Sikic, J. Clin. Oncol. 17 (1999) 1061-1070. 

[11] G. R. Pettit, S. B. Singh, E. Hamel, C. M. Lin, D. S. Alberts, D. Garcia-Kendall, Experientia 45 (1989) 209-211.  

[12]  G. R. Pettit, S. B. Singh, M. R. Boyd, E. Hamel, R. K. Pettit, J. M. Schmidt, F. Hogan, J. Med. Chem. 38 (1995) 1666-1672. 
[13]  G. R. Pettit, M. R. Rhodes, D. L. Herald, E. Hamel, J. M. Schmidt, R. K. Pettit, J. Med. Chem. 48 (2005) 4087-4099. 

[14]  A. T. McGown, B. W. Fox, Cancer Chemother. Pharmacol. 26 (1990) 79-81. 

[15]  J.P. Liou, Y.L. Chang, F.M. Kuo, C.W. Chang, H.Y. Tseng, C.C. Wang, Y.N. Yang, J.Y. Chang, S.J. Lee, H.P. Hsieh, J. Med. Chem. 47 
(2004) 4247-4257. 

[16] G.M. Tozer, V.E. Prise, J. Wilson, R.J. Locke, B. Vojnovic, M.R. Stratford, M.F. Dennis, D.J. Chaplin, Cancer Res. 59 (1999) 1626-1634. 

[17] G. R. Pettit, C. Temple, V. L. Narayanan, R. Varma, M. J. Simpson, M. R. Boyd, G. A. Rener, N. Bansal, Anticancer Drug Design 10 (1995) 
299-309.  

[18] D. W. Siemann, D. J. Chaplin, P. A. Walicke, Expert. Opin. Investig. Drugs 18 (2009) 189-197. 

[19]  K. Oshumi, R. Nakagawa, Y. Fukuda, T. Hatanaka, T. Tsuji, J. Med. Chem. 41 (1998) 3022-3032. 
[20]  T. Hatanaka, K. Fujita, K. Oshumi, R. Nakagawa, Y. Fukuda, Y. Nihei, Y. Suga, Y. Akiyama, T. Tsuji, Bioorg. Med. Chem. Lett. 8 (1998) 

3371-3374. 
[21]  J. W. Lippert, Bioorg. Med. Chem. 15 (2007) 605-615. 

[22]  K. Ohsumi, T. Hatanaka, K. Fujita, R. Nakagawa, Y. Fukuda, Y. Nihei, Y. Suga, Y. Morinaga, Y. Akiyama, T. Tsuji, Bioorg. Med. Chem. 

Lett. 8 (1998) 3153-3158. 
[23] S. Aprile, E. Del Grosso, G.C. Tron, G. Grosa, Drug Metab. Dispos. 35 (2007) 2252-2261. 

[24] C. Mousset, A. Giraud, O. Provot, A. Hamze, J. Bignon, J. -M. Liu, S. Thoret, J. Dubois, J.-D. Brion, M. Alami, Bioorg Med Chem 

Lett 18 (2008) 3266-3271. 
[25]  E. Rasolofonjatovo, O. Provot, A. Hamze, J. Bignon, S. Thoret, J.-D. Brion, M. Alami, Eur. J. Med. Chem. 45, (2010) 3617-3626. 

[26]  O. Provot, A. Giraud, J.-F. Peyrat, M. Alami, J.-D. Brion, Tetrahedron Lett. 46 (2005) 8547-8550. 

[27]  C. Mousset, O. Provot, A. Hamze, J. Bignon, J.-D. Brion, M. Alami, Tetrahedron 64 (2008) 4287-4294. 
[28] N. L'Hermite, A. Giraud, O. Provot, J.-F. Peyrat, M. Alami, J.-D Brion, Tetrahedron 62 (2006), 11994-12002. 

[29] A. Giraud, O. Provot, J.-F. Peyrat, M. Alami, J.-D. Brion, Tetrahedron 62 (2006) 7667-7673. 

