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Abstract Abstract argumentation semantics provide a direct relation from an argu-
mentation framework to corresponding sets of acceptable arguments, or equivalently
to labeling functions. Instead, we study step-wise update relations on argumentation
frameworks whose fixpoints represent the labeling functions on the arguments. We
make use of this dynamic approach in order to study novel ways of combining ab-
stract argumentation semantics. In particular, we introduce the notion of a merge
of two argumentation semantics, which is defined in such a way that the merge
of the preferred and the grounded semantics is the complete semantics. Finally we
consider how to define new semantics using the merge operator, in particular how
meaningfully combine features of naive-based and complete-based semantics.

1 Introduction

Following the methodology in non-monotonic logic, logic programming and belief
revision, formal argumentation theory defines a diversity of semantics. This diver-
sity has the advantage that a user can select the semantics best fitting her application,
but it leads also to various practical challenges. First of all, how to choose among
the considerable number of semantics existing in the argumentation literature for
a particular application? The behaviour of semantics on examples can already be
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insightful, and Baroni and Giacomin [4] address the need for more systematic com-
parison of semantics based on a set of principles. However, what to do when no
currently considered semantics is perfect? May there be a better semantics that has
not been discovered yet? How to guide the search for new and hopefully better ar-
gumentation semantics? In this paper, we propose a new approach: the combination
of abstract argumentation semantics. We focus on the following three research ques-
tions:

1. How to combine two abstract semantics to yield a third semantics?
2. In particular, how to obtain the complete semantics by combining the preferred

and grounded semantics?
3. Can we meaningfully combine features of naive-based and complete-based se-

mantics?

Concerning our first research question, there are various ways in which abstract
argumentation semantics can be combined. For example, in multi-sorted argumenta-
tion [13, 1, 12], one part of the framework can be evaluated according to for example
grounded semantics, whereas another part of the framework is evaluated according
to the preferred semantics. Another approach manipulates directly the sets of ex-
tensions. For example, the grounded and preferred can be combined by simply re-
turning both the grounded and preferred extensions. Both of these approaches have
drawbacks. For multi-sorted argumentation, we need to specify explicitly which se-
mantics must be applied to which part of the framework. For the direct combination
method, the approach seems too coarse-grained and the number of ways to combine
semantics seems relatively limited.

We therefore introduce a dynamic approach in this paper, which is based on the
labeling approach to argumentation semantics, in which the three labels in, out and
undec are used. In our dynamic approach, we define step-wise versions of stan-
dard semantics based on epistemic labelings, which associate with each argument
a nonempty set of labels from {in,out,undec}. Intuitively, the set represents uncer-
tainty about the label. We start with labeling each argument of the framework with
the set {in,out,undec}. This represents that we do not know the labeling yet. Then
in each step we refine the labels by removing some of the labels. Finally we end up
with a single label for each argument, and thus with a standard labeling. To represent
the possibility of multiple extensions, the steps are not deterministic. The steps are
represented by an abstract update relation, which mathematically is simply a binary
relation among epistemic labelings. Note that there are many distinct update rela-
tions representing the same standard semantics, and it is this additional expressive
power that we will use in our first approach to combining abstract argumentation
semantics.

Concerning our second research question, it is well known that the grounded se-
mantics outputs the smallest complete extension, and that the preferred semantics
outputs maximal complete extensions [10]. This suggests that there is potential to
recover all complete extensions using a mixture of the grounded and preferred se-
mantics. Note that there may be complete extensions that are neither minimal nor
maximal, and that it is therefore non-trivial to recover all the complete extensions
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using the grounded and the preferred semantics, without loosing any complete ex-
tensions. Though the derivation of the complete semantics from the grounded and
preferred semantics does not serve any practical purpose, it serves to show that our
dynamic semantic framework has sufficient expressive power to combine abstract
semantics. We therefore pursue this second question to showcase our combination
operation.

Note that we do not claim it to be possible to retrieve the full set of complete
extensions from preferred and grounded extensions alone, as they do not provide
sufficient information, even when represented as labelings. Indeed, some argumen-
tation frameworks have the same preferred and the same grounded labelings, yet
differ in their complete labelings. We present two such frameworks in Section 2.
Hence, the approaches we propose still take the structure of the framework into
account when combining the different semantics.

Concerning the third research question, note that recently naive-based semantics
like stage semantics [15] and CF2 semantics [5] have received some attention, for
example in the work of Gaggl and Dvořák [11], who define a new semantics (stage2)
that combines features of stage and CF2 semantics, and in the work of Cramer and
Guillaume [8], who performed an empirical study that showed that these naive-
based semantics are better predictors of human argument acceptance than complete-
based semantics like the grounded and preferred semantics.

For argumentation frameworks without odd cycles, the stage semantics fully
agrees with the preferred semantics. One difference between the preferred seman-
tics and the stage semantics is that the stage semantics generally provides a way to
select accepted arguments even when odd cycles are around, whereas the preferred
semantics tends to mark as undecided all arguments that are in an odd cycle or at-
tacked by an odd cycle. One difference between the preferred semantics and the
complete semantics is that the complete semantics allows one to locally not make
choices for some unattacked even cycles while making choices for other unattacked
even cycles, whereas in the preferred semantics one has to make choices for all
unattacked even cycles. This motivates the following research question: Is there a
sensible semantics that allows one to locally make choices for some unattacked odd
or even cycles while not making choices for other unattacked odd or even cycles?

The layout of this paper is as follows. After providing some preliminaries about
argumentation semantics in Section 2, we introduces our dynamic approach based
on epistemic labelings and update relations in Section 3. Section 4 addresses the
second research question by showing how grounded and preferred semantics can be
combined to obtain the complete semantics using an algorithmic approach to up-
dates. As this approach is dependent on the choice of algorithm on which the update
relation is based, we proceed in Section 5 to defining the merge of two argumenta-
tion semantics, a modification of our first approach that is applicable to any pair of
semantics independently of any algorithmic considerations. In Subsection 5.1, we
motivate the definition of the merge operator by considering how to use it to get
the complete semantics from the grounded and preferred semantics without adding
any algorithmic information. In Subsection 5.2, we show how the merge operator
can be used to give rise to novel argumentation semantics, and, in particular, how it
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can be used to meaningfully combine features of naive-based and complete-based
semantics. We conclude with an overview of further work in Section 6.

