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1 Introduction

Conditionals are notoriously difficult to analyse. Conditionals are natural language sen-

tences of the form ‘if A then C’, where A is called the antecedent and C the consequent

of the conditional. A standard account has however emerged in the 70’ies, the so-called

possible world account (Lewis, 1973b; Stalnaker, 1968). This account even spread into

the fields of linguistics and formal semantics in the work of Kratzer (1979), and, in some

form or another, into the domain of the psychology of reasoning (Over, 2009). According

to this account, a conditional A > C is true in the actual world if and only if the clos-

est A-worlds to the actual world are C-worlds. However, recent reflections and analysis

suggest that the defining clause is not strong enough and that we may want to add some

additional conditions. What these conditions is not settled. Different approaches argue

for different conditions (Crupi & Iacona, 2019; Krzyżanowska, Wenmackers, & Douven,

2013; Raidl, 2018; Rott, ms; Spohn, 2015). Some of these logics are not worked out yet,

or they are only worked out for specific models. To get a grasp to compare them, we
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need to know what kind of logics they generate depending on the underlying closeness

analysis. This article proposes a general method which generates completeness results

for such strengthened conditionals. In particular, the article proves completeness for the

evidential conditional introduced by Crupi and Iacona (2019).

The general problem is this: Imagine that you have a strengthened conditional of the

form

• ϕBψ in world w iff closest ϕ-worlds are ψ-worlds and X.

Suppose additionally that X is also formulated in terms of the closeness apparatus. It

thus seems that one can rephrase the conditional ϕBψ in the language for >, namely as

(ϕ > ψ)∧ Y , where Y is the sentence expression corresponding to the semantic condition

X. The main question is this:

• Can we use known completeness results for > to obtain completeness results for B?

The answer is yes and the paper provides a general method. The idea is roughly this.

First redefine > in terms of B. This backtranslation of ϕ > ψ will roughly yield a sentence

Z in the language with B. If everything is well behaved, and bracketing some details, one

can use this backtranslation to translate axioms for > into axioms for B. In other words,

the back-translation is a looking glass which provides a distorted picture of the logic for

>, in terms of B. The method can be applied to Lewis’ (1973a) causal dependency, to

Spohn’s (2015) sufficient and necessary reason relation, to Rott’s (ms) difference making

conditional and dependency conditional, to Raidl’s (2018) neutral conditional, doxastic

conditional and metaphysical conditional, to Crupi and Iacona’s (2019) evidential condi-

tional and even to counterpossible conditionals in the style of Berto, French, Pries, and

Ripley (2018). And the list probably continues. The hope is indeed, that more complex

conditionals could be treated as well, such as Spohn’s (2015) supererogatory and insuf-

ficient reason as well as the plain reason relation, or the probabilistic conditional of van

Rooij and Schulz (2019). Here I will implement the method for the evidential conditional.

The plan of the paper is this: §2 introduces my framework for the basic conditional and

the definition of the evidential conditional. §3 introduces the general method to generate

completeness for new conditionals. §4 recalls axioms for the basic conditional and states

the axioms for the evidential conditional. §5 proves soundeness and §6 completeness for

the evidential conditional.

2 The Evidential Conditional

This section briefly rehearses the standard analysis of the conditional and then introduces

the evidential conditional.

The usual analysis of the conditional (Stalnaker 1968, Lewis 1973b) is as follows

Basic Conditional: ϕ > ψ is true in world w iff closest ϕ-worlds are ψ-worlds.

I will call this the basic conditional.1 There are several ways to analyse closeness. The

central ones, being either in terms of a Lewisean similarity relation, or in terms of systems

1The term is borrowed from Chellas (1975) and here refers to the general idea that more complex
conditionals can be based on the basic conditional, making them definable.
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of spheres, or in terms of a selection function. Under the right assumptions these analysis

yield the same logic (Lewis 1971). I will here use the more flexible world selection function

analysis.

A selection function F : W × ℘(W )−→℘(W ), associates to each world and each

proposition (i.e., subset of W ) a proposition. Additionally, we assume F has the following

properties:

• F (w,A) ⊆ A. (id)

• If F (w,A) ⊆ C and F (w,B) ⊆ C then F (w,A ∪B) ⊆ C. (ca)

• If F (w,A) ⊆ C and F (w,A) ⊆ B, then F (w,A ∩B) ⊆ C. (cmon)

• If F (w,A) ⊆ C and F (w,A) * B, then F (w,A ∩B) ⊆ C. (cv)

• If w ∈ A, then F (w,A) = {w}. (cs)

I will call a selection function Lewisean if it satisfies (id), (ca), (cmon) and (cv), and

strongly Lewisean if it also satisfies (cs). Our ground propositional language L is gener-

ated from propositional variables Var, negation ¬, conjunction ∧, disjunction ∨ and the

material conditional →. We extend L in two ways: L> extends L by the conditional

>, intended to represent the basic conditional and LB extends L by the conditional B,

intended to represent the evidential conditional.

