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Abstract 

Wyner-Ziv (WZ) video coding – a particular case of distributed video coding 

(DVC) – is a new video coding paradigm based on two major Information Theory 

results: the Slepian-Wolf and Wyner-Ziv theorems. Most of the solutions 

available in the literature, model the correlation noise between the original frame 

and the so-called side information by virtual channel. However most of the DVC 

solutions in the literature assume Laplacian distribution as noise virtual channel 

model, in this study we perform three goodness-of-fit tests, the Kolmogorov-

Smirnov test and the Chi-Square test and log-Likelihood test to study the nature of 

the virtual channel. The results show that a mixture of 3 (or 4) mixture Gaussian 

model can best describe this virtual channel. 

Keywords: Distributed video coding, Virtual channel model, KS test,  

                   Chi-square test, Log-likelihood ratio test. 

 

 

1.  Introduction 

Conventional digital video coding paradigm represented by the ITU-T and MPEG 

standards mainly relies on a hybrid of block-based transform and inter-frame 

predictive coding approaches. In this coding framework, the encoder exploits both 

the temporal and spatial redundancies present in the video sequence, which is a 

complex process and it requires a noticeable amount of resources (power and 

memory). As a result, all standard video encoders have much higher 

computational complexity than the decoder (typically five to ten times more 

complex) [1], mainly due to the temporal correlation exploitation tools used in the 

motion estimation task. As a result, the traditional video coding is no longer 

applicable for these WVSN applications. Appropriate video coding paradigm for 

these applications must have low encoding complexity.  
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Lower encoding complexity can be achieved by moving some of the encoder 

tasks to the decoder part, particularly the complex motion estimation process.  

Two notable theorems from information theory have paved the way for new video 

coding paradigm known in the literature as Distributed Video Coding (DVC). It 

allows low encoding complexity and approaches the efficiency of traditional 

video coding schemes. These two theorems are known as Slepian-Wolf theorem 

and Wyner-Ziv theorem [2, 3]. They suggest that, for two correlated sources X 

and Y, separate encoding - joint decoding system can approach the efficiency of 

joint encoding-decoding system when the information about the correlation 

between X and Y is available at the decoder. The practical application of DVC [4-

9] is referred to as Wyner-Ziv video coding (WZ) where an estimate of the 

original frame herein called the “side information” is available at the decoder. The 

compression is achieved by sending only that extra information (parity bits) that 

is needed to correct this estimate. An error correcting code is often used with the 

assumption that the estimate is a noisy version of the original frame and the 

correction can be made with few extra parity bits that determine the rate.  

For the purpose of modelling, a virtual channel is assumed to represent the 

estimation noise [10] in the estimate of the original frame. Many works [10-19] 

have been devoted to study this estimation noise and gain some insight of the 

characteristics of the virtual channel.   

In this work the authors performed different goodness-of-fit test to identify the 

best fit model that characterizes the virtual channel. In this paper we will first 

introduce the theoretical foundation for the distributed source coding in Section 2. 

The modelling of the virtual channel is discussed in Section 3. The distribution 

models that have a potential in modelling the virtual channel are explained in 

Section 4. The goodness-of-fit tests will be covered in more detail in Section 5. 

The experimental work and its results will be explained in Section 6. Section 7 

concludes the work and presents the future work. 

 

2.  Theoretical Foundation  

Let {(Xi,Yi)} be a sequence of independent and identically distributed (i.i.d.) 

drawings of a pair of correlated discrete random variables X and Y. For lossless 

compression with arbitrarily small error XX ˆ=  and YY ˆ=  after decompression, 

it is known from Shannon’s source coding theorem that a rate given by the joint 

entropy, H(X,Y), of X and Y is sufficient if the two sources are jointly encoded . 

For example, we can first compress Y into H(Y) bits per sample, and based on the 

complete knowledge of  at the encoder and the decoder, then compress X into 

H(X,Y) bits per sample. But if X and Y must be separately encoded for some user 

to reconstruct both of them the sufficient rate for lossless reconstruction is not 

known. One can separately encode them with rate, R=H(X)+H(Y), which is 

greater than  H(X,Y) if the two sources X and Y are correlated. In 1973, Slepian 

and Wolf [2] showed that R=H(X,Y)is sufficient for lossless decompression, even 

for separate encoding of correlated sources (see Fig. 1).  