2 Preliminaries

An argumentation framework (AF) is a directed graph 〈A,R〉, where A is called the
set of arguments, and R is called the attack relation. In this work, we do not consider
enriched AFs such as bipolar AFs and weighted AFs. Standard argumentation se-
mantics come in two variants. Extension-based semantics associates with each AF a
set of extensions (sets of the arguments). Labelling-based semantics attribute to each
argument the label in, out or undecided. The two approaches are inter-definable, in
the sense that an argument is labeled in when it is in the extension, it is labeled out
when it is not in the extension and there is an argument in the extension attacking it,
and it is undecided otherwise. Our dynamic approach uses an epistemic labelling,
which associates with each argument a nonempty set of labels. Intuitively, the set
represents uncertainty about the label.

We assume familiarity with 3-labeling semantics of argumentation frameworks
as defined in [3]. Note that we will make use of the multi-labeling approach, where a
set of labels is assigned to each argument. This set represents the possible labels for
a given argument. The standard approach corresponds to the case where arguments
are given singleton sets as labels.

We define L= {in,out,undec} to be the set of possible labels.

Definition 1. Let F = 〈A,R〉 be an AF. We say that any function L from A to L is a
3-labeling of F .

The 3-labeling approach makes use of the notions of legal labels.

Definition 2. Let F = 〈A,R〉 be an AF, a ∈ A an argument and L a 3-labeling of F .
We say that a is:

• legally in with respect to L iff L(a) = in and for all b ∈ A such that (b,a) ∈ R,
L(b) = out;

• legally out with respect to L iff L(a)= out and for some b∈A such that (b,a)∈R,
L(b) = in;

• legally undecided with respect to L iff L(a) = undec and for all b ∈ A such that
(b,a) ∈ R, L(b) 6= in and for at least one such b, L(b) = undec.

If all arguments in A are legally labeled with respect to L, then we say that L is
a complete labeling of F . A complete labeling with a minimal set of in-labeled
arguments is called a grounded labeling. A complete labeling with a maximal set
of in-labeled arguments is called a preferred labeling. A complete labeling without
undec-labeled arguments is called a stable labeling. A complete labeling with a
minimal set of undec-labeled arguments is called a semi-stable labeling.
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An argumentation semantics is a function that maps an argumentation frame-
work to a set of labelings. The above defined notions give rise to the complete, pre-
ferred and grounded argumentation semantics. We call an argumentation semantics
σ complete-based if all σ -labelings are complete labelings.

We will also refer to the stage semantics defined in its extension-based form by
Verheij [15]. We adapt it to the labeling-based form by assigning the label out to
all arguments that are not in the stage extension in Verheij’s definition, even those
which are not attacked by in arguments. This labeling-based form of the stage se-
mantics can be defined as follows:

Definition 3. Let F = 〈A,R〉 be an AF and L a 3-labeling of F . Define Lin to be the
set {a ∈ A | L(a) = in}. Define L+

in to be the set {a ∈ A | ∃b ∈ Lin.(b,a) ∈ R}. We
say that L is a stage labeling of F if Lin is conflict-free, Lin ∪L+

in is maximal with
respect to set inclusion and L(a) = out for all a ∈ A\Lin.

We also make use of the notions of transitive closure of a relation and restriction
of a relation to a subset of its domain.

Definition 4. Let rel be a relation. We define the transitive closure of rel to be the
smallest set rel∗ such that rel ⊆ rel∗ and if (a,b),(b,c) ∈ rel∗, then (a,c) ∈ rel∗.

Definition 5. Let A,B be sets, A′ ⊆ A and R⊆ A×B. We define the restriction of R
to A′ to be:

R ↓A′=

{
{(a,b) ∈ R | a,b ∈ A′} if A = B
{(a,b) ∈ R | a ∈ A′} otherwise

The definition of restriction handles separately two cases: if the domain and range
of the relation are the same, it then applies the restriction to both of them, for ex-
ample in the case of the attack relation of an AF. In the case where the domain
and range are different sets, it only performs the restriction on the domain set, for
example in the case of a labeling function.

In the introduction, we have pointed out that retrieving the set of complete la-
belings from the preferred and grounded labelings alone is not feasible. We now
provide a concrete example of two argumentation frameworks with the same pre-
ferred and grounded labelings, but different complete labelings.

Example 1. Consider the two AFs F1 and F2 depicted in Fig. 1. Both have {(a,undec),
(b,undec),(c,undec),(d,undec)} as their grounded labeling, and {(a, in),(b,out),
(c, in),(d,out)} and {(a,out),(b, in),(c,out),(d,undec)} as their preferred label-
ings. While these are also all the complete labelings for F1, F2 also has {(a, in),(b,out),
(c,undec),(d,undec)} as a complete labeling which is neither preferred nor grounded.
Hence, given nothing other than the preferred and grounded labelings of a frame-
work, it is not feasible to always accurately retrieve the set of complete labelings.
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Fig. 1 Two AFs with the same preferred and grounded labelings but different complete labelings.

3 Update relations

Standard labeling semantics provide a direct relation between an argumentation
framework and a set of labeling functions, which attach to each argument exactly
one label. We will now define update relations, which formalize the idea that the
final labelings can be determined in a step-wise fashion. For this purpose, we in-
troduce epistemic labelings, which associate with each argument a nonempty set of
labels from {in,out,undec}. The intuitive idea is that at a certain step in the up-
date process, the set of labels associated with an argument tells us which labels we
consider possible for this argument at this step. The steps in an update relation can
be interpreted as moves in a dialogue, or as steps in an algorithm, or as learning
a framework, or otherwise. Our dynamic semantic framework does not depend on
such particular interpretations.

Notice that it makes little sense to separate the labeling function from the under-
lying framework, as the labeling is meaningless without it. We will hence consider
pairs of argumentation framework and labeling functions.

Definition 6. We define a labeled argumentation framework (LAF) to be a pair
(〈A,R〉,Lab) where 〈A,R〉 is a finite argumentation framework and Lab a function
from A to P(L)\{ /0}, called an epistemic labeling. Additionally, let F be the class
of all labeled argumentation frameworks.

Observe that a labeling function cannot assign the empty set of labels to an argu-
ment, as the set of labels represents the possible final labels for that argument, and
thus the empty set would mean that no label can be attached to it, which prevents us
from having a final labeling for the framework.

We now introduce the notions of initial and final labeled frameworks, which
correspond to the starting point and endpoint of a labeling process. In an initial LAF,
every label is possible for each argument, while in a final LAF, every argument is
assigned a singleton set of labels, representing the fact that a unique label has been
selected.

Definition 7. Let F =(〈A,R〉,Lab) be a LAF. If for all a∈A, Lab(a)∈{{in},{out},
{undec}}, we say that F is final. If for all a∈ A, Lab(a) =L, we say that F is initial.

