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Abstract:  

Scientists depend on complex computational systems that are often ineliminably opaque, 

to the detriment of our ability to give scientific explanations and detect artifacts. Some 

philosophers have suggested treating opaque systems instrumentally, but computer 

scientists developing strategies for increasing transparency are correct in finding this 

unsatisfying. Instead, I propose an analysis of transparency as having three forms: 

transparency of the algorithm, the realization of the algorithm in code, and the way that 

code is run on particular hardware and data. This targets the transparency most useful for 

a task, avoiding instrumentalism by providing partial transparency when full transparency 

is impossible. 
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Transparency in Complex Computational Systems 

 

1. Introduction 

 Scientists depend on complex computational systems to process their big data, but 

these systems are not always transparent. Physicists within the Large Hadron Collider’s 

Compact Muon Solenoid working group are considering using deep learning algorithms 

to sort particle collision events and discard the uninteresting ones (Duarte et al. 2018). 

The new algorithms for doing so, while faster than the old, are complex enough that their 

decisions cannot be reconstructed in terms of why some events were interesting and thus 

saved, and why others were discarded (Roxlo and Reece 2018, 2). Some physicists, who 

want more transparent sorting procedures so they can check and understand the 

algorithms responsible for discarding all but 100 of the 600 million particle collision 

events detected each second, have called this change “a nightmare” (Castelvecchi 2015). 

They are also concerned by the limitations of proposed deep neural network classification 

algorithms for scientific explanations: “[u]nfortunately, as written such a classifier would 

probably be of limited usefulness in terms of providing insight into new physics” (Roxlo 

and Reece 2018, 2). Given that the scientists running computational projects want their 

systems to be more transparent, it is crucial to have a clearer analysis and definition of 

computational opacity. Such an analysis should provide the users of computational 

systems with tools to seek the kinds of epistemic goods they desire for their diverse ends, 

such as using the system for prediction, employing it to explain scientific phenomena, or 

improving and maintaining the computational system itself.  

 Existing analyses of transparency in science target complex climate models 
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because their complexity and opacity contribute to public doubt about the predictions of 

the models.1 But computational opacity extends beyond climate models.2 Whether using 

machine learning at the LHC, artificial neural networks for cancer detection, or visual 

recognition software to identify fossilized pollens, scientists have capitalized on advances 

in algorithms and computing power without addressing the epistemic problems that can 

accompany such advances (Tcheng et al. 2016; Esteva et al. 2017). They are now 

searching for ways to make opaque computation more transparent in order to better detect 

errors and provide scientific explanations. 

 This paper argues for the need for transparency in computational systems (§2) and 

claims that transparency comes in three forms. The first is functional transparency, or 

knowledge of the algorithmic functioning of the whole (§3a); the second is structural 

transparency, or knowledge of how the algorithm was realized in code (§3b); and the 

third is run transparency, or knowledge of the program as it was actually run in a 

particular instance, including the hardware and input data used (§3c). Identifying three 

forms of transparency, as compared with recent papers that each identify one, is 

necessary to explain recent successes in reducing opacity (§4). It also gives those 

attempting to increase transparency in future systems an analytical tool with which to 

identify the type of opacity to eliminate (§5).  

                                                
1 The analyses of transparency in (Humphreys 2004; 2009; Lenhard and Winsberg 2010) 

will be discussed in §3. For further epistemic problems caused by opaque models, see 

(Winsberg 2010; Lenhard 2006). 

2 In this paper, opacity and transparency are two sides of the same coin: opacity is a lack 

of transparency and vice versa. 
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2. Why Transparency? 

 Should we strive for transparency in complex computation? In this section I claim 

that we should because scientists, modelers, and the public all require transparency and 

because it facilitates scientific explanation and artifact detection. Lenhard and Winsberg, 

by contrast, claim that “it is impossible … by any method” to gain the form of 

transparency they identify in some complex climate models, so we ought not to seek it 

(Lenhard and Winsberg 2010, 254). Likewise Paul Humphreys has argued that when 

opacity is ineliminable, “we must abandon the insistence on epistemic transparency for 

computational science,” focusing instead on improving models by using “trial-and-error 

procedures treating the connections between the computational template and its solutions 

as a black box” (Humphreys 2004, 150).  The record of success of any computational 

system will certainly be important in evaluating it. However, as philosophers, we should 

not recommend abandoning the search for transparency, for two reasons. First, 

descriptively, transparency is important to all of the groups that create and use 

computational systems. Second, normatively, these groups are justified in caring about 

transparency.  

 Descriptively, the scientists who use the systems to investigate, the modelers and 

computer scientists who create the systems, and the non-scientist citizens who interact 

with or are affected by the systems all need transparency. As large-scale computation 

becomes vital to many scientific disciplines, scientists express dissatisfaction with the 

limited transparency it affords, especially when the new computational methods seem 

less transparent than previous methods for performing the same operation on smaller data 
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sets, as seen in the example above of the LHC.  

Transparency in computational systems also matters to computer scientists. The 

machine learning community debates the topics of transparency, opacity, and 

interpretability, with over 20,000 papers on arXiv and multiple yearly workshops such as 

Fairness, Accountability, and Transparency (ACM FAT*). While attempts to increase 

transparency burgeon, analysis of what would be required to achieve transparency 

remains implicit or only briefly mentioned in most machine learning papers. The 

disagreement in implicit or explicit definitions of transparency makes it more difficult for 

researchers to progress (Sørmo, Cassens, and Aamodt 2005).3  

 Lack of transparency in computational systems also concerns the public. Non-

specialists frequently decline to use statistical and computational tools that function as 

“black boxes,” such as the many systems designed to help doctors diagnose patients and 

evaluate their risk of disease (Miotto et al. 2016). These systems use decades of patient 

records, including biographical and medical information, to learn to diagnose current 

conditions and predict the probability of future ones. Although neural networks like 

Weng et. al. (2017) successfully deliver diagnoses or predictions, the teams often can 

give no reasons for their neural networks’ decisions. Lack of explanation for the 

diagnosis given is cited as a cause of doctors’ lack of trust in and therefore failure to use 

                                                
3 Philosophers who consider the term “transparency” to be misleadingly suggestive of an 

overly high standard for success, such as Sabina Leonelli, still consider questions similar 

to the ones discussed in this paper, about good epistemic practices for data, algorithm, 

and information disclosure in contexts of science and public policy, albeit under different 

concept terms (Leonelli 2016; Leonelli, Rappert, and Davies 2017). 
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devices that assist medical diagnoses even when these devices have been shown to 

decrease error (Ribeiro, Singh, and Guestrin 2016). 