A frame F = 〈W,F 〉 is given by a set of worlds W and a selection function F . A

model M = 〈W,F, V 〉 is given by a frame 〈W,F 〉 and a valuation V : Var−→℘(W )

which associates to every propositional variable p of L a set of worlds to be interpreted as

the worlds in which p is true. A frame (or model) is called Lewisean (strongly Lewisean)

if F is a Lewisean (strongly Lewisean) selection function.

The truth clauses for L in a model are as follows:

• w � p iff p ∈ V (p),

• w �¬ϕ iff w 2ϕ,

• w �ϕ ∧ ψ iff w �ϕ and w �ψ,

• w �ϕ ∨ ψ iff w �ϕ or w �ψ,

• w �ϕ→ ψ iff if w �ϕ then w �ψ [alternatively: w 2ϕ or w �ψ].

In what follows, we will consider two augmented versions of M. The first, denoted M>, is

M where the conditional is interpreted as the basic conditional >. The second, denoted

MB, is M where the conditional is interpreted as the evidential conditional B.2

Let us start with M> and the basic conditional. The truth clause encoding the above

intuitive definition of the basic conditional in terms of the selection function is:

2Another way to see it is that we have one model M, but since we have two languages L> and LB,
we have two sets of truth clauses, which one could denote �> and �B, which differ in the evaluation of >
and B. The option adopted here is however to consider the truth clauses part of the interpreted model.
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BC: w �ϕ > ψ iff F (w, [ϕ]) ⊆ [ψ],

where [ϕ] abbreviates [ϕ]M
>

= {w ∈ W : w �ϕ} which is the proposition expressed by ϕ

in the model M where > is interpreted as the basic conditional as above. BC encodes the

above idea of the basic conditional.

A recent trend suggests that (indicative) conditionals might follow another idea.

Namely that ϕBψ holds if one can justifiably infer ψ from ϕ, or if ϕ is a reason for

ψ, or if ϕ makes a difference to ψ, or if ϕ supports ψ. Several analysis and motivations

in this direction have been suggested, for example by Krzyżanowska et al. (2013), Rott

(ms), Spohn (2015). Since this article concentrates on proving a completeness result, I

will not rehearse the different motivations and refer the reader to the mentioned authors.

In this article I will consider an account, recently proposed by Crupi and Iacona (2019).

Their conditional is called the evidential conditional. The definition is roughly:

Evidential Conditional: ϕBψ is true in world w iff the closest ϕ-worlds are ψ worlds

and the closest non-ψ-worlds are non-ϕ-worlds.

They analyse closeness based on a system of spheres, which they assume to be strongly

centred (and satisfying the limit assumption). It is known that we can restate this equiv-

alently in terms of a strongly Lewisean selection function F (Lewis, 1971). The truth

clause encoding the above intuitive definition of the evidential conditional in terms of the

selection function is:

EC: w �ϕBψ iff F (w, [ϕ]) ⊆ [ψ] and F (w, [¬ψ]) ⊆ [¬ϕ].

where [ϕ] is an abbreviation of [ϕ]M
B

= {w ∈ W : w �MB ϕ}, where now MB is the

model M but with the conditional interpreted as the evidential conditional, as given

above. Intuitively, we have thus one model M, which splits into two interpreted versions,

which can each be seen as a different interpreted models: M> is M with the conditional

interpreted as the basic conditional and MB is M with the conditional interpreted as the

evidential conditional. The only thing that changes is the truth clause for the conditional.

In M> it is the usual clause BC for the basic conditional. In MB it is the clause EC for

the evidential conditional. The difference between [ϕ]M
B

and [ϕ]M
>

only appears when

ϕ contains as subformula a conditional. Thus if one restricts to the non-nested fragment

where conditionals don’t contain conditionals as proper subformulas and conditionals

do not enter into boolean combinations, the difference only appears when ϕ is itself a

conditional.