Note that there is a one-to-one correspondence between the epistemic labelings
Lab of the final LAFs (〈A,R〉,Lab) and the 3-labelings of 〈A,R〉. This one-to-one
correspondence can be formally defined by constructing singletons out of a given
3-labeling as follows:
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Definition 8. Let 〈A,R〉 be an AF and L a 3-labeling of 〈A,R〉, define the epistemic
labeling T (L) by T (L)(a) := {L(a)} for all a ∈ A.

In this section with the basic definitions of our approach, we will be careful to
make the formal distinction between a 3-labeling L, the corresponding epistemic
labeling T (L) and the corresponding final LAF (〈A,R〉,T (L)). In order to improve
readability, we will not always make this distinction in later section, but instead
identify the 3-labeling L with the corresponding epistemic labeling T (L) and the
corresponding final LAF (〈A,R〉,T (L)). For example, we might speak of an LAF
being a complete labeling of a given argumentation framework, even though for-
mally a complete labeling is a 3-labeling.

We now define a precision ordering on the LAFs based on the subset relation
between the argument multi-labels, such that the final LAFs are the most precise
and the initial LAFs are the least precise. Note however that only LAFs with the
same underlying AF are comparable.

Definition 9. Let F = (〈A,R〉,Lab) and F ′ = (〈A′,R′〉,Lab′) be two labeled argu-
mentation frameworks. We say that F is at least as precise as F ′ (F ≥p F ′), iff
〈A,R〉 = 〈A′,R′〉, and for all a ∈ A, /0 ⊂ Lab(a) ⊆ Lab′(a). We say that F is more
precise than F ′ (F >p F ′) iff F ≥p F ′ and F 6=p F ′.

We will now define the central notion of this paper, namely update relations, i.e.
relations between LAFs which, starting from an initial LAF, monotonically increase
precision, until a fixpoint is reached, at which point the LAF should be final and
correspond to a desired output.

Definition 10. We say that upd⊆ F×F is an update relation iff:

• for all F ′ ∈ F such that upd(F,F ′), F ′ ≥p F ;
• if upd(F,F), then F is final.

Notice that by the definition of ≥p, if F is final then upd(F,F ′) implies F = F ′.
We now define correspondence between update relations and direct semantics

that formalizes the idea that an update relation can be viewed as a step-wise proce-
dure that gives rise to a certain direct semantics. For this we first need an auxiliary
definition.

Definition 11. Let Rel be a relation on F and F an LAF. We say that F is reachable
in Rel iff there exists an initial LAF Fi such that (Fi,F) ∈ Rel∗. We say that F is a
reachable fixpoint in Rel iff F is reachable in Rel and (F,F) ∈ Rel.

Definition 12. Let upd be an update relation and sem a semantics. We say that upd
gives rise to sem iff for each 3-labeling L of 〈A,R〉, (〈A,R〉,T (L)) is a reachable
fixpoint in upd iff L is a sem labeling of 〈A,R〉.

The following theorem, which easily follows from Definition 10, provides a sim-
ple way of combining two given update relations to yield a third update relation:
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Lemma 1. If upd1 and upd2 are update relations, then upd1 ∪ upd2 is an update
relation.

In Section 4 we will present an example where combining two update relations
with a union operation gives us not only the union of the final labelings reachable
by either of them, but also additional labelings. This means that the semantics that
upd1∪upd2 gives rise to is not necessarily induced by the semantics that upd1 and
upd2 separately give rise to.

We are now interested in the comparison of updates in terms of precision increase
per step, i.e. in the granularity of update relations. The idea is that an update relation
is more granular than another if it takes more steps to reach its final LAFs. First of
all, notice that such a comparison only makes sense for updates which output the
same final LAF, i.e. updates which give rise to the same semantics.

Definition 13. Let upd be an update relation. We define the restriction of upd to
relevant paths (upd) to be the set of pairs in upd that are in some upd-path from an
initial to a final LAF.

Definition 14. Let upd1 and upd2 be two update relations. We say that upd1 is at
least as fined-grained as upd2 (upd1 ≥g upd2) iff upd1

∗ ⊇ upd2.

We then abstractly define the most fine-grained update relation for a given label-
ing semantics.

Definition 15. Let sem be a labeling semantics. We define mfgsem to be the smallest
update relation such that for all update relations upd that give rise to sem, we have
mfgsem ≥g upd.

Lemma 2. For every standard semantics, there exists a unique mfgsem.

Proof. Define mfgsem as follows: (F,F ′)∈mfgsem iff either F = F ′ is a sem labeling,
or the following three properties are satisfied:

• F ′ >p F ;
• @F ′′ such that F ′ >p F ′′ >p F ;
• there exists a final Ff which is a sem labeling such that Ff ≥p F ′.

By definition, mfgsem includes all possible links in any relevant path from an initial
to a final LAF which encompasses a sem labeling. Hence, for any update relation
upd which gives rise to sem, mfgsem

∗ ⊇ upd. Also, mfgsem includes by definition
only pairs which are on a relevant path, as the first alternative adds the endpoints
of these paths and the third item of the second alternative ensures that the pairs are
on a relevant path. The first and second items of the second alternative ensure also
that a minimal amount of pairs are added, making mfgsem as small as possible. Also,
note that m f gsem is well-defined since we only consider finite AFs, and thus ≥p is
finite. �

In subsequent sections, we will need the following notion of a sub-framework:

Definition 16. Let F = (〈A,R〉,Lab) be a LAF and S ⊆ A. We define the sub-
framework of F generated by S to be Sub(F,S) = (〈S,R ↓S〉,Lab ↓S).
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4 Case analysis: An algorithmic approach for combining
preferred and grounded

In this section, we consider update relations which give rise to the preferred and
grounded semantics, and which are motivated by algorithms for computing these
semantics that have been described by Dauphin and Schulz [9].

The algorithmic update relation for the grounded semantics first identifies the
arguments which are only being attacked by arguments which are already labeled
{out}, labels them as {in} and any argument they attack as {out}, and then repeats
this process until no arguments can be further labeled, at which point it will label all
remaining arguments as {undec}.

Definition 17. For any labeled argumentation framework F = (〈A,R〉,Lab), we de-
fine the set of unattacked arguments to be unattacked(F) = {a ∈ A | Lab(a) %
{in}∧∀b ∈ A.((b,a) ∈ R→ Lab(b) = {out})}.

In an initial AF, the set of unattacked arguments will correspond to the arguments
which do not have any attackers in the framework, while for final AFs, this set will
be empty since it only considers arguments which are not finally labeled.

Definition 18. We define step grnd⊆ F×F to be the relation such that
((〈A,R〉,Lab),(〈A,R〉,Lab′)) ∈ step grnd iff one of the following conditions holds:

• unattacked((〈A,R〉,Lab)) 6= /0, and (〈A,R〉,Lab′) is the least precise LAF that is
more precise than (〈A,R〉,Lab) such that for all a ∈ unattacked((〈A,R〉,Lab)),
Lab′(a) = {in} and for all c ∈ A such that (a,c) ∈ R and out ∈ Lab(c), Lab′(c) =
{out}.