 As complex computational systems enter the public sphere, citizens and 

lawmakers need explanations of outputs that these systems are too opaque to give. For 

example, the European Union’s General Data Protection Regulation, which went into 

effect May 25, 2018, includes a “right to explanation” clause which allows any EU 

citizen affected by “automated individual decision-making, including profiling” to 

request and receive an explanation for the basis of that decision (Goodman and Flaxman 

2017). In order to comply with similar regulations, there must be a standard of 

transparency for the tools being used (Datta, Tschantz, and Datta 2015, 106).  In sum, one 

reason for philosophers to pursue an analysis of transparency is that research scientists, 

computer scientists, and the public all value transparency and could benefit from a better 

analysis of the concept.  

 Not only do interested parties want transparency, they are right to want it. 

Transparency is necessary to illuminate the relationship between the explanans and the 

explanandum on some leading accounts of scientific explanation. Mechanistic 

explanations, for example, require transparent access to the relationships between 

constituent parts.  By its nature, opacity makes it difficult to identify “entities and 

activities organized such that they are productive of regular changes from start or set-up 

to finish or termination conditions” (Machamer, Darden, and Craver 2000, 3).  The same 

holds true for the identification of “interactions between parts … characterized by direct, 

invariant, change-relating generalizations” (Glennan 2002, S344). Although many types 

of mechanistic explanation exist, all require the identification of parts and the causal 
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relationships among parts.  Thus if identifying mechanisms is required for good causal 

explanations, some degree of transparency will be also.  As illustrated by this example, 

access to only the observable inputs and outputs of a completely opaque black-box 

system is not a sufficient basis for explanation on some leading accounts of scientific 

explanation. 

 An additional advantage of transparency is that it makes artifacts easier to detect. 

In an engineered system like a computer, an artifact is a problem in functioning, a result 

or behavior that the designers did not expect or want. Since often there is no non-

computational procedure to verify the results of a computation or model, transparency 

provides an approach to check the system for such unwelcome behavior. Strategies to 

increase transparency of computation for the sake of troubleshooting have been deployed 

since at least the 1960s, when computer scientists used visualization and dynamically 

generated diagrams to make clearer the inner workings of programs and to debug them 

(Ananny and Crawford 2016, 5). Gaining one or more of the three transparencies below 

increases the ability to detect artifacts by granting access to the process by which the 

result was produced.  

 Providing transparency to scientists, modelers, and citizens requires overcoming 

the barriers to transparency identified by Humphreys, Winsberg, and others. It is both 

premature and unnecessary to “abandon the insistence on epistemic transparency for 

computational science” (Humphreys 2004, 150). Instead, we need an analysis of 

transparency that captures more ways that systems can and should be transparent. In the 

next section, I argue that a tripartite analysis of transparency overcomes the barriers 

identified by Humphries, Lenhard, and Winsberg.  
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3. The Three Varieties of Transparency  

  My analysis focuses on the opacity that is endemic to complex computational 

systems and the kinds of transparency that can ameliorate it. I argue that there are three 

forms of transparency corresponding to different granular scales of a computational 

system: algorithmic transparency, structural transparency, and run transparency. 

Although an intervention to increase one form of transparency will sometimes increase 

another, there is not a necessary connection between the forms. There are many systems 

in which only one form of transparency is present or achievable, and the systems 

developed by computer scientists to enhance transparency discussed in §4 each address 

only one of these three types. In this section, I will first distinguish the kinds of 

transparency I am interested in from other common uses of the word in science and 

politics; then describe the three kinds of transparency; and finally relate the three to one 

another.  

 Opacity can occur when a government or company conceals information or when 

scientists do not reveal their methodology or code in sufficient detail (Fink 2017). It can 

also occur when information is shared with users who cannot understand it, as can occur 

when scientists collaborate across disciplines or use off-the-shelf software packages. This 

paper will not address these opacities.  It will focus only on opacity that vexes skilled and 

knowledgeable creators and users of computational systems. 

 Although the information needed to produce output is present in complex 

computational systems, it is not always in the form of reasons that a human, no matter 

how skilled, can understand as an explanation. For machine learning, this opacity “stems 
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from the mismatch between mathematical optimization in high-dimensionality [which is] 

characteristic of machine learning and the demands of human-scale reasoning and styles 

of semantic interpretation” (Burrell 2016, 1–2). The next three subsections will describe 

three forms of transparency that alleviate opacity in computational systems. These are the 

transparency of the system’s algorithm, the way that algorithm is represented in code, and 

the way that code is instantiated and run on particular hardware and data.4  

 

3a. Functional Transparency: Algorithmic Knowledge 

 The first form of transparency is functional transparency, or knowledge of the 

algorithmic functioning of the whole. When a computational system is functionally 

transparent, it is possible to know the high-level, logical rules according to which the 

system will transform a given input into an output. In other words, to have functional 

transparency is to be able to know which algorithm the program instantiates. Since 

“functional” can mean many things, it is worth clarifying that my functional transparency 

is not an analysis of a system in terms of the relations of its constituent parts; I will call 

that structural transparency and discuss it in the next section. Structural transparency is 

                                                
4 My three forms of transparency draw on the concepts in classical computation from 

which David Marr developed his three levels of understanding in information processing 

systems. My first and third forms of transparency are similar to his second level, 

“representation and algorithm,” and third level, “hardware implementation,” respectively. 