In other words, for the rates 

( )
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                  (1) 
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The combined rate is given by  

( )YXHRR YX ,≥+                                                                                     (2) 

 

Fig. 1. Relationship between Channel Coding and Slepian-Wolf Coding. 

 

The proof of the Slepian-Wolf theorem is based on random binning, which is 

non-constructive, i.e., it does not reveal how practical code design should be done 

[20]. Wyner suggested the use of channel coding to approach the R=H(X)+H(Y) 

SW rate. Consider a binary sequence, X, to be encoded and a noisy version of it, 

Y, present at the decoder (Fig. 1). To correct the errors between these two binary 

sequences, a channel code may be applied to the sequence X. The compression of 

X is achieved by transmitting only the parity bits. Hence, jointly with Y, the 

decoder uses the parity bits produced by the encoder to make error correction, 

achieving a perfect decoding of the sequence X. 

Wyner and Ziv [3] have studied a particular case of Slepian-Wolf coding 

corresponding to the rate point (H(Y), H(X|Y))  where X and Y are correlated 

sources. The work of Wyner-Ziv [3] has established the rate-distortion (RD), 

( )DR YX

*

|
,  necessary to encode X guaranteeing its reconstruction with an average 

distortion below D, assuming that only the decoder has access to Y. The results 

obtained by Wyner and Ziv indicate that when the statistical dependency between 

X and Y is exploited only at the decoder, the transmission rate increases compared 

to the case where the correlation is exploited both at the encoder and the decoder, 

for the same average distortion, D.  Mathematically, the Wyner and Ziv theorem 

can be described by 

( ) 0                     |

*

| ≥≥ DRDR YXYX
                                                                   (3) 

where ( )DR YX

*

|
represents the minimum encoding rate for X and H(X|Y) 

represents the minimum rate necessary to encode X when Y is available at the 

encoder and the decoder. Wyner and Ziv showed that there is no rate increase for 

all D ≥ 0, when X and Y are jointly Gaussian sequences and D, an MSE distortion 

measure. A major work on practical Wyner-Ziv code design called DISCUS [21]  

recently extended the no rate loss condition for Wyner-Ziv coding even for case 

where only the innovation between X and Y is Gaussian, and X and Y could follow 

more general distributions. 
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3.  Modelling the Virtual Channel  

Distributed source coders rely heavily on efficient error correcting codes, the 

performance of these codes depends greatly on the choice of the noise model that 

characterizes the dependency channel [6]. The no loss result of the Slepian-Wolf 

theorem comes under the assumption that the statistical dependence between WZ 

data and SI is perfectly known to both encoder and decoder, and that it follows a 

Gaussian distribution [2]. Exact knowledge of the statistical dependence between 

X and Y is required  

• to characterize the channel in the SW decoder,  

• to perform MMSE estimation in the inverse quantizer, and  

• to help controlling the SW code rate [22, 23].  

It is widely common in DVC literature [6-12] to use a Laplacian distribution to 

model the statistical correlation between the original frame and the side information, 

this Laplacian distribution is used to convert the side information (pixel values) into 

soft-input information needed for channel decoding. In first DVC implementations, 

the Laplacian parameters were off-line computed for each sequence [4].  

The correlation between the decoder SI and the original WZ frame is 

estimated at the encoder by recreating the SI for each WZ frame as the average of 

the two temporally closer key frames [17]. Furthermore, the bit error probability 

of each bit plane is modelled assuming a Binary Symmetric Channel (BSC). In 

the SEASON framework [24], the deviation of the side information from the 

actual video frame is modelled as an additive stationary white noise signal. With 

the use of Turbo codes as Slepian-Wolf coder, an inaccurately chosen noise 

model of the dependency channel (modelled by the conditional pdf P(X|Y) has a 

big influence on the performance of Turbo decoding [13]. The performance loss 

due to the inaccuracies in modelling the non-stationary dependency channel and 

the sensitivity of LDPC codes to the modelling of the noise in the dependency 

channel is experimentally has been studied in [25].   