• unattacked((〈A,R〉,Lab)) = /0, there is an a∈ A such that Lab(a)% {undec}, and
(〈A,R〉,Lab′) is the least precise LAF that is more precise than (〈A,R〉,Lab) such
that for all a ∈ A such that Lab(a)% {undec}, Lab′(a) = {undec}.

• (〈A,R〉,Lab) = (〈A,R〉,Lab′) is a final LAF.

Note that before labeling arguments out, we ensure that it is a possibility, e.g.
by having the condition out ∈ Lab(c) in the first item of Definition 18. While this
requirement will straightforwardly be fulfilled in any reachable LAF, it is required
to ensure that the increase in precision is satisfied even for those LAFs that are not
reachable from an initial LAF.

The following lemma now easily follows from the above definition:

Lemma 3. step grnd is an update relation.

The following theorem states that step grnd does indeed have the intended prop-
erty that it gives rise to the grounded labeling:

Theorem 1. step grnd gives rise to the grounded semantics.
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Proof sketch. One can easily see that whenever step grnd changes the label of an
argument a to {in},{out} or {undec}, argument a is legally labeled {in},{out} or
{undec} respectively. Thus the final labeling reachable in step grnd is a complete
labeling. To show that the final labeling reachable in step grnd is the complete la-
beling that maximizes undec, suppose that there is some complete labeling Lab
of 〈A,R〉 and let A′ = {a ∈ A | Lab(a) = undec}. It is now enough to show that
step grnd never labels any a ∈ A′ {in} or {out}. Consider for a proof by contradic-
tion the first step where step grnd does label some a ∈ A′ {in}, respectively {out}.
Since a is legally labeled undec in Lab, some a′ ∈ A′ must attack a, so by Defini-
tions 17 and 18, a′ must already be labeled {out} in a previous step, respectively
there must exist an a′ which has been labeled {in} in a previous step, which is a
contradiction. �

Let us now examine step pref, a similar update relation which computes the pre-
ferred labelings. For this, we first define the notion of minimal non-trivial admissible
sets of arguments, which resembles the notion of initial-like sets [16], but takes also
the partial labels into account.

Definition 19. Let F = (〈A,R〉,Lab) be a labeled argumentation framework. We
define min adm(F) ⊆P(A) to be the set of all minimal subsets S of A that satisfy
the following conditions:

• S 6= /0;
• for all a ∈ S, Lab(a)% {in};
• for all a,b ∈ S, (a,b) /∈ R;
• for all a∈ S and b∈ A such that Lab(b) 6= {out} and (b,a)∈ R, there exists a′ ∈ S

such that (a′,b) ∈ R.

So the function min adm(F) returns all minimal non-empty admissible sets of
arguments whose label could still be changed to {in}. The update relation step pref
proceeds with a process similar to the one in the step grnd update, iteratively la-
beling {in} all arguments with all attackers {out}, and then labeling all arguments
attacked by those as {out}. The difference lies in the case where unattacked(F) is
empty, where the preferred update relation looks for minimal non-trivial admissible
sets, label them {in} and arguments they attack {out}.

Definition 20. We define step pref ⊆ F × F to be the relation such that
((〈A,R〉,Lab),(〈A,R〉,Lab′)) ∈ step pref iff one of the following conditions holds:

• unattacked((〈A,R〉,Lab)) 6= /0, and (〈A,R〉,Lab′) is the least precise LAF that is
more precise than (〈A,R〉,Lab) such that for all a ∈ unattacked((〈A,R〉,Lab)),
Lab′(a) = {in} and for all c ∈ A such that (a,c) ∈ R and out ∈ Lab(c), Lab′(c) =
{out}.

• unattacked((〈A,R〉,Lab)) = /0, and for some S ∈ min adm(F), (〈A,R〉,Lab′) is
the least precise LAF that is more precise than (〈A,R〉,Lab) such that for all
a ∈ S, Lab′(a) = {in} and for all c ∈ A such that (a,c) ∈ R and out ∈ Lab(c),
Lab′(c) = {out}.
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• unattacked((〈A,R〉,Lab)) = min adm(F) = /0, and there is an a ∈ A such that
Lab(a)% {undec}, and (〈A,R〉,Lab′) is the least precise LAF that is more precise
than (〈A,R〉,Lab) such that for all a ∈ A such that Lab(a)% {undec}, Lab′(a) =
{undec}.

• (〈A,R〉,Lab) = (〈A,R〉,Lab′) is a final LAF.

The following lemma now easily follows from the above definition:

Lemma 4. step pref is an update relation.

The following theorem, which can be proved in a similar way as Theorem 1,
states that step pref has the intended property that it gives rise to the preferred la-
beling:

Theorem 2. step pref gives rise to the preferred semantics.

We now find the interesting result that combining these two update relations with
a union operation gives us not only the union of the final labelings reachable by
either of them, but also the complete labelings which are neither grounded nor pre-
ferred:

Theorem 3. step grnd∪ step pref gives rise to the complete semantics.

Proof sketch. One can easily see that any final labeling reachable in step grnd ∪
step pre f is a complete labeling, as the two update relations preserve the legality of
argument labels. So we only prove that each complete labeling Lab is reachable in
step grnd∪ step pre f .

Let F = (〈A,R〉,Lab) be an initial LAF and Labc the complete labeling we want
to reach. First, apply either step grnd or step pref until we reach F ′ where the set
of unattacked arguments is empty. At this point, the set S of in arguments is the
grounded extension, and thus these arguments must also be in in Labc, since the
grounded extension is the intersection of all complete extensions (this follows from
it being the unique smallest complete extension). Let S′ be the set of arguments
which are in in Labc but not {in} in F ′. S∪S′ forms an admissible set, since it is a
complete extension. Hence, there is a minimal, non-empty subset of S′, S′1, such that
S∪S′1 is admissible. There is an edge in the relation step pref which labels the argu-
ments in S′1 as in and any argument they attack as out, according to Def. 20 second
item. The rest of the arguments in S′ are labeled in via Def. 20, either with the first
item, or again with the second item as above. Once we have reached the LAF where
all in arguments from Labc are {in} and any argument they attack {out}, we can
make a step with step grnd following Def. 18, second item, to label all remaining
arguments as {undec}. We have then reached the fixpoint Ff = (〈A,R〉,T (Labc)),
as desired. �

Example 2. Let us examine the initial LAF F = (〈A,R〉,Lab) where A = {a,b,c,d},
R = {(a,b),(b,a),(b,c),(c,d),(d,c)}. Since unattacked(F) = /0, step grnd will
send F to the fixpoint where all arguments are labeled {undec}. This is depicted



12 Jérémie Dauphin, Marcos Cramer, and Leendert van der Torre∗

a

in
out

undec

b

in
out

undec

c

in
out

undec

d

in
out

undec

a

�Ain
��ZZout

undec

b

�Ain
��ZZout

undec

c

�Ain
��ZZout

undec

d

�Ain
��ZZout

undec

step grnd

Fig. 2 Example path from the initial LAF F to the corresponding final LAF in step grnd.

in Fig. 2.

