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Longevity gained through regular exercise
is cemented into popular wisdom. Today the
cardiovascular benefits from moderate exer-
cise are undeniable and the data from large
cohort studies keep piling up.1,2 But the bene-
fits from endurance exercise are less clear and
even less is known about its effects on longevi-
ty.3 What endurance exercise cannot do is
explain away myocardial remodeling4 and
arrhythmias.5

Despite this, until now no underlying mech-
anism to explain increased life expectancy
resulting from endurance exercise has been
very convincing. Harman suggested in a
groundbreaking paper that mitochondria are
the orchestrators of aging.6 He argued that
mitochondria are both producing and being
damaged by free radicals, but antioxidants do
not enter the mitochondria. 

Reactive oxygen species are routinely inac-
tivated to relieve oxidative stress by the
enzymes glutathione peroxidase, superoxide
dismutase and catalase.7 We know something
about cellular system deficiencies of these
enzymes in mice and men. They lead to
endothelial dysfunction8 and increased risk of
cardiovascular events9 respectively. 

On the other hand, exogenous antioxidants
seem to play no role and this avenue of
research is fraught with controversy.10 In fact,
exogenous antioxidants have even been
shown to be harmful. In the Alpha-
Tocopherol/Beta-Carotene Cancer Prevention
Study, there was an 18 percent higher inci-
dence of lung cancer among men who received
beta-carotene than among those who did not
and increased incidence of cardiac death,
hemorrhagic stroke, and ischemic heart dis-
ease.11

With particular regard to the effects of exer-
cise on mitochondria and heart, the role of
mitochondrial biogenesis under physiological
and pathological states has to be considered.
Conditions requiring increased cardiac work-
load promote increasing heart mass and
changes in genetic expression; the variations
in response to endurance training include
alterations in mitochondrial biogenesis (and
the same event has also been observed in
heart failure),12 in mitochondrial oxidative
stress molecules, in mitochondrial antioxidant

enzymes13 resulting in a total cardioprotective
effect.14

Some light has recently been shed on the
mitochondrial role of aging using mouse mod-
els for progenoid aging and this may set a cap-
stone on Harman’s lifelong work.

In a pioneering study, Safdar used the
mtDNA mutator mouse to find out whether
endurance exercise can nullify multisystem
degeneration and premature aging in these
animals.15 Such mice provide a model for
mtDNA mutations that accumulate during nat-
ural aging and result in electron transport
alterations leading to increased activation of
apoptosis.16,17

How was the study done?
In Safdar’s study, one group of mice were

kept sedentary and another group from age-
matched littermates was forced to run on a
wheel for 45 min three times a week. 

What did they find?
As expected, sedentary mice displayed signs

of accelerated aging: alopecia, graying hair,
weight loss, poor body condition, and impaired
mobility. By contrast, In the exercising group,
five months of endurance exercise induced
systemic mitochondrial biogenesis, prevented
mtDNA depletion and mutations, increased
oxidative capacity and respiratory chain
assembly, restored mitochondrial morphology,
and blunted apoptosis. These adaptations con-
ferred complete phenotypic protection, main-
tained weight reduced multisystem pathology
and prevented premature mortality.

What were the limitations
of the study?

The study probably does not provide argu-
ment for the general role of mitochondria but
rather for the role in this specific mouse
model. These results must be interpreted with
caution because of the small number of ani-
mals10 in each group.

What are the implications
of the study for cardiogenetics?

In light of the maternal pattern of mitochon-
drial inheritance, the role of the mitochondrial
genome must be considered with respect to
human genetic disease. 

The mitochondrial genome has a high muta-
tion rate. The overall mtDNA mutation rate per
base pair per fly generation in Drosophila is
estimated to be about 10-fold higher than the
nuclear mutation rate, but the mitochondrial
major strand G>A mutation rate is about 70-
fold higher than the nuclear rate.18 Mito -
chondrial mutations have been associated
with heart failure, heart block, and cardiomy-
opathy.19 Mitochondrial myopathies can arise
from deletions in mitochondrial DNA or mito-

chondrial proteins associated with ATP elec-
tron transport chain enzyme defects that alter
mitochondrial morphology.20 Other mitochon-
drial myopathies affect ATP production abnor-
malities of fatty acid oxidation (acyl CoA dehy-
drogenase deficiencies) and carnitine defi-
ciency, as well as infiltrative myopathies, i.e.,
glycogen storage diseases (type II; autosomal
recessive Pompe disease), Hunter’s and
Hurler’s diseases, and the transient and nonfa-
milial cardiomyopathy as part of generalized
organomegaly.21

Oxidant stress plays some role in the devel-
opment and progression of cardiovascular dis-
ease because animal models and humans with
antioxidant deficiencies seem to be subject to
greater injury and dysfunction. What role does
mitochondrial DNA (mtDNA) mutagenesis
have in human aging? Is there any evidence? Is
there a central mechanism driving human
aging and associated pathologies? Could it be
linked to mtDNA mutagenesis and depletion,
enhanced systemic apoptosis, or some other
form of mitochondrial dysfunction?