Just looking at the above definition (EC), it becomes visible, that ϕBψ is of the

form (ϕ > ψ) ∧ (¬ψ > ¬ϕ), if we had > in the language LB. However we don’t. This

‘definability’ feature will be of central importance, to my analysis. Crupi and Iacona

(2019) prove some essential validites for B in strong Lewisean models. What is missing

is a completeness result. Hence we do not know which logic characterises the evidential

conditional in the mentioned models. This is the fundamental question I will address

here:

• What is the sound and complete logic for B in strong Lewisean models?
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The way I answer this question has a twist. I use the known soundness and completeness

results for the basic conditional > to obtain soundness and completeness for B. The

method can be depicted as a knowledge transfer. In fact the method is rather general,

and can be applied to any conditional I ‘definable’ from a basic conditional > provided

one can do the converse, namely define > in terms of I.3 The method is here applied to

the evidential conditional. The resulting logic for B is of course not the same as the one for

>. It is a distorted image of the logic for >. The distortion comes from the above converse

definability of > in terms of B, what I will call more precisely the ‘backtranslation’ of >

into B. This backtranslation is the looking-glass which creates the distorted image and

generates axioms for B from axioms for >.

3 The Method

This section develops a theory to derive soundness and completeness results of a defined

conditional B, from known soundness and completeness of the defining basic conditional

>, using the way B is ‘defined’ from > and the way > can be ‘redefined’ from B. Since > is

not in the language LB and B not in the language L>, we can not speak of interdefinability

properly. This is why I use another terminology. Instead of saying improperly that B is

defined from >, I make this precise by a translation, denoted ◦, mapping sentences from

LB to sentences in L> which capture their meaning in terms of the basic conditional >.

Conversely, instead of saying improperly that > is definable from B, I make this precise

by a back-translation, denoted ∗, mapping sentences from L> to sentences in LB which

captures their meaning in terms of the defined conditional B. To be precise and because

of the above remarks, ‘defined conditional’ is also used improperly (unless one restricts

to the non-nested fragment). The method is generally developed in Raidl (2019ms), but

for the purpose of self-containement of the article, it is reproduced here in a cooked down

version.

Definition 1. Let LB and L> be conditional languages. A conditional translation is

a total function ◦ : LB−→L> such that p◦ = p, (¬ϕ)◦ = ¬ϕ◦, (ϕ • ψ)◦ = (ϕ◦ • ψ◦)
for • ∈ {∧,∨,→}, >◦ = >, ⊥◦ = ⊥, and there is a sentence θ[p, q] ∈ L> such that

(ϕBψ)◦ = θ[ϕ◦/p, ψ◦/q].

For the evidential conditional, the conditional translation is given by

• (ϕBψ)◦ = (ϕ◦ > ψ◦) ∧ (¬ψ◦ > ¬ϕ◦)

The translation maps sentences of LB to sentences of L>. This mapping is such that the

sentence in LB is mapped to the sentence in L> which expresses its meaning using >

instead of B. The term ‘translation’ is to highlight the fact that we replace expressions

from LB by expressions in L> – as if we were translating english to denglish where, say,

we only replace some of the english words by german words. The qualifier ‘conditional’

is to specify that in the recursive form of the translation, it is only the conditional which

makes translating necessary – in the above analogy, we are only replacing one particular

3In its generality, the method is developed in Raidl (2019ms) and applied to several other examples.
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english sentence form (the conditional form) by a german one, which thus creates recursive

echoes.

For the method to work, it will be essential to have a converse translation of > into

B. I call this a backtranslation. We will later show that the following provides such a

back-translation (in our underlying models):

• (ϕ > ψ)∗ = (ϕ∗ ∧ ψ∗) ∨ (ϕ∗B(ϕ∗ ∧ ψ∗))

As a reminder, we consider two languages L> and LB. Given a model M, we denote M>

the version where the conditional is interpreted basically > and MB where it is interpreted

(intuitively) in a semantically augmented way by a new conditional B (ultimately as the

evidential conditional). Similarly for model classes which we denote M,M> and MB. By

this assumption, we already have that each model M> in M> corresponds to a model MB

in MB and conversely, furthermore the worlds of M> and MB are exactly the same.

Definition 2. Let ◦ : LB−→L> be a translation. The model class MB is ◦-isomorphic

to the model class M>, written MB ◦
≈ M> iff for all ϕ ∈ LB, all MB in MB, and all

w ∈ W (MB) = W (M>): w �MB ϕ iff w �M> ϕ◦.4

An intuitive way of phrasing this is that MB is isomorphic to M> modulo ◦ and in fact

each model in MB in MB is isomorphic modulo ◦ to the corresponding model M> in M>.