Let us now consider the same LAF F under the step pref update relation this
time. Again, unattacked(F) = /0, but min adm(F) = {{a},{b},{d}}. The relation
hence branches out in three paths. Let us focus the path with {a}. So the relation
step pref sends F to the LAF Fpref1 where a is {in} and b is {out}, as depicted in
Fig. 3. unattacked(Fpref1) = /0, but min adm(Fpref1) = {{c},{d}}, which gives us
once again two possible directions in which to branch out. We will examine the one
which selects {c}. This then gives us the final fixpoint Fpref2 = (〈A,R〉,Labpref2),
where Labpref2(a) = Labpref2(c) = {in} and Labpref1(b) = Labpref1(d) = {out}.
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Fig. 3 Example path from the initial LAF F to one of the corresponding final LAFs in step pref.

We now consider the union of both relations. We can first send F to Fpref1 using
the same step from step pref as above. However this time we can apply step grnd
to Fpref1, and since unattacked(Fpref1) = /0, the remaining arguments c and d are
assigned the {undec} label, sending Fpref1 to the fixpoint Fcomp, where a is {in}, b
is {out} and c,d are {undec}. Notice that Fcomp corresponds to a complete labeling
of F which is neither preferred nor grounded. This situation is depicted in Fig. 4.
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Fig. 4 Example path from the initial LAF F to one of the corresponding final LAFs in step grnd∪
step pref which neither update can reach by itself.

5 Merging semantics through the most fined-grained update
relation

In the previous section, we have shown that we can obtain the complete semantics
by taking the union of two algorithmically motivated update relations giving rise to
the grounded and the preferred semantics respectively. The success of this approach
was dependent on the details of the algorithmic update relations that we defined, so
it cannot be generalized to combine arbitrary semantics. In this section, we want to
generalize our methodology to make it applicable to the combination of arbitrary
semantics. For this purpose, we will examine a way to combine any two standard
semantics via their most fine-grained update and a combination operation we call
merging.

5.1 Merging preferred and grounded

If we were to attempt to combine mfgpref and mfggrnd by simply taking their union,
as we have done in the algorithmic approach, it follows from their definition that we
would simply obtain as reachable fixpoints the labelings which are either preferred
or grounded. The main issue is that mfgpref and mfggrnd are not applicable to LAFs
which do not agree with some final LAF of that semantics.

For an example of this issue, we consider again the same LAF F as in Example 2.
Suppose we want to reach the same complete labeling that we reached in Figure 4,
i.e. the one in which a is {in}, b is {out}, and c and d are {undec}. We could start
by doing those six steps of mfggrnd that are compatible with the complete labeling
that we want to reach, as depicted in Figure 5, yielding the intermediate LAF F ′.
Now we would like to apply mfgpref to F ′ in order to delete the undec-labels from a
and b. However, mfgpref cannot be applied at all to F ′, as F ′ is not compatible with
any preferred labeling of F .

So instead of just taking the union of mfgpref and mfggrnd, we will define a more
complicated operation called the merge of two update relations, which we denote by
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Fig. 5 Example path from the initial LAF F to an intermediate LAF F ′ in mfggrnd.

upd1]upd2. The idea is that once neither mfgpref nor mfggrnd allow us to get closer
to a desired complete labeling, we will focus on a particular sub-framework and
draw analogies with another framework which also contains that sub-framework.
This operation resembles the way input is imposed in multi-sorted argumentation
semantics [2]. The details of this approach are somewhat complicated, so let us first
sketch the approach by seeing how it can be applied to the example that we just
looked at.

The idea is that we focus on the set S= {a,b} of arguments, as we want to remove
labels from a and b. In order to work with mfgpref on the sub-framework Sub(F ′,S)
induced by S, we consider an alternative framework F2 that also has Sub(F ′,S) as
a sub-framework, but to which mfgpref can be applied. A suitable choice of F2 is
depicted on the left in Figure 6. Now we apply mfgpref twice to F2 as depicted in
Figure 6, removing the labels from a and b that we wanted to remove. If certain
conditions are satisfied, we may import the changes we have made to F2 back to F ,
as depicted in Figure 7.
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Fig. 6 Example path on a parallel F2 framework with S = {a,b} and I = {c}, where m f gpre f is
applicable.

Now what are the conditions that need to be satisfied in order to allow for this
import of changes from one framework to another? In order to describe these con-
ditions, we need to split the original framework into three parts, based on sets of
arguments:
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Fig. 7 Importing the steps made in Fig. 6 into F ′ allows us to reach a complete labeling which is
neither grounded nor preferred.

• S, the arguments we will focus on;
• I, called the interface, which is a set of arguments which already have a maxi-

mally precise label (i.e. a singleton) and which separate the set S from the rest of
the framework;

• A\ (S∪ I), the rest of the framework, on which the two frameworks may differ.

The basic idea is that in order to import some change that an update relation mfgsem
can make on F2 to the LAF F , we have to choose F2 in such a way that in both F and
F2, the interface I separates S from the rest of the framework. Furthermore, we have
to choose F2 in such a way that mfgsem can actually be applied to F2, which is only
possible if the maximally precise labels of the arguments in I are possible labels for
these arguments in F2 under the semantics sem.

We are now ready to present the formal definition of the merge upd1]upd2:

Definition 21. Let upd1 and upd2 be two update relations. We define the merge of
upd1 and upd2 (upd1]upd2) as the smallest relation such that:

1. upd1]upd2 ⊇ upd1∪upd2;
2. For F = (〈A,R〉,Lab) and F ′ = (〈A,R〉,Lab′), (F,F ′) ∈ upd1 ] upd2 if there

exist disjoint sets S, I ⊆ A and two LAFs F2 = (〈A2,R2〉,Lab2) and F ′2 =
(〈A2,R2〉,Lab′2) such that the following conditions are satisfied:

a. (F2,F ′2) ∈ upd1∪upd2;
b. Sub(F2,S∪ I) = Sub(F,S∪ I);
c. ∀s ∈ S, ∀a ∈ A\ (I∪S), (s,a),(a,s) /∈ R,R2;
d. ∀a ∈ I, Lab(a) = Lab2(a) is a singleton;
e. Lab′2 ↓S 6= Lab2 ↓S;
f. Lab′2 ↓A2\S= Lab2 ↓A2\S;
g. Sub(F,A\S) is reachable by upd1]upd2;
h. Lab′ ↓S= Lab′2 ↓S.