Marr’s levels are meant to aid understanding of perceptual information processing in 

vision. They do not address transparency or scientific computation. For more on Marr’s 

levels, see (Marr 2010, 24–27).  
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knowing how the program instantiates a particular algorithm. Functional transparency, 

conversely, is knowing which algorithm the program instantiates.   

 An algorithm is an abstract mathematical object. A computer program is a 

particular instantiation of an algorithm (Knuth 1977, 63). Because an algorithm can be 

multiply realized in code, knowing the algorithm does not entail knowing the parts of a 

program or the relations between its parts. Programs that successfully carry out the same 

algorithm can be composed of different arrangements of parts, especially if they are 

written in different types of programing languages, whether procedural, functional, 

object-oriented, or assembly.  

 A program generated by machine learning may fail to be functionally transparent 

if its algorithm was developed autonomously, without being programmed by a person, as 

in genetic programming.5 Genetic programming loosely mimics the process of mutation 

and selection present in populations of natural organisms.  The process begins with a 

large pool of “chromosomes,” or strings comprising small possible subsets of the 

program, which are aggregated into programs and run on the task set by the human 

programmer. After each competition, the “fittest” programs are evolved in two ways: 

parts of their “chromosomes” are randomly swapped with those of other fit programs and 

the chromosomes themselves are randomly mutated.  In each evolution phase the learning 

algorithm modifies the operations of the programs themselves, significantly changing the 

code of each program as it improves.  Since such generated algorithms are often complex, 

long, and unintuitive, it can be difficult for humans to understand the final algorithm. We 

can know the class of algorithms into which it falls without knowing the algorithm itself. 

                                                
5 For a philosophical discussion of genetic programming, see (Clark 2013, 98). 
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 In cases without machine learning, a program is typically written by humans in 

order to instantiate a particular algorithm. Even when human programmers are 

competent, however, programs may still be functionally opaque. One illustration of this 

occurrence is when the program involves substantial kludging, as discussed by Lenhard 

and Winsberg (2010) in climate models.  

 Climate models are often built from many sub-models such as models of 

atmospheric circulation, temperature over time, cloud albedo, ocean circulation, 

behaviors of sea and land ice, carbon-capturing properties of vegetation, and more. 

Creating a climate model that unites these models and their heterogeneous sources of data 

involves a process of accretion: new subcomponents are added and the model adjusted to 

incorporate them.  

 Over time, this accretion of data and sub-modules requires increasing amounts of 

“kludging.” A kludge is a software fix made locally that is theoretically unmotivated: the 

addition of new bits of code that make the model work but not for any principled reason. 

Kludging creates a “piece of program or machinery which works up to a point but is very 

complex, unprincipled in its design, ill-understood, hard to prove complete or sound and 

therefore having unknown limitations, and hard to maintain or extend’’ (Lenhard and 

Winsberg 2010, 257). 

 Since kludges lack theoretical motivation, they are harder to understand as part of 

a model and are not related to the model’s algorithmic functioning. One cannot say about 

a kludge, for example, that it improves the accuracy of a cloud behavior module within 

the larger climate model by better modeling raindrop nucleation site dynamics, or that it 

instantiates a linear regression model (Khain, Rosenfeld, and Pokrovsky 2005). The 
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kludge exists only to make what was broken functional. It is the patch on the rubber tire. 

 In my taxonomy, kludging impedes functional transparency. A climate model 

might appear to have a tidy, high-level algorithm and be functionally transparent, but its 

kludges introduce disorder which, though essential for its functioning, may alter the 

nature of its algorithm. Lenhard and Winsberg think that by eliminating this kind of 

opacity they will gain the ability to detect artifacts, which they see as the purpose of 

transparency. They are correct that kludging leads to opacity and artifacts, and “should be 

expected to continue” to do so – opaqueness is not always eliminable (2010, 258). But as 

I argue in §4, kludging cannot fully capture the problem of opacity, nor is functional 

transparency always the right kind of transparency to enable detection of artifacts.6  

 

3b. Structural Transparency: Process Knowledge 

 The second form of transparency is structural transparency, or knowledge of how 

an algorithm is realized in code. As mentioned in §2a, the same algorithm can be 

multiply realized in code: written in different programming languages, or written in ways 

                                                
6 For machine learning in particular, the scope of application of functional transparency 

requires clarification. There are (at least) two algorithms in a machine learning system: 

the algorithm that guides the learning process, and the algorithm, model, or decision 

procedure that is learned. Lipton (2016) describes transparency of the former as 

algorithmic transparency, but both versions are extant and sought in the computer science 

literature. Functional transparency therefore refers to both, but I encourage users of this 

taxonomy to add further classifications within each of the three types when doing so can 

help precisify the form of transparency delivered by a particular system. 
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different enough to change the operation of the code. It is possible to know the algorithm 

that the code realizes but not know how the code realizes it, i.e. to have functional but not 

structural transparency. To have structural transparency is not just to be able to read the 

code; it is to understand how the code as written brings about the result of the program.  

 One path towards structural transparency is through modular decomposition, part 

of Paul Humpreys’ suggested definition of transparency. On his view, complex climate 

models are structurally transparent when one can decompose them into modular steps, 

“each of which is methodologically acceptable both individually and in combination with 

others” (Humphreys 2004, 160).7 This form of transparency relies, first, on being able to 

decompose the process of the model and second, on being able to understand the dynamic 

flow from step to step. 