The pixel domain DVC is simplest DVC system where the spatial correlation 

is ignored and only the temporal correlation is utilized to obtain good 

compression ratio. In this system the virtual represents the correlation between the 

quantized original pixel values and the side information pixel values. The 

transform domain distributed video codec exploits the spatial redundancy within a 

frame, by applying the DCT transform over the frame blocks; therefore the DCT 

transform coefficients are grouped into DCT bands and then quantized and turbo 

coded, since DCT coefficient are turbo coded the noise must be taken to represent 

the correlation noise between the original frame quantized DCT bands and the 

side information DCT bands.  

 

4.  Probability Distributions 

A commonly used distribution distributions will be considered here in this study 

such as the Gaussian, Laplacian and Gaussian Mixture models. The Gaussian and 

Laplacian distribution have been used to model the virtual channel in many DVC 

solutions, both models represent stationary noise. The Gaussian mixture also is 

considered to investigate the non-stationary model for the virtual channel. The 

Gaussian pdf with mean µ and variance σ2 is defined by 
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The Gaussian mixture pdf with the parameters σ2, ρi, µi model can be defined by 
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 Goodness-of-fit test 
Goodness-of-fit tests are used to examine hypothesis that a given data set comes 

from a model distribution with given parameters. The Kolmogorov-Smirnov [26] 

(KS) test and Chi-Square tests are two popular goodness-of-fit tests. The KS test 

has been used in [16, 18-20, 22], to study the statistics of DCT coefficients, chi-

square has also been used to characterize the distribution of the DCT [5-7]. 

 

5.1. Kolmogorov-Smirnov goodness-of-fit test 

Kolmogorov–Smirnov test compares the empirical cumulative distribution 

function (ECDF) with the given model CDF. Given N ordered data points X1, X2, . 

. . . , XN, the ECDF is defined as 
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The KS statistic Dn is then defined as  

( ) ( )iXiX
Mi

n xFxFD ˆmax
,2,1

−=
= L

                              (8) 

The KS statistic test measure the distance between the empirical CDF and the 

model CDF which would measure the goodness-of-fit. If the empirical CDF is 

tested against several model CDFs, the model that gives the minimum KS statistic 

can be taken to be the best fit for the data. 

 

5.2. The chi-square goodness-of-fit test 

The Chi-square compares probability density functions (pdf).This test is applied 

to binned data (i.e., data is divided into disjoint classes, for non-binned data chi-

square test can simply be performed on the histogram or frequency table of the 

non-binned data. This test is sensitive to the choice of bins. There is no optimal 

choice for the bin width (since the optimal bin width depends on the distribution). 

Assume we have k A-bins Ai; i = 1, 2, …., k. Let Ei = npi the expected frequency 
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in bin Ai with ( )ii AxPp ∈= and n the total number of data samples. Let Oi be the 

observed frequency in bin Ai then the Chi-square statistic is defined as 

∑
=

−
=

k

i i

ii
k

E

EO
V

1

                  (9) 

The Vi is the measure of deviation of the empirical frequencies from the expected 

frequencies. Best fit model is the one that gives the minimum chi-square statistic. 

 

5.3. The log-likelihood ratio goodness-of-fit test 

The Likelihood Ratio Test (LRT) is a statistical test of the goodness-of-fit 

between two models Fx(x) and Gx(x). A relatively more complex model is 

compared to a simpler model to see if it fits a particular dataset significantly 

better. If so, the additional parameters of the more complex model are often used 

in subsequent analyses. The LRT is only valid if used to compare hierarchically 

nested models. That is, the more complex model must differ from the simple 

model only by the addition of one or more parameters. Adding additional 

parameters will always result in a higher likelihood score. The LRT provides one 

objective criterion for selecting among possible models. The LRT begins with a 

comparison of the likelihood scores of the two models: 

( ) ( ) ( )
( ) ( ) ( )








××
××

=
nxxx

nxxx

xGxGxG
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LLR
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21
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This LRT statistic approximately follows a chi-square distribution. 