3. if F is final and reachable by upd1]upd2, then (F,F) ∈ upd1]upd2.

Given the complexity of this definition, let us explain it a bit more: Item 1 ex-
presses the fact that we can still perform any step which is available in either one of
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the base updates. However, as we have seen previously, this is not enough in order
to obtain meaningful combinations of most fine-grained updates, which is why we
have item 2. Given a labeled argumentation framework F , additional changes are
potentially possible if we can identify two disjoint sets of arguments S and I, where
S is the set of arguments we are interested in and where the update will be occurring
and I is a fully-labeled interface between S and the rest of the framework, meaning
that no argument in S attacks nor is attacked by an argument in A \ (S∪ I). Once
such sets have been identified, we observe other labeled argumentation frameworks
F2 which also contain S∪ I with the same structure and epistemic labels but can dif-
fer in structure and labels in the rest of the framework. If an update with upd1∪upd2
is possible in such a framework, we then allow this change to be imported into F to
produce F ′. In more details, sub-item a specifies that there must be a upd1 ∪ upd2
step which relates F2 to F ′2. Sub-item b ensures that the parallel framework F2 agrees
with F on the structure and epistemic labels of S∪I. Sub-item c guarantees that there
are no connections between S and A\(S∪ I) in neither F nor F2. Sub-item d ensures
that I is fully labeled, which is required in order to ensure the well-behavior of the
merge operation. The idea is that once this interface has been fully labeled by one of
the two updates, if we can modify A\ (S∪ I) in order to make sense of these labels
for the second update, then we can also perform steps from this second update inside
S, and then by perhaps modifying A\ (S∪ I) again we can switch back to using the
first update again and so on. Sub-item e ensures that change happens inside S, while
sub-item f ensures that no change is made outside of S, so that change happens in S
and exclusively there. Sub-item g provides an additional restriction on the partition-
ing to ensure that for an argument i in the interface I which has a justification a ∈ S
for its label which hasn’t been assigned yet, we do not introduce a new justification
in A \ (S∪ I) for i’s label and hence allow for a different label to be assigned to
a, leaving i with no justification for its label in F ′. This is clarified in Example 3.
Sub-item h simply specifies that the change made in the parallel LAF be imported
into the original one to produce F ′, and combined with the sub-item e entails that
a change within S is necessary between F2 and F ′2. Finally, with item 3 we ensure
that reachable final frameworks are also fixpoints, which is needed since the second
item of the definition does not produce any fixpoints, as it requires some change to
happen in the LAF with the first sub-item.

Example 3. Consider the AF F depicted in Fig. 8. Since {(a, in),(b,out),(c,out),
(d, in),(e,out)} is a preferred labeling, it is possible to assign the out label to c via
m f gpref, as well as the in label to a and the out label to b. From there, it would
be possible to set I = {c} and S = {d,e}, allowing one to import changes from
the parallel framework F ′ depicted in Fig. 9. Here, a few steps in m f ggrnd would
assign the undec label to d and e. This would however produce a labeling where c
is out, but has no reason to be labelled so, since d is undec. This kind of scenario is
prevented by item g) of Def. 21 as no sub-LAF consisting of {a,b,c} where c is out
is reachable with m f gpref or m f ggrnd. Thus, item g) forces what we informally refer
to as a justification for the interface’s label to be either part of it, or contained in S.
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b
c d e

Fig. 8 Example AF F to illustrate the need for item g) in Def. 21

f c d e

Fig. 9 AF F ′ parallel to F from Fig. 8. Here c is out due to f , allowing m f ggrnd to assign the undec
label to both d and e.

In definition 21, we have defined the merge between two arbitrary update rela-
tions. In this paper, we always apply this merge operation to two maximally fine-
grained update relations and focus on the semantics that the resulting update relation
gives rise to. In this way, the notion of a merge between two update relations gives
rise to the following notion of a merge between two argumentation semantics:

Definition 22. Given two argumentation semantics sem1 and sem2, we define sem1]
sem2 to be the semantics that mfgsem1

]mfgsem2
gives rise to.

We originally motivated the definition of the merge operation with the goal to
combine the grounded and preferred semantics to yield the complete semantics. The
following theorem establishes that this is indeed the case for the merge operation as
we have defined it.

Theorem 4. preferred]grounded = complete.

Proof. By Definition 22, we need to show that mfgpref ]mfggrnd gives rise to the
complete semantics. So we need to prove that every complete labeling is a reachable
fixpoint in mfgpref ]mfggrnd and that every labeling that is a reachable fixpoint in
mfgpref ]mfggrnd is a complete labeling. We start by proving that every complete
labeling is a reachable fixpoint in mfgpref]mfggrnd:

Let AF = 〈A,R〉 be an argumentation framework, and let L be the complete la-
beling of AF we want to reach. We want to show that Ff = (〈A,R〉,Lab f ) is a
reachable fixpoint, where Lab f = T (L). Let C = {a ∈ A | L(a) = in}, I = {b ∈
A | L(a) = out} and S = A \ (C∪ I). Consider the LAF Fi = (〈A,R〉,Labi), where
for all a ∈ C, Labi(a) := {in}, for all b ∈ I, Labi(b) := {out}, and for all c ∈ S,
Labi(c) := {in,out,undec}. Since L is a complete labeling, C is admissible, so there
exists a preferred labeling where all arguments in C are in. Thus Fi is reachable with
mfgpref.

We now want to apply item 2 of Definition 21 to Fi multiple times in or-
der to remove all the in and out labels from the arguments in S. For this pur-
pose, we choose a “new” argument z, i.e. an argument z /∈ A, and consider the
LAF F2 = (〈A2,R2〉,Lab2) where A2 = (A \C)∪{z}, R2 = R ↓A2 ∪ {(z,a) | a ∈ I}
and Lab2 = Lab ↓A2 ∪ {(z,{in})}. Consider the final LAF F2 f = (〈A2,R2〉,Lab2 f ),
where for all a ∈ A2 \S, Lab2 f (a) = Lab2(a) and for all a ∈ S, Lab2 f (a) = {undec}.
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We want to show that F2 f is grounded. For this purpose, we first establish that
F2 f is complete, i.e. that all labels in F2 f are legal labels: z is unattacked and is
therefore legally labeled in in F2 f . All arguments in I are attacked by z, so they are
legally labeled out in F2 f . Furthermore, since C does not defend any arguments it
does not contain, every argument in S is attacked by at least one other argument in S.
Additionally, the only in argument, z, does not attack any arguments in S. Thus the
arguments in S are legally labeled undec in F2 f . Therefore, F2 f is a complete LAF,
and since the only in argument, z, has to be labeled in, it is also grounded.