 However, there are two problems with the details of Humphreys’s account. First, 

he describes opacity as occurring when models are “too fast for humans to follow in 

detail,” or “so fast and so complex that no human or group of humans can in practice 

reproduce or understand the process” (Humphreys 2004, 150; 2009, 619). Speed, 

however, is not the operative concept. Neither Humphreys nor others in the discussion of 

                                                
7 In later work, Humphreys relaxes the definition of opacity to “a process is epistemically 

opaque relative to a cognitive agent X at time t just in case X does not know at t all of the 

epistemically relevant elements of the process” (Humphreys 2009, 618). Although his 

2009 definition appears to require only the static identification of relevant elements, 

Humphreys’s descriptions of stepping through a process between input and output and 

identifying steps of a procedure remains the same in the explanation of the definition. 

Therefore, I will take the two definitions to be equivalent. 
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opacity argue that transparency must occur in real time, and they ought not. Even the 

simplest calculation on a modern computer occurs “too fast for humans to follow in 

detail,” but it can be understood immediately after its completion by examining the code 

and the statements left behind in the logs of that computational run.  

 Humphreys might agree that real-time tracing is not at the heart of transparency.  

He suggests later that transparency can be achieved by process decomposition, a step-by-

step tracing of “details of the process between input and output” (2004, 150). He writes, 

“If we think in terms of such a process and imagine that its stepwise computation was 

slowed down to the point where, in principle, a human could examine each step in the 

process, the computationally irreducible process would become epistemically 

transparent” (ibid.). But realizing Humphreys’ counterfactual would not necessarily yield 

structural transparency.  In principle, we could print each of the thousands of base-cases 

solved in a computer-aided proof and check the code-as-run line by line.  However, a 

human manually examining each step in the process could, for some long or complex 

programs, require longer than a human lifetime.  Although Humphreys is correct that 

each individual step could be transparent, and that “in principle” the whole would thus be 

transparent, idealizing away from the duration of time in this way means that any 

program of a sufficient complexity is in practice opaque to humans and likely to remain 

so.  The size and complexity of the program make the checking infeasible, not the initial 

speed of its run. 

 The gap between principle and practice typifies the larger problems with 

Humphrey’s process decomposition as a generalizable analysis of computational opacity. 

In a bare sense, a computer program will always be process decomposable, since the path 
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of execution can always be traced. Most code written in object-oriented programming 

languages comes pre-decomposed into modules: the functional units of the program, 

called “functions” or “methods,” each of which performs a specific task (eg, matrix 

multiplication), guarantees a type of output (a matrix) if given a correct input (two or 

more matrices), and has an inheritance relationship to other functions (matrix 

multiplication “inherits” some of its functionality from multiplication; it could be 

extended for use in sub-types of matrix multiplication). Knowing the modular steps at the 

function level is often possible. 

 It may nevertheless be the case that “most steps in the process are not open to 

direct inspection and verification,” because the “steps” are higher-level steps (ibid., 147). 

The difficulty in determining which emergent properties, complexity effects, or 

unexpected errors the code might possess cannot always be resolved by being able to 

trace the code line-by-line or function-by-function. Only at a higher level does structural 

opacity emerge. These are “computationally irreducible processes, processes that are of 

the kind best described, in David Marr’s well-known classification, by Type 2 theories … 

in which a problem is solved by the simultaneous action of a considerable number of 

processes whose interaction is its own simplest description” (ibid., 148–9). Thus, a 

second source of opacity would remain even if hand checking were possible: the program 

would still not be fully transparent because we could not understand how all the steps 

interact to bring about the algorithm or to what extent each individual step contributed to 

the final result.  

  A form of transparency similar to Humphreys’s process decomposition evades 

the first part of this critique by instituting a reasonability criterion on the time given to 
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stepping through the code. Zachary Lipton says that a model is simulatable if “a human 

[can] take input data together with the parameters of the model and in reasonable time 

step through every calculation required to produce a prediction” (Lipton 2016, 5).8 This 

improves on Humphreys’s definition in two ways: first, by stipulating that it must be 

done in reasonable time and second by stipulating that the unit of step-wise evaluation is 

the calculation, thereby abstracting away the necessity of line-by-line evaluation.  

 The problem with both Lipton and Humphrey’s definitions is that successfully 

stepping through a process linking one input with one output is not enough to call the 

whole process or model, respectively, transparent. There are many cases in which 

understanding the sub-components of a whole model might be prohibitively complex 

while a few of the model’s input-output paths remain easily understandable. While 

knowing these paths would improve our epistemic standing, this would be a weaker form 

of transparency, one in which the transparency of the whole system would depend on the 

luck of the simplest path. Would a model count as transparent for which only one path 

could be traced, such as the failure case that immediately produced an error message? 

Separating the transparency of individual paths or individual predictions from the 

transparency of the model or algorithm as a whole, as some analyses do, is reasonable, 

but one cannot stand in for the other (Ribeiro, Singh, and Guestrin 2016).  

 Instead, Humphreys and Lipton might require that a human be able to step 

                                                
8 Lipton glosses this form of transparency as being “able to contemplate the entire model 

at once,” but as I have suggested in §3a, this is a meaningfully different form of 

transparency. 
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through every possible path of the program.9 Although it would more appropriately 

model the transparency of the system as a whole, this analysis still relies on the sum of all 

the tokens to stand in for the type. The ability to wander down every possible path of the 

code, or to know that you have done so, requires having my form of structural 

transparency. It requires knowledge of the code as it instantiates the algorithm, 

sometimes represented with a code map or architecture diagram. This model could be a 

simple box and line code map; it could be a Unified Modeling Language (UML) software 

architecture diagram complete with structure diagrams, behavior diagrams, and 

interaction diagrams.  Such a model visually represents the structure and behavior of a 

system by decomposing it into its parts and by representing the ways in which the 

interactions of those parts support the algorithm. 

 Without such knowledge of the sub-components and their relations, it would be 

difficult to successfully trace the path between every possible input and its output. Since 

there are an infinite number of possible inputs, the possibility of predicting the behavior 

of the system, and especially of identifying the sources of unexpected behavior in the 

code, requires a model of the system and how it will treat inputs.10 Therefore the more 

complete form of analysis is the knowledge of relations between the subcomponents, not 

                                                
9 Lipton may already intend to require this; his phrasing is ambiguous between the two 

possibilities.  