[30]  S. Messaoudi, B. Tréguier, A. Hamze, O. Provot, J.-F. Peyrat, J.R. Rodrigo De Losada, J.-M. Liu, J. Bignon, J. Wdzieczak-Bakala, S. Thoret, J. 
Dubois, J.-D. Brion, M. Alami, J. Med. Chem. 52 (2009) 4538-4542. 

[31] A. Hamze, D. Veau, O. Provot, J.-D. Brion, M. Alami, J. Org. Chem. 74 (2009) 1337–1340. 

[32] E. Rasolofonjatovo, B. Tréguier, O. Provot, H. Hamze, E. Morvan, J.-D. Brion, M. Alami, Tetrahedron Lett. 52 (2011) 1036-1040. 
[33]  E. Brachet, A. Hamze, J.-F. Peyrat, Jean-Daniel Brion, M. Alami, Org. Lett 12 (2011) 4042-4045. 

[34]  M.A. Soussi, S. Aprile, S. Messaoudi, O. Provot, E. Del Grosso, J. Bignon, J. Dubois, J.-D. Brion, G. Grosa, M. Alami, ChemMedChem 6 

(2011) 1781-1788. 
[35]  A. Hamze, A. Giraud, S. Messaoudi, O. Provot, J.-F. Peyrat, J. Bignon, J.-M. Liu, J. Wdzieczak-Bakala, S. Thoret, J. Dubois, J.-D. Brion, M. 

Alami, ChemMedChem 4 (2009) 1912-1924. 

[36]  A. Hamze, E. Rasolofonjatovo, O. Provot, C. Mousset, D. Veau, J. Rodrigo, J. Bignon, J.-M. Liu, J. Wdzieczak-Bakala, S. Thoret, J. Dubois, 

J.-D. Brion, M. Alami, ChemMedChem 6 (2011) 2179-2191. 

[37]  S. Messaoudi, A. Hamze, O. Provot, B. Tréguier, J. Rodrigo De Losada, J. Bignon, J.-M. Liu, J. Wdzieczak-Bakala, S. Thoret, J. Dubois, J.-D. 

Brion, M. Alami, ChemMedChem 6 (2011) 488-497.  
[38]  R.B. Ravelli, B. Gigant, P.A. Curmi, I. Jourdain, S. Lachkar, A. Sobel, M. Knossow, Nature 428 (2004) 198-202.  

[39]  F. Lara-Otchoa, G. Espinosa-Perez, Tetrahedron Lett. 48 (2007) 7007-7010. 

[40]  I. Pravst, M. Zupan, S. Stavber, Tetrahedron Lett. 47 (2006) 4707-4710. 
[41]  B. Tréguier, A. Hamze, O. Provot, J.-D. Brion, M. Alami, Tetrahedron Lett. 50 (2009) 6549-6552. 

[42]  J. Barluenga, P. Morel, C. Valdés, F. Aznar, Angew. Chem. Int. Ed. 46 (2007) 5587-5590. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Pettit%20GR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Singh%20SB%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Hamel%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lin%20CM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Alberts%20DS%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Garcia-Kendall%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus


 13 

                                                                                                                                                                  
[43]  S. Messaoudi, J.-D. Brion, M. Alami, Adv. Synth. Catal. 352 (2010) 1677-1687. 

[44]  S. Messaoudi, J.-D. Brion, M. Alami, Mini-Rev. Org. Chem. 8 (2011) 448-454. 

[45]  K. Anderson, T. Ikawa, R. E. Tundel, S. L. Buchwald, J. Am. Chem. Soc. 128 (2006) 10694-10695. 

[46]  M. Alami, F. Ferri, G. Linstrumelle, Tetrahedron Lett. 34 (1993) 6403-6407. 
[47]  When using the NBS-bromination protocol of 6-methoxytetralone described in ref 40, beside 4b, we have also isolated 7-bromo-6-

methoxytetralone 4c in a 7% yield. 

[48]  Giraud, O. Provot, A. Hamze, J. D. Brion, M. Alami, Tetrahedron Lett 49 (2008) 1107-1110. 
[49]  K.G. Pinney, V.P. Mocharla, Z. Chen, C.M. Garner, A. Ghatak, M. Hadimani, J. Kessler, J.M. Dorsey, K. Edvardsen, D.J. Chaplin, J. Prezioso, 

U.R. Ghatak, U.S. Patent Appl. Publ. (2004) 20040043969 A1. 