Therefore F2 f is reachable in mfggrnd from F2. So by multiple applications of
mfgpref]mfggrnd, using item 2 of Def 21, one can reach Ff from Fi. Since Ff is final,
Ff is a fixpoint, and thus Ff is a reachable fixpoint.

So far, we have shown that every complete labeling is a reachable fixpoint in
mfgpref ]mfggrnd. Now we still need to show that every labeling that is a reachable
fixpoint in mfgpref]mfggrnd is a complete labeling:

Let F = (〈A,R〉,Lab) be a reachable LAF in mfgpref ]mfggrnd. We show by in-
duction on |A| that there exists a final complete LAF which is at least as precise as
F .

Induction hypothesis 1: Assume that for every LAF F ′ = (〈A′,R′〉,Lab′) such
that |A′| < |A| and F ′ is reachable in mfgpref]mfggrnd, there exists a final complete
LAF which is at least as precise as F ′.

We now use a second induction on the steps required to reach F .
Base case: F is initial. Since there always exists a complete labeling for any

framework, there exists a final complete LAF more precise than F .
Inductive step: F is not initial, but is reached in mfgpref]mfggrnd through an LAF

F∗ 6=F for which the required property holds. In other words, we have the following
induction hypothesis for F∗:

Induction hypothesis 2: Assume that for F∗ = (〈A,R〉,Lab∗) such that F∗ 6= F
and (F∗,F)∈mfgpref]mfggrnd, there exists a final complete LAF F∗f =(〈A,R〉,Lab∗f )
such that F∗ ≤p F∗f .

We distinguish three cases:

1. (F∗,F) ∈ mfgpref. Then, by the definition of mfgpref, there exists a final LAF
which represents a preferred labeling of 〈A,R〉 and is at least as precise as F .
Since preferred labelings are also complete, we are done.

2. (F∗,F) ∈ mfggrnd. Similarly to the case above, it follows from the definition of
mfggrnd that there exists a complete final LAF which is at least as precise as F .

3. (F∗,F) /∈ mfgpref∪mfggrnd. Since F∗ 6= F , the item 2 of Definition 21 must be
satisfied. In other words, there exist disjoint sets S, I ⊆ A and two LAFs F2 and
F ′2 that satisfy the conditions a to h from item 2 of Definition 21. By condition
a, (F2,F ′2) ∈ mfgpref ∪mfggrnd, so by the same reasoning as in cases 1 and 2
above, we can conclude that there exists a final LAF Ff 2 = (〈A2,R2〉,Lab f 2)
which is complete and at least as precise as F ′2. Also, by condition g, Fs =
Sub(F∗,A \ S) is reachable by mfgpref ]mfggrnd, and by condition e, S 6= /0, i.e.
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|A \ S| < |A|. So by induction hypothesis 1, there exists a final complete LAF
Fs f = (〈A\S,R ↓A\S〉,Labs f ) such that Fs f ≥p Fs.
We now construct the final LAF Ff = (〈A,R〉,Lab f ) as follows: For all a ∈
A \ S, Lab f (a) := Labs f (a), and for all a ∈ S, Lab f (a) = Lab f 2(a). From the
construction of Ff and conditions f and h of Definition 21, it follows that Ff is
more precise than F . To complete the proof, we now still need to show that Ff
is a complete labeling, i.e. that all arguments in A are legally labeled in Ff .
According to the definition of legal labeling (Definition 2), a labeling being
legal depends only on the label of the arguments it is directly attacking or at-
tacked by. According to condition c of Definition 21, the only arguments which
are attacking or attacked by arguments in S are in S∪ I. The arguments in S
are legally labeled in F2 f , and thus they are also legally labeled in Ff , since
Sub(F2 f ,S∪ I) = Sub(Ff ,S∪ I). Similarly, since the arguments in A\ (S∪ I) are
legally labeled in Fs f , they are also legally labeled in Ff . Now take an arbitrary
a ∈ I. We distinguish three cases:

a. Lab f (a) = {out}: Then, since Fs f is complete, there exists an argument
b ∈ A\S such that (b,a) ∈ R and Lab f (b) = {in}. So a is legally out in Ff .

b. Lab f (a) = {in}: Then, since Fs f is complete, for all b ∈ A \ S such that
(b,a) ∈ R, Lab f (b) = {out}. Also, since F2 f is complete, for all b ∈ S such
that (b,a) ∈ R, Lab f (b) = {out}. Hence, a is legally in in Ff .

c. Lab f (a) = {undec}: Then, since since Fs f is complete, for all b ∈ A \ S
such that (b,a)∈ R, Lab f (b) 6= {in}, and for at least one such b, Lab f (b) =
{undec}. Also, since F2 f is complete, for all b ∈ S such that (b,a) ∈ R,
Lab f (b) 6= {in}. Hence, a is legally undec in Ff .

So all arguments in Ff are legally labeled and thus Ff is complete. Hence, there
exists a final complete LAF which is at least as precise as F .

Therefore, for all reachable LAFs, there exists a complete LAF which is at least
as precise. Since mfgpref ]mfggrnd is an update relation, every reachable fixpoint is
final, and thus every reachable fixpoint is complete. ut

5.2 Defining new semantics via merging

The merge operation defined in Definition 22 can be used to combine two arbitrary
argumentation semantics to yield another argumentation semantics. So far, we have
shown that merging grounded and preferred semantics yields the complete seman-
tics. In this section, we show how applying this merge operation to other pairs of
semantics gives rise to completely new argumentation semantics.

First, notice that the second part of the proof of Theorem 4 only makes use of
the fact that the labelings reached at the different stages are complete, but not of any
other properties particular to preferred or grounded. Hence, the merge of any two
complete-based semantics is a complete-based semantics itself, i.e. all the labelings
it returns are also complete.
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Theorem 5. Let sem1 and sem2 be two complete-based argumentation semantics.
Then sem1] sem2 is also a complete-based semantics.

For example, by merging stable and grounded, we obtain labelings which are
complete. However, in this case, we do not recover all complete labelings as we did
when merging grounded and preferred. Let us examine this short example to see
why.