10 I say “possibility” to suggest that in some cases, it will not be possible to predict the 

output of the system without completing its computation, such as in irreducible 

computations, or at all, as suggested by the undecidability of the halting problem.  
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the sum of the ability to traverse all possible paths.11  

 A further question concerns the “level” at which the algorithm is instantiated in 

code. The purpose of higher level programming languages is to hide the machine code 

that implements each command behind a language that is easier to read and write. Thus 

the algorithm is almost always implemented in multiple languages.  The differences 

between these two languages can itself lead to opacity, for predictable reasons: the 

implementation of the programming language has been intentionally concealed in order 

to provide a seamless experience for the programmer.   

 However, because of this opacity the programmer can make false assumptions 

about how the language will interpret commands. For example, Python has built-in 

functions for integration (Scipy Community 2017). These functions accept many data 

types in addition to integers, but may not treat them in the way that the programmer 

expects unless she researches the specifications of the functions in the Python 

documentation or writes her own integration functions. The silent error that occurs when 

an integration function accepts data and returns a number but in fact is not performing the 

calculation as the programmer expects can be difficult to find when tracing the code the 

                                                
11 Structural transparency also incorporates a second aspect of Lipton’s characterization 

of transparency, which he calls “decomposability”: that “each part of the model – each 

input, parameter, and calculation – admits an intuitive explanation” (Lipton 2016, 5). 

Again, Lipton’s characterization is somewhat ambiguous as to token and type. It also 

does not specify what kind of explanation suffices – a literature unto itself in both 

philosophy of science and explainable AI. I consider structural transparency to have 

captured the best features of both of his characterizations.  
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programmer has written. The error exists in the clash between the programmer’s 

expectations and the integration function written by the developers of the programming 

language.  

 Silent errors can persist even in popular scientific software. For example, 

scientists working on the Dark Energy Survey implemented the same correlation function 

model using two standard cosmology software packages, CLASS and CAMB, one 

written in C, the other implemented in Fortran but controllable with a Python interface.12 

By comparing the results produced by the two software packages, they “uncovered actual 

coding errors; to reach the final level of agreement, further iterations required validation 

of numerical implementation details, such as integration accuracy” (Krause et al. 2017, 

7). Before scientists compared CLASS and CAMB, the cosmology community had been 

unaware of the integration errors. 

 The structural opacity of a large cosmology or climate simulation is an accidental 

function of size and accretion; a similar but smaller program would be easier to 

understand. Nevertheless, such opacity can be difficult to reduce.  A code base of 

sufficient complexity, such as a climate model or a cosmology simulation which itself 

relies on a large software package like CLASS or CAMB, may be difficult to map 

accurately in its entirety due to the complexity of interactions between its parts and its 

pre-written software functions.  

 Conversely, when the functional units of the program are tiny, simple, and 

                                                
12 For general discussion see (Krause et al. 2017, 6). For more on the implementation of 

CLASS see (Lesgourgues and Tram 2017); for CAMB see (Lewis 2017; Lewis and 

Challinor 2017). 
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numerous, as are the neurons of a deep neural network, a subcomponent map would 

prove insufficient. To see why, imagine a simple neural network: a perceptron 

(Rosenblatt 1958).  A perceptron consists of binary input “neurons” connected to an 

output neuron which functions as a classifier. The original perceptron returns one if a 

weighted sum of its inputs is over a certain threshold, and zero otherwise; others have 

nonlinear activation functions and can use adjustable real numbers as their activation 

values. Perceptrons can be stacked to form a larger neural network or used for simple 

logical operations such as AND or OR.13   

 Because perceptrons are simple, eschewing modern feedback techniques, we have 

formal guarantees concerning their performance and learning capacities (Harman and 

Kulkarni 2011). However, such results rarely apply to hybrid deep neural nets of the kind 

used in most scientific computing and industry applications. Contemporary deep neural 

networks, while stemming from their simpler ancestors, differ in at least four important 

ways, as summarized by Buckner (2019): they contain many more layers, increasing their 

efficiency; they are composed of heterogeneous processing units with different activation 

functions; they are sparsely connected; and they use more techniques to avoid overfitting. 

These added complexities increase both performance and opacity. 

 With access to the input data and to the current weights of the network, it would 

be possible to predict or trace all of the thousands of neurons’ responses to a new image 

through the layers of the network and thus to predict final classification of the image.  In 

this sense, at least for smaller neural networks, it is possible to know how the algorithm is 

                                                
13 I rely here on the original description of a perceptron, but note that “multilayer 

perceptron” is sometimes used now to describe a deep, fully-connected neural network. 
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instantiated in code.   

 However, in all but the smallest networks it would be difficult to predict the 

outcome without tracing each step or to understand the behavior of the network, 

especially if the network includes feedback loops. More importantly, without further 

analysis it would be unclear to the observer why this neural net successfully classified an 

image and to what extent each of the neurons contributed to the result, or why different 

neural nets might have different patterns of classification.  In this sense, although we 

know how the learning algorithm works and what formal guarantees (if any) we have 

about its performance, we do not know how the learned “algorithm” brings about the 

classification result.  Thus we lack functional transparency.   

  

3c. Run Transparency: System Knowledge  

 The third form is run transparency, or knowledge of the program as it was run in a 

particular instance, including the hardware and input data used. While functional 

transparency can often be analyzed by surveying the text of the code, run transparency 

requires analysis of one particular run on an individual machine using actual data. 

Achieving such transparency will allow the detection of artifacts caused by interaction 

effects between the program and hardware; between the program and unexpected input 

data; and between the program and its implementation in a particular programming 

language that is then translated into the machine code that actually runs. I will illustrate 

run opacity using two problems obscured by it: one in hardware and one in the input data.  