The results found in the study published by
Safdar and coworkers can be contextualized in
the current knowledge about the involvement
of mitochondria in cardiac changes due both to
physiologic and pathologic conditions. 

The role of mitochondria in cardioprotection
has been suggested to be due to the effect of
exercise on the reduction of the so-called car-
diac mitotoxicity, a condition particularly fre-
quent in association with aging, diabetes,
administration of anti-cancer agents and
ischemia-reperfusion.22

The involvement of mitochondria in the
changes of heart mediated by endurance train-
ing is confirmed also by morphological varia-
tions affecting those organelles. Exercise train-
ing leads enhance in stroke volume and cardiac
output, features od cardiac enlargement; expe-
rience with other conditions, such as copper
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deficiency, demonstrates that heart enlarge-
ment can be due to an increase in mitochondria
number or in the presence of megamitochon-
dria, underlining the role of mitochondria in the
responses to endurance exercise. By a sub-
structural morphological point of view, studies
on rats indicate that the enlargement induced
by endurance training leads to a disorganiza-
tion and a number reduction of the internal
cristae of giant mitochondria and mitochondri-
al matrix density results partially lost.23

The role of exercise on preventing cardiac
dysfunction has been discussed in the past and
different mechanisms have been proposed to
explain the effects on cells and, especially, on
cardiomyocytes. Exercise promotes the func-
tion of defense systems by inducing redox
changes (inducible antioxidants) and myocar-
dial heat shock proteins, improving cardiac
antioxidant capacity and increasing cardiopro-
tective molecules: events that seem to lead to
an overall cardioprotective effect.14

Recent studies propose that exercise train-
ing has a positive effect on both cardiac sub-
sarcolemmal and intermyofibrillar mitochon-
dria. Experiments comparing heart tissues
extracted from sedentary rats and trained rats
demonstrate that the levels of mitochondrial
oxidative stress molecules (such as 4-hydrox-
ynonenal-conjugated proteins) are increased
in the first group, while the levels of mitochon-
drial antioxidant enzymes (such as copper-
zinc superoxide dismutase, manganese super-
oxide dismutase, and glutathione peroxidase)
are increased in the second group.13

Endurance exercise is reported also to
inhibit apoptosis reducing caspase-3 and -9
activities and Bax/Bcl-2 ratio (found increased
in hyperglycemic sedentary groups of rats).
This modulation in apoptosis processes,
accompanied by control of known pore regula-
tory/component proteins (such as ANT and Cyp
D), seems to be beneficial for cardiac tissue
particularly in clinical conditions in which
exercise training has been demonstrated to be
protective, as in the case of diabetic cardiomy-
opathy.24

Genetic expression of specific transcription
factors has been suggested as a factor involved
in the adaption of cardiac tissue to changes in
the environmental conditions. Mitochondrial
biogenesis regulatory proteins, such as PGC-
1α PGC-1β and are particularly expressed in
mitochondria-rich tissues and are both
involved in the control of mitochondrial bio-
genesis. A specific role in the response to exer-
cise, starvation and cold has been demonstrat-
ed for the first one, which then represents a
critical molecule involved in the control of car-
diac mitochondrial number and function
whose expression is dependent on specific
energy demands. PGC-1β has been suggested
to be effective in constitutive mitochondrial
biogenesis.12

Since development and disease states result
from the interaction of genes and environ-
ment, lifestyle decisions made early in life may
have profound and long-reaching effects. This
remains to be demonstrated in individuals pre-
disposed to cardiovascular disease.

Future considerations

Intrigued by our growing awareness of cell
biology and the impact of lifestyle choices on
heart disease, clinical studies should soon
spawn on prevention. 

Conclusions

The human body is made up of billions of
cells that grow, divide, and then die in a pre-
dictable manner. Harman proposed a cellular
mechanism to explain, at least some of the
aging process - Safdar showed its relevance in
living models. We need to bridge this with ran-
domized, double-blind, controlled, large cohort
human studies in cardiology, which are the
clinical gold standard.
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