 

5.  Experiments and Results 

Table 1 gives the detail of the video sequences set used in this study. This set 

of sequences represents a range of typical video content from low and high 

latency applications. This set has been used in many related studies and video 

coding performance testing. The frame interpolation is performed by motion 

compensation as in [1], for GOP = 2. The quantization scheme for the 

transform domain as in [1] and only tow RD point were considered. Each 

chosen sequence provides 25344×100 samples for pixel domain and 

1584×100 samples per coefficient for transform domain. Therefore, the 

empirical distribution derived from these sequences can be assumed to be 

close to the actual distributions.  

The virtual channel in the transform domain is to model the correlation 

between the original frame bands and estimate frame bands. The typical bands 

number is 16 bands resulting from transforming 4-by-4 block into DCT 

transform. The test was performed on the first 15 bands and the 16th band is 

ignored due to its small energy. The number of the mixtures model used to 

model each DCT band is given in Table 2. The test results for the transform 

domain and for the pixel domain for different test sequences are given in 

Tables 3 to 8. 
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Table 1. Test Video Sequences. 
 

Sequence 
Resolution  

QCIF 

Number of  

Frames 

1 Akiyo 176 × 144 296 

2 Foreman 176 × 144 160 

3 Container 176 × 144 296 

4 News 176 × 144 296 

5 Silent 176 × 144 296 

6 Mother-daughter 176 × 144 296 

7 Salesman 176 × 144 144 

8 Paris 176 × 144 248 

9 Miss America 176 × 144 160 

 

Table 2. GMM Number per DCT Band. 

3 3 3 2 

3 3 2 2 

3 3 2 2 

2 2 2 0 

 

The KS statistics were computed for the correlation under consideration 

against the distribution models. The distribution that gives the minimum KS 

statistics is chosen as the one that best fit under the KS criterion. Similarly for the 

Chi square the distribution that gives the minimum Chi-square statistics is chosen 

as the one that best fit under the Chi-square criterion. The log-likelihood ratio test 

is performed to compare different models to examine the goodness-fit to represent 

the virtual channel. The positive sign indicates the model in the numerator fits 

better than the de-numerator model.  

The KS test results for transform domain and pixel domain are given in Tables 

3 and 6 respectively. The Chi-square test results for the transform domain are 

given in Table 4 and for pixel domain for different test sequences are given in 

Table 7. Tables 5 and 8 show the test results for the log-likelihood ratio test for 

transform domain and pixel domain respectively.  

The minimum statistics and the best fit distribution have been indicated in 

bold. The difference in the choice of best fit model for the virtual channel, 

based on the goodness statistics are only statistical and the performance of 

using this models has not been investigated in terms of RD performance of 

DVC systems. Although for some tests as in Table 3, the KS statistics show that 

the normal distribution fits better than Gaussian mixture but form all the tables 

the virtual channel can be seen as Gaussian mixture model in both domains 

(pixel and transform). The Chi-square tests’ results also show that Gaussian 

mixture models fit better and the second best model is the Laplacian model. The 

consolidating test performed by log-likelihood test, also shows that the 

Gaussian mixture model is the best fit. The LLR test’s result shows that the 

Laplacian distribution and normal distribution almost have equal statistics to 

represent the virtual channel.  
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Table 3. KS Test Results in the Transform Domain. 

 

Table 4. Chi-Square Test Results in the Transform Domain. 

 

Table 5. Log-likelihood Ratio Test Results in the Transform Domain. 