 One hardware problem that run transparency illuminates is the corruption of 

sensitive detector equipment by cosmic rays. When balloon-borne telescopes are 
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launched to measure cosmic microwave background radiation, powerful cosmic rays flip 

the telescopes’ bits and corrupt their data. Therefore, balloon experiments use special 

“space-qualified” hardware: circuits and logic gates that are less susceptible to bit 

flipping and can detect and repair the flips that do occur (Dobbs et al. 2009, 14). 

Changing the system level implementation and hardware components protects the system 

from errors that would be difficult to detect with access only to the algorithmic or 

structural levels. Knowledge about the hardware and the state of the data stored in a 

particular run is necessary in order to pinpoint the bit-flipping errors generated by cosmic 

rays.    

 Second, features of the data for which the programmers did not account can also 

interact with the program to create artifacts. Although the problem may be located in the 

data, in an opaque system it is more difficult to detect. Increasing run transparency can 

reveal previously undetected problems in the interactions between input data and the 

software.  

 For example, consider the use of algorithmically generated “risk scores” to predict 

the probability of recidivism in bond assignments and sentencing decisions. These risk 

scores often rely on data that are biased due to their method of collection, as when they 

use the number of prior arrests to determine probability of re-offending (Kirchner 2016). 

In a country in which probability of arrest and re-arrest given the same crime(s) is 

racially skewed, this initial data introduces a racial bias into sentencing (Chouldechova 

2017). This is a classic garbage-in, garbage-out data problem, not unique to opaque 

algorithms, but one difficult for defendants to identify due to lack of transparency. It also 

cannot be identified using functional transparency or structural transparency, in other 
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words by looking at the algorithm or the code itself. Knowing the way the data was 

collected, its distributional features, and the way it is used by the software is required.  

  

3d. Relationship of the Three Forms of Transparency 

 The three forms of transparency – functional transparency, structural 

transparency, and run transparency – each individually improve our knowledge.  Having 

all three provides more transparent understanding than one alone; together, they divide 

types of knowledge of a computational system.  Although other divisions are possible, 

such as subdivisions within these three types or orthogonal divisions of the logical space, 

I will in the next section motivate the value of this division. 

 All three types of transparency are dissociable: each can be exhibited without 

requiring any of the others. This independence conflicts with existing philosophical 

accounts, according to which possession of one type of transparency necessarily affords 

another (Humphreys 2004; Lenhard and Winsberg 2010). On Humphreys’ view, 

possessing structural transparency provides high-level algorithmic, functional 

transparency. Complex climate models become transparent for Humphreys when one can 

decompose them into modular steps, “each of which is methodologically acceptable both 

individually and in combination with others” (2004, 160). This is a partial form of 

structural transparency.  

 Once attained, according to Humphreys, structural transparency will provide a 

high level understanding or an “explicit algorithm,” a functional transparency, in my 

account (2004, 149). However, the argument in §2 regarding the ease and shallowness of 

obtaining a line-by-line or function-by-function decomposition of any program shows 
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that the process Humphreys describes will not always lead to functional transparency or 

to understanding the algorithm. Humphreys does not get two transparencies for the price 

of one. 

 The other analysis of transparency in the climate modeling literature comes from 

Lenhard and Winsberg. Lenhard and Winsberg’s ability to localize success or failure to a 

specific subcomponent of the program is a version of my structural transparency. For 

them, models are transparent when one can identify the extent to which each of the sub-

models is contributing to the success of the model. One increases transparency by “the 

process of teasing apart the sources of success and failure of a simulation ... we would 

say that one has such understanding precisely when one is able to identify the extent to 

which each of the sub-models of a global model is contributing to its various successes 

and failures” (2010, 258). This criterion for transparency differs from Humphreys’ 

because it is not necessary to know how the sub-components relate to one another, as 

Humphreys requires. Transparency in Lenhard and Winsberg’s view does not require a 

full trace of the process.  

  Although helpful, this ability to localize success or failure will neither entail full 

transparency nor provide a useful kind of transparency in all circumstances. For an 

example of why localizing success and failure will not lead to Lenhard and Winsberg’s 

desired result of transparency, consider a common problem with models in the social 

sciences, here illustrated with a model from political science. Ray Fair’s (1978) classic 

model of democratic functioning suggests that a strong economy so outweighs other 

relevant causal factors that if the economy is strong, the party in power will be reelected. 

The subsequent literature discussing this phenomenon argues that while the correlation is 
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fairly robust, it cannot be considered a satisfying theory until the explanations for and 

processes underlying the correlation are made clear. Without those causal connections, 

the model remains opaque. The economy-reelection correlation localizes the prediction’s 

success or failure to one particular component of a complex model of factors that affect 

elections, as Lenhard and Winsberg would desire. However, it merely presents a 

predictive correlation useful for localizing success or failure but useless for a high-level 

algorithmic understanding of the effect.  

I have shown that transparency can be divided into three types and that these three 

types dissociate: having one type does not guarantee having any other. Because of this 

dissociability, each type of transparency can be achieved independently. The question, 

then, is how such transparency can be achieved. This is the topic of the next section. 

 

4. Solutions for Transparency 

 Reducing the opacity of complex computation is a burgeoning field of research in 

computer science. However, the methods researchers use to increase transparency are 

different than the ones Humphreys or Lenhard and Winsberg would recommend. In this 

section, I will discuss two existing methods for increasing transparency and show how 

the three-form analysis of transparency illuminates these cases. The major conclusions 

are: (1) that all three forms of transparency are required to fully reduce opacity and (2) 

that focusing only on a single form of transparency nevertheless can suffice for a 

particular goal. 
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4a. Post-hoc Explanation and LIME 

 The first method for increasing transparency in an existing computational system 

is to create an algorithm that generates post-hoc decision explanations. One such 

algorithm, LIME, was created by Ribeiro et. al. (2016) to reduce the opacity of existing 

machine learning classifiers. LIME, or Local Interpretable Model-agnostic Explanations, 

aims to explain the predictions of a classifier by fitting a linear model to the pattern of its 

prediction given the input data.  