Example 4. Consider the following AF, which we call F :

a b c

Using mfgstab]mfggrnd, one can reach the labelings {(a,out),(b, in),(c,out)} and
{(a,undec),(b,undec),(c,undec)}. However, suppose we wish to reach the com-
plete labeling Lab = {(a, in),(b,out),(c,undec)}. Since there is no stable labeling,
we cannot make any steps via mfgstab from the initial LAF. Also, attempting to find a
similar framework from which one could import changes, will not work at this point
where the LAF is initial, because the interface I would have to be empty, which only
works for disconnected AFs.

Hence, one can only make steps in mfggrnd in order to reduce c’s epistemic la-
beling to {undec}, A’s to {in,undec} and B’s to {out,undec}. This, however, is as
close as one can get to Lab using mfgstab]mfggrnd. Any F2 satisfying the conditions
of item 2 of Definition 21 must have I = {c}. In this case, the set S on which we want
to make changes would have to be {a,b}. But then I∪S includes all arguments, so
that F2 would have to be identical to F , so that we cannot use item 2 of Definition
21 to make any change that we cannot already make with item 1 of Definition 21.

Therefore, Lab is unreachable with mfgstab]mfggrnd.

An interesting note to make is that all labelings reachable by mfgstab ]mfggrnd
are complete, according to Theorem 5, and hence this combination provides a novel
complete-based semantics which returns more labelings than both the stable seman-
tics and the grounded semantics.

Similarly, the merge of the semi-stable and grounded semantics returns a novel
complete-based semantics. One can check this by replacing stable by semi-stable in
the situation described in Example 4: The desired complete labeling is still unreach-
able.

As motivated in the introduction, we are also interested in the following research
question related to combining features of naive-based and complete-based seman-
tics: Is there a sensible semantics that allows one to locally make choices for some
unattacked odd or even cycles while not making choices for other unattacked odd or
even cycles. Given our methodology for merging semantics, an obvious candidate
for such a semantics is stage]grounded, i.e. the semantics resulting from merging
the stage semantics with the grounded semantics. By considering its application to
an example, we show that this semantics does indeed have this feature.



A Dynamic Approach for Combining Abstract Argumentation Semantics 21

a

b
c d e

Example 5. Consider the following AF, which we call F ′:
The stage labelings of F ′ are

Lab1 = {(a, in),(b,out),(c,out),(d, in),(e,out)},
Lab2 = {(a, in),(b,out),(c,out),(d,out),(e, in)},
Lab3 = {(a,out),(b, in),(c,out),(d, in),(e,out)},
Lab4 = {(a,out),(b, in),(c,out),(d,out),(e, in)},
Lab5 = {(a,out),(b,out),(c, in),(d,out),(e, in)}.

Its grounded labeling is Lab6 = {(a,undec),(b,undec),(c,undec),(d,undec),(e,undec)}.
Additionally to these six labelings, it has three further stage]grounded-labelings:

Lab7 = {(a, in),(b,out),(c,out),(d,undec),(e,undec)},
Lab8 = {(a,out),(b, in),(c,out),(d,undec),(e,undec)},
Lab9 = {(a,undec),(b,undec),(c,undec),(d,out),(e, in)}.

Lab7 can be reached using mfgstage]mfggrnd by first applying mfgstage several times
to reduce the epistemic labels on a, b and c to {in}, {out} and {out} respectively and
then applying item 2 of Definition 21 with the interface I := {c}, the set S := {d,e}
and the following parallel framework F7

2 :

f c d e

We can then apply mfggrnd multiple times to this parallel framework to reduce
the epistemic labels of d and e to {undec} and import these changes to the labeling
on the main framework F ′ using item 2 of Definition 21. Lab8 can be reached using
mfgstage]mfggrnd in a similar way using the same parallel framework.

Lab9 can be reached using mfgstage ]mfggrnd by first applying mfgstage several
times to reduce the epistemic labels on d and e to {out} and {in} respectively
and then applying item 2 of Definition 21 with the interface I := {d}, the set
S := {a,b,c} and the following parallel framework F9

2 :

a

b
c d e
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We can then apply mfggrnd multiple times to this parallel framework to reduce the
epistemic labels of a, b and c to {undec} and import these changes to the labeling
on the main frameowrk F ′ using item 2 of Definition 21.

The stage semantics forces us to make a choice on the odd cycle {a,b,c}, and
unless we choose to accept the argument c that attacks the even cycle, we are also
forced to make a choice on the even cycle {d,e}. In the grounded semantics, there
are no choices and all arguments become undecided. In stage] grounded, we can
combine these features of stage and grounded: We can for example choose a from
the odd cycle, but stay undecided about the arguments in the even cycle – this pos-
sible choice is formalized by Lab7.

So stage]grounded allows one to locally make choices for some unattacked odd
or even cycles while not making choices for other unattacked odd or even cycles. It
thus provides a positive answer to our third research question from the introduction.

6 Conclusion and future work

In this paper we introduce a dynamic approach to combine two argumentation se-
mantics to yield a third one. In particular, we provide a formal environment for
the analysis of step-wise relations between labeled framework with an increase
in the label precision, whose reachable fixpoints correspond to some standard di-
rect semantics. We define and discuss two approaches to combining two given up-
date relations to yield a third update relation, an approach based on algorithmi-
cally motivated update relations and an approach based on merging maximally fine-
grained update relations. For both approaches, we examine how to obtain update re-
lations for the complete labeling by combining update relations for the preferred and
grounded labelings. Furthermore, we have defined novel semantics using the merge
approach, including a semantics that meaningfully combines features of naive-based
and complete-based semantics.

Our paper gives rise to various topics for further research. Concerning the combi-
nation of argumentation semantics, many questions remain. Further new semantics
can be defined using our approach, and properties of the newly defined semantics
can be studied systematically using the principle-based approach [4, 14].

Though we introduced our update relations to combine argumentation semantics,
we believe that this dynamic semantics framework can be used for other applica-
tions as well. Most importantly, one of the main challenges in formal argumentation
is the gap between graph based semantics and dialogue theory. Our more dynamic
semantics framework may be used to decrease or even close the gap. In particular, in
dialogue each statement may increase the knowledge and thus the set of arguments
of participants. This is also related to the formalization of learning in the context
of formal argumentation. Moreover, an important approach in argumentation se-
mantics is the SCC recursive scheme. This scheme can be represented naturally
using update relations. Various algorithms have been proposed for argumentation
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semantics, and these algorithmic approaches may be expressed naturally using up-
date relations. Work has also been done on dynamic modifications to be made on a
framework in order to enforce a certain set of arguments to become an extension,
or prevent it from being so [6, 7]. Parallels could be made between their work and
the combination operation presented in this paper. Finally, the principle based anal-
ysis of argumentation semantics can be extended to the more fine grained update
relations.
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