 Akiyo KS statistics  Foreman KS statistics 

Coef. Lap GMM Normal  Lap GMM Normal 

1 0.7326 0.0728 0.1460  0.4701 0.0476 0.1758 

2 0.7735 0.1060 0.1346  0.5863 0.0517 0.1221 

3 0.7419 0.0982 0.1588  0.5099 0.0545 0.1395 

4 0.8178 0.1256 0.1281  0.6113 0.0766 0.1021 

5 0.8203 0.1364 0.1547  0.5649 0.0706 0.1129 

6 0.8584 0.1029 0.1128  0.7345 0.0811 0.1035 

7 0.8942 0.1513 0.1742  0.8194 0.1278 0.1290 

8 0.9153 0.1277 0.1243  0.6953 0.0853 0.0978 

9 0.9051 0.1425 0.1359  0.6988 0.1723 0.0917 

10 0.9063 0.1670 0.1739  0.7608 0.1675 0.1003 

11 0.9667 0.1946 0.1920  0.8216 0.1081 0.1148 

12 0.9418 0.1400 0.1183  0.8409 0.0788 0.0917 

13 0.9521 0.2001 0.1558  0.8065 0.1693 0.1274 

14 0.9850 0.1369 0.1175  0.9516 0.1894   0.1303 

15 0.9832 0.1485 0.1699  0.9294 0.1581 0.1149 

 Akiyo Chi-Square 

 statistics 
 

Foreman Chi-Square  

statistics 

Coef. GMM Lap Normal  GMM Lap Normal 

1 0.051 K 1.352 K 1259.56 K  0.053 K 1.506 K 1259.44 K 

2 0.052 K 1.349 K 1278.56 K  0.078 K 1.968 K 1606.64 K 

3 0.051 K 1.166 K 1255.00 K  0.045 K 0.609 K 1242.11 K 

4 0.077 K 1.397 K 1296.56 K  0.067 K 0.891 K 1203.80 K 

5 0.056 K 1.347 K 1360.29 K  0.051 K 0.064 K 1379.46 K 

6 0.065 K 0.833 K 1474.80 K  0.050 K 1.451 K 1620.30 K 

7 0.045 K 4.053 K 1556.14 K  0.026 K 0.359 K 2368.20 K 

8 0.068 K 16.542 K 1278.52 K  0.016 K 2.228 K 2798.99 K 

9 0.066 K 8.1065 K 1398.93 K  0.053 K 8.605 K 1297.12 K 

10 0.109 K 2.496 K 1267.39 K  0.020 K 0.370 K 1158.41 K 

11 0.080 K 3.346 K 1347.63 K  0.107 K 0.059 K 1761.11 K 

12 0.113 K 2.912 K 1295.42 K  0.010 K 49.58 K 1417.26 K 

13 0.079 K 5.994 K 1268.11 K  0.371 K 2.998 K 6298.83 K 

14 0.057 K 18.555 K 1255.70 K  0.121 K 10.46 K 2353.14 K 

15 0.070 K 0.553 K 1300.64 K  0.041 K 0.062 K 1090.93 K 

 Mother & Daughter  

LLR test result 
 

Hall Transform domain  LLR 

test result 

Coef. GMM/ 

Lap 

Gauss/ 

GMM 

Lap/ 

Normal 
 

GMM/ 

Lap 

Gauss/ 

GMM 

Lap/ 

Normal 

1 7.2123 -7.2110 -0.0013  0.7037 -0.7037 -0.0000 

2 2.3672 -2.3309 -0.0362  0.2163 -0.2125 -0.0038 

3 2.3587 -2.3257 -0.0330  0.2309 -0.2267 -0.0041 

4 3.4923 -3.4649 -0.0274  0.3149 -0.3112 -0.0037 

5 3.8031 -3.7707 -0.0324  0.3693 -0.3658 -0.0036 

6 4.0932 -4.0932 -0.0000  0.2738 -0.2709 -0.0030 

7 7.3676 -7.3395 -0.0281  0.3886 -0.3854 -0.0032 

8 5.4445 -5.4194 -0.0251  0.5384 -0.5356 -0.0029 

9 5.3688 -5.3464 -0.0224  0.4914 -0.4884 -0.0030 

10 6.2237 -6.1906 -0.0332  0.4601 -0.4568 -0.0033 

11 9.9520 -9.9344 -0.0176  0.7218 -0.7197 -0.0021 

12 8.2311 -8.2127 -0.0184  0.7969 -0.7969 -0.0000 

13 9.7391 -9.7391 -0.0000  0.8768 -0.8768 -0.0000 

14 ∞ -∞ -0.0000  1.0086 -1.0086 -0.0000 

15 ∞ -∞ -0.0000  0.9369 -0.9369 -0.0000 
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Table 6. KS in Pixel Domain Test Results. 
Test sequence Lap GMM Normal 