 Although it can be used in any domain, I will describe the functioning of LIME 

using an example of its application to medical diagnosis. Existing medical diagnostic 

machine learning systems make diagnoses and treatment recommendations based on 

information available in patients’ records and case notes from the patients’ most recent 

visits (Caruana et al. 2015). Using this information and correlations between medical 

information and correct diagnoses, the system delivers a diagnosis, such as “flu” or “food 

poisoning.” However, because the diagnostic systems do not give an explanation or 

reason for the diagnosis, doctors often deem them untrustworthy and avoid them. 

Applying LIME to such a system gives doctors a rationale for the existing system’s 

diagnoses.  

 Because of the nature of the algorithms used, however, the diagnostic systems did 

not already contain those reasons in human-understandable form. In fact, the diagnostic 

systems made diagnoses by weighing hundreds or thousands of micro-factors expressed 

in artificial neurons. LIME attempts to query the decision space, or set of outcomes 

possible given an input, of the existing program from the outside. It reconstructs the 

“decisions of any model in a local region near a particular point, by learning a separate 
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sparse linear model to explain the decisions of the first” model (Lipton 2016). In other 

words, LIME attempts to decrease opacity by providing a local, post-hoc, high-level 

explanation. The explanation provided is in a tidy, human-understandable list of three or 

four most important factors influencing the decision, such as “sneeze, headache, no 

fatigue => flu” (Ribeiro, Singh, and Guestrin 2016). 

 While locally descriptive of the model, LIME’s list does not demystify the overall 

decision space used to make the flu diagnosis. LIME offers a high-level explanation for 

the decision-making, a type of functional transparency. Although it does not provide the 

whole algorithm, it provides the parts of the algorithm used to make the particular 

decision. LIME does not improve structural or run transparency. It provides neither the 

structural components used to implement the decision-making process nor an accurate 

low-level depiction of the system’s functioning.  

 Nevertheless, such outside in, post-hoc explanation generation increases a type of 

functional transparency: it provides access to the decision space most relevant to the 

token classification.  In the language of functional transparency, it thus succeeds in 

explaining the functioning of the algorithm on that particular decision, albeit in coarse-

grain, human-interpretable terms.  For example, in a text classification task, LIME might 

select certain words from the input text as most relevant to the classification.  Since it 

increases the usefulness of the classification while providing “faithful” access to features 

relevant to the decision made by the algorithm, namely words from the input text, it 

offers a form of transparency. 

In only a very loose sense does LIME provides the form of transparency that 

Humphreys describes. There is a minimal high level explanation of the patient’s 
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complaint, the diagnosis as backed by symptoms, which appears to the doctor to have 

been generated by a weighting of the “symptoms” that are given as reasons for the 

diagnosis, thus providing an explanation of the process. The decision space is 

decomposed into components comprising major symptoms or facts about the patient, 

such as “runny nose” and “under age 12,” that generated the diagnosis. And this 

description of the model is in some sense accurate; it is based on a sparse linear model 

that fits the local decision space. But the decision-making process implied by LIME’s list 

of symptoms is not the way that the original system decides. At no point in the original 

machine learning system’s decision making does it build a sparse linear model that 

provides discrete symptoms. The linear model used by LIME accurately characterizes the 

relevant space for that decision, but it would not be of much use in detecting problems 

with the functioning of the original system. Nor does it open the “steps in the process” to 

“direct inspection and verification” (Humphreys 2004, 148). Humphreys’ analysis thus 

does not explain how LIME could improve transparency. 

 Humphreys might respond that reporting the steps and structure of the original 

system would be a better way to increase transparency than LIME is. However, a step-by-

step process taken from the original system would be useless to the doctors. It would not 

provide an explanation for the diagnosis in the same way that the linear model does. 

While the step-by-step process of functioning would be useful to the makers and 

maintainers of the original system in detecting some kinds of artifacts, LIME would be 

useful in detecting others. Since it brings to light the logic of a particular decision, it can 

detect patterns and curiosities in the correlations the system has learned (“why are toe 

injuries an important symptom in predicting myopia?”). Therefore, this system does not 
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fulfill Humphreys’ hope that process transparency would lead to functional transparency 

and be sufficient for artifact detection.  

 Likewise, LIME would not increase Lenhard and Winsberg’s type of transparency 

because it does not localize success and failure. Although some artifacts might be 

unearthed if they appeared as improbable symptoms in the system cluster shown by the 

linear model, LIME does not illuminate the processes that lead those symptoms to be the 

ones chosen as relevant.  

 Nevertheless, LIME does increase transparency. It provides faithful access to 

high-level features of the decision making process that are useful in aiding artifact 

detection and explanation. Recognizing multiple forms of transparency, each of which is 

singly capable of providing relevant information, is necessary to explain the usefulness of 

systems such as LIME.  

 

4b. Feature Reconstruction and Google DeepDream 

 The second example comes from Google DeepDream, a visualization tool 

connected to large and sophisticated neural nets trained to detect images. Given millions 

of pictures, it can learn to recognize dumbbells, Dalmatians, daffodils, and diamonds. 

However, as with many neural nets, the criteria by which DeepDream’s neural net 

recognizes dogs and the reasons it identifies some pictures as pictures of dogs are 

unclear. In order to understand these reasons, Google researchers reversed the algorithm 

(Dosovitskiy and Brox 2016). For each label that DeepDream recognized, they iteratively 

fed the system a white noise image and asked it to determine which of two random 

modifications of that image were closer to its understanding of “dumbbell.” This 
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common post-hoc strategy is known as visualization. Using visualization, the researchers 

made explicit what the program looks for when it looks for dumbbells (Simonyan, 

Vedaldi, and Zisserman 2014). The fragmented, surrealist pictures produced by 

visualization contained many dumbbells with different sized weights, but also forearms 

and biceps hoisting the weights (Mordvintsev, Olah, and Tyka 2015). 