[50]  D.M. Barron, S.K. Chatterjee, R. Ravindra, R. Roof, E. Baloglu, D.G.I. Kingston, S. Bane, Anal. Biochem. 315 (2003) 49-56. 

 



 14 

 

Legends to Figures, Schemes and Tables 

 
Figure 1 Representative tubulin binding agents and general structure of the synthesized analogues 1-3. 

 

Scheme 1 Synthesis of compounds 1-3. 

 

Scheme 2 Synthesis of compounds 1k,l. 

 

Table 1 Cytotoxicity of compounds 1-3 against HCT 116 cells.a 

 

Table 2. Cytotoxicities of selected compounds against different human cancer cell lines and inhibition of tubulin 

polymerization (ITP). 

Table 3. Evaluation of G2/M arrest in MDA-MB231, K562, HCT116 and H1299 cells exposed to 2c, 1e and 3d. 

Figure 2. Docked pose of 2c, 1e and 3c overlayed with isoCA-4 and isoerianin in the tubulin binding site. 
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 isoCA-4 isoerianin CA-4  
 

3 ± 0.2d 28 ± 2 2 ± 0.1d  

a HCT116: human colon carcinoma cells. b GI50 is the concentration of compound needed to reduce cell growth by 50% following 72 

h cell treatment with the tested drug (average of three experiments). c GI50 value not calculated owing to the low activity of the 

compound. d The GI50 values for isoCA-4, isoerianin and CA-4 were determined in this study. 

 
<Table 1> 



 19 

 

Compound 

GI50
a [nM] Inhibition of tubulin 

polymerization  

IC50
b [M] 

Non-small lung human carcinoma 

(H1299) 

Human breast cancer 

(MDA-MB231) 

Chronic mylogenous 

leukemia (K562) 

1d 30 ± 2 85 ± 5 180 ± 14 2.1 ± 0.2 

1e 32 ± 2.5 20 ± 1.5 15 ± 0.8 1.9 ± 0.2 

1h 33 ± 2 20 ± 1 20 ± 1.5 2.0 ± 0.2 

1i 32 ± 2 70 ± 6 200± 12 3.1 ± 0.5 

2a 80 ± 7 100 ± 7 150± 10 c 

2b 45 ± 3 70 ± 3 110± 9 c 

2c 30 ± 2.5 30 ± 2 55± 3 3.0 ± 0.3 

3c 90 ± 7 60 ± 4 85± 5 2.0 ± 0.3 

3d 310 ± 25 500 ± 35 380± 25 6.9 ± 0.8 

isoCA-4 3 ± 0.4 4 ± .5 5± 4 2.2 ± 0.2d 

isoerianin 38 ± 3 40 ± 5 20± 1.5 3.2 ± 0.3d 

CA-4 5 ± 0.4 3 ± 0.3 4± 0.3 1.0 ± 0.2d 

a GI50 is the concentration of compound needed to reduce cell growth by 50% following 72 h cell treatment with the tested drug 

(average of three experiments). b ITP, inhibition of tubulin polymerization; IC50 is the concentration of compound required to inhibit 

50% of the rate of microtubule assembly (average of three experiments). c IC50 value not calculated owing to the low activity of the 

compound. d The GI50 and IC50 values for isoCA-4, isoerianin and CA-4 were determined in this study. 

 
<Table 2> 
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Untreated cells 2c: 5.10-9 M 1e: 10-8 M 3d: 5.10-7 M 

 
   

MDA-MB231 cells 

    

K562 cells 

 
 

 
 

HCT116 cells 

    
H1299 cells 

 

<Table 3> 
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Superimposition of 2c and isoCA-4 (blue) Superimposition of 1e and isoCA-4 (blue) 

  
Superimposition of 3d and isoerianin (green) Superimposition of 1e, 2c and 3d 

 
<Figure 2> 