Carphone 0.7570 0.0485 0.0843 

Miss-America 0.7007 0.0456 0.1108 

Foreman 0.7121 0.0780 0.0869 

Hall monitor 0.7543 0.0397 0.0530 

Coastguard 0.6749 0.0390 0.1079 

Akyio 0.7801 0.0628 0.0640 

Mother & Daughter  0.7854 0.0683 0.1014 

 

Table 7. Chi-Square Test Results for the Pixel Domain. 

 

 

 

 

 

 

 

 

Table 8. Log-likelihood Ratio Test Result for Pixel Domain. 

 

 

 

 

 

 

 

Figures 2 and 3 show the histogram of the virtual channel and the empirical 

pdf of the actual data compared with the Gaussian and Laplacian distributions. 

From these figures we can see that the empirical pdf of the actual data can poorly 

be modelled by any of the two distributions, which validates the results shown in 

the tables that best model for the virtual channel is mixture of stationary models. 

It is not surprising that the mixture model fits better than the stationary 

models (Gaussian and Laplacian) since the predicted frame is expected to have 

varying degrees of success along the predicted frame, although more 

sophisticated motion estimation/compensation algorithms can be used to 

generate the side information. The practical frame prediction is fundamentally 

faulty due to events like occlusions. In regions where the motion estimation 

process is successful like the background region the side information is much 

correlated with the original frame, in some other regions this process 

completely fails, caused by occlusion, the side information is uncorrelated with 

the original data. The limitations of side information prediction result in 

location-specific non-stationary estimation noise, for example, when occlusion 

occurs. As a result of the spatial variation in the side information, the noise 

process for the entire frame is represented by a group of uniform pdf models. 

Video sequence  GMM Laplace Normal 

Carphone 0.8260K 430.0K 323635. K 

Miss-America 0.7760K 1094.4K 321467. K 

Foreman 0.8329K 815.7K 321412. K 

Hall 0.8246K 169.4K 321610. K 

Coastgaurd 0.8165K 664.9K 321171. K 

Akiyo 1.1673k 817.9K 322543. K 

Mother daughter  0.7425k 425.3K 321801. K 

News 0.8615K 812.2K 321407. K 

Hall 0.8246K 169.4K 321610. K 

Video  

Sequence  

GMM/ 

Laplce 

Normal/ 

GMM 

Normal/ 

Laplace 

Foreman 5.5226    -5.3646    -0.1580 

Akyio 3.9404 -3.988 0.0476 

Mother & daughter 2.1692 -2.1977 0.0284 

Hall 2.9008 -2.9518 0.0510 

News 7.2305 -6.6602 -0.5704 

Salesman 4.531 -4.4336 -0.0974 
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Fig. 2. Histogram of the Virtual Channel                                                                       

in Pixel Domain for Foreman Video Sequence. 

 

 
Fig. 3. Histogram of the Virtual in Transform Domain                                         

for Carphone Video Sequence. 
 

6.  Conclusions and Future Work 

This study performs three goodness-of-fit tests to study the nature of the virtual 

channel in the feedback channel approach. However study shows that the best 

fit model is Gaussian mixture, which is non-stationary form. The non-stationary 

nature of the virtual channel is attributed to the fact that the side information 

estimations’ quality varies along the frame, successful estimation at some 

regions and poor estimation at occluded regions. Therefore a better RD 

performance is expected to be obtained in systems that assume non-stationary 

model for the Virtual channel .This knowledge can enable design of optimal 

quantizer as well to improve the RD performance. If the virtual channel is 

assumed to be stationary extra attention must be given to the side information 

generation. Future work is implementing the DVC coding system to study the 

R-D performance of these models at the same setting to compare their 

capability to model the virtual channel and the impact of the accurate virtual 

channel modelling on R-D performance. 
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