 Google researchers have used reversal to detect and eliminate artifacts. The fact 

that the reversed images of dumbbells come with partial images of arms means that arm 

images are useful in raising the probability that this is an image of a dumbbell and 

therefore making a successful classification. However, perhaps because of implicit 

essentialism about categories, the Google researchers interpreted the presence of arms as 

an artifact: “[T]he network failed to completely distill the essence of a dumbbell. Maybe 

it’s never been shown a dumbbell without an arm holding it. Visualization can help us 

correct these kinds of training mishaps” (Mordvintsev, Olah, and Tyka 2015). The choice 

to eliminate the arms shows a commitment to the correctness of the researchers’ prior 

concept of the essence of dumbbell. Despite acknowledging elsewhere that the labels 

derived are cluster concepts and despite the status of dumbbells as an object created by 

humans for a purpose, the researchers are unwilling to accept lifting biceps as part of the 

functional concept of dumbbell.  

Their decision illustrates the tension between the kinds of explanations, solutions, 

and concepts ordinarily generated by machine learning and the human requirements for 

what counts as a good exemplar of each of these. Recall that LIME’s linear model 

translated between the complex decision function generated by an opaque classifier and 

the kind of justification that humans find satisfying as a justification for a classification. 
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In the case of medical diagnosis, this was a short, discrete list of symptoms. In order to 

produce its own human-satisfying explanation, DeepMind uses visualization in two ways: 

to transcribe the complex series of features for which the neurons looked for each concept 

into a human-understandable series of images and also to produce images as guides to 

circumscribing the scope of the cluster concepts. The detection of artifacts is a normative 

decision based in part on what kinds of explanations satisfy humans. 

 Part of the ineliminable opacity of complex computational systems comes from 

the fact that the factors that influence machine classifications or predictions are of 

different kinds from those described as reason-giving by humans. Even when information 

that is sufficient for machine classifications or predictions is available, its difference in 

kind and scale means that it explains little to us. This difference in kind leaves human 

scientists and researchers to create post-hoc explanations that will satisfy humans either 

by adding a further layer of abstraction to our understanding by reverse-engineering a 

model’s local decisions, as LIME does, or by attempting to make understandable the 

computer’s own decision-making criteria, as Google DeepDream does with visualization. 

The former wraps an ersatz explanation around the true functioning of the program, 

satisfying one of the criteria by obscuring the others. The latter, while it allows for 

artifact detection of a kind, obscures the algorithmic process by which the images are 

made.  

 Thus visualization gives us a loose version of what Lenhard and Winsberg desire 

as a result of transparency without employing their mechanism for achieving it. By 

supporting a high-level understanding of which features the algorithm is using to decide 

whether an image should be classified with a label, visualization delivers the capacity to 
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detect artifacts. However, it does not localize the detected artifact to a particular sub-

model. Each of the artificial neurons that (metaphorically) fire differentially when 

presented with the image of the dumbbell is looking for slightly different sub-components 

or aspects of the definition of dumbbell. Although we can know which neurons are firing 

when presented with an arm, a dumbbell, and an arm with a dumbbell, teasing apart 

which “subcomponent” should be modified to fix the artifact is difficult due to the fuzzy 

modularity of neuron groups. Therefore, researchers typically approach problems like this 

by re-training the learning system, perhaps by stocking the training corpus with arm-less 

dumbbells, rather than altering the existing program.  

 Visualization does not increase transparency in a way that Lenhard and 

Winsberg’s definition would suggest, nor does it give us Humphreys’ step-by-step tracing 

of the process. Nevertheless, it allows insight into the decision making of the classifier 

and the elimination of artifacts. In my taxonomy, it does this by increasing run 

transparency. Visualization provides knowledge of features of the initial training data and 

subsequent trained algorithm that would otherwise be difficult to access merely from the 

output. Without a prior theory of the case, it is unlikely that Google engineers would have 

discovered the reliance on arms to identify dumbbells from the pattern of successful 

identification alone. Visualization provided insight into features of the training data set, 

namely the preponderance of biceps in dumbbell pictures, which influenced the outcome 

in ways the team deemed deleterious.  Thus visualization provided the transparent access 

to previously unknown features of the training data that allowed the researchers to 

eliminate an artifact.  It increased run transparency. 
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5. Conclusion 

 The pessimism about transparency expressed by philosophers interested in 

modeling is understandable. Complex computation will retain aspects of ineliminable 

opacity. However, we need not, and ought not, give up transparency. The types of 

transparency for which Humphreys, Lenhard, and Winsberg hope rely too heavily on 

aspects of computation that are often either difficult to salvage, like transitory variables, 

or insufficiently explanatory, like neurons. They conclude, therefore, that we must 

abandon transparency as an epistemic aim for complex systems. However, widespread 

efforts in computer science to increase transparency and interpretability confirm that 

some researchers are not content with black boxes. New methods are proliferating in both 

commercial and scientific machine learning.  To return to the Large Hadron Collider, 

post-hoc visualization strategies similar to those used by the DeepDream researchers 

have been used to describe the criteria of otherwise opaque event classification 

algorithms (Roxlo and Reece 2018). In order to explain why these new methods can 

ameliorate opacity, we must expand our definition of what counts as transparency. In this 

broader analysis, gaining any of the three transparencies – functional, structural, or run – 

can improve our epistemic position by targeting a precise type of opacity relevant to 

particular tasks or goals.  

 The tripartite analysis presented in this paper allows the identification of the 

relevant form of transparency to target for a given epistemic need, and thereby makes it 

more tractable to improve one form of opacity without having to tackle them all. My 

analysis provides the epistemic grounding necessary to support further normative work. 

The issue of transparency in opaque computation systems opens questions for further 



 34 

exploration, such as the status of opaque systems with respect to justice in civil society or 

trust in science. Differentiating these three forms of opacity and identifying tools by 

which targeted transparency improvements can be made lets us address these questions 

with greater clarity. 
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