Definition 3. Let ◦ : LB−→L> and Σ>, ΣB systems in L> and LB respectively. Σ>

simulates ΣB modulo ◦, ΣB
◦∝ Σ>, iff for every ϕ ∈ LB, ΣB ` ϕ implies Σ> ` ϕ◦.

The easiest way to understand this notion is that Σ> simulates ΣB if every proof in ΣB
can be simulated by a corresponding proof in Σ>, the conclusion of the proof is the same

modulo the translation ◦.
The following should be clear (proof omitted):

Lemma 1. For ◦ : S(LB)−→ S(L>) a translation and MB ◦≈M>: M> �ϕ◦ iff MB �ϕ.

We are now ready for our two central results. First, with a ◦-isomorphism and a sim-

ulation, we can transfer a known soundness result for the defining conditional > to the

defined conditional B.

Theorem 1. Ax(MB), Ax(M>) systems in LB,L> respectively. Assume

(1) Ax(M>) is sound for M>,

(2) ◦ : LB−→L> is a translation,

(3) MB ◦≈M>,

(4) Ax(MB)
◦∝ Ax(M>).

Then Ax(MB) is sound for MB.

Proof. Suppose Ax(MB) ` ϕ. Thus Ax(M>) ` ϕ◦ (4). Hence M> �ϕ◦ (1). Therefore

MB �ϕ (3).

4Raidl (2019ms) uses a more general notion of ‘embedding’, where MB and M> are not necessarily
based on the same underlying structure.
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This theorem allows to transfer a known soundness result from a basic conditional > to a

defined conditional B. In most cases, (1) will be known or easy to figure out, and the form

of the translation ◦ in (2) will be a simple corollary to the way B is defined semantically

as a strengthening of >. Furthermore, (3) will easily be verified, so that it suffices to

check (4). For this, it suffices to check that each of the rules and axioms of Ax(MB) can

be simulated by the rules and axioms of Ax(M>). This is a purely mechanical task. The

real work is to figure out Ax(MB). I will come back to this problem below.

Second, with a ◦-isomorphism and a simulation for a back-translation ∗ of ◦, we can

transfer a known completeness result for the defining conditional to the defined condi-

tional:

Theorem 2. With Ax(MB), Ax(M>) as in the previous Theorem. Assume

(1) Ax(M>) is complete for M>,

(2) ◦ : LB → L>, ∗ : L> → LB are translations,

(3) MB ◦≈M>,

(4) Ax(M>)
∗∝ Ax(MB),

(5) ∗ inverts ◦ in Ax(MB), i.e., Ax(MB) ` ϕ◦∗↔ϕ.

Then Ax(MB) is complete for MB.

Proof. Suppose MB �ϕ then M> �ϕ◦ (3). Thus Ax(M>) ` ϕ◦ (1). Therefore Ax(MB) `
ϕ◦∗ (4). Hence Ax(MB) ` ϕ (5).

Again, (1) will be known or easy to figure out, and the form of ◦ in (2) follow from the the

semantic definition of B. (3) will easily be verified and the only work will be to suitably

choose Ax(MB) and prove (4) and (5). Furthermore, some work will be needed to figure

out the right backtranslation * in (2). The above results are quite general. They allow to

generate a sound and complete logic Ax(MB) for a defined conditional B in a model class

MB, based on the sound and complete logic Ax(M>) for the defining conditional > in the

model class M>. Although the two theorems appear as trivial as 2+2=4, they provide a

powerful method for generating new knowledge on new semantics using old knowledge on

known semantics.

One central question which remains unanswered by the above results is how to find

Ax(MB). I only have a general heuristics to suggest, which should work in most (if not

all) cases. First, find a backtranslation ∗. Second: figure out simple B-axioms which

are sufficient to prove the above (5) in the completeness result. Third: counter-check,

whether these B-axioms are sound and what kind of >-axioms are needed to simulate

them. Fourth: check which B-axioms correspond to, or simulate these >-axioms, using

∗. Fifth: counter-check, whether the available >-axioms suffice to simulate the new B-

axioms from step 4. If yes, you are done; else, repeat until you reach a fixed point. I

am confident that this heuristics can be turned into a provable result. In fact, I have

evidence for such a claim, since for the five conditionals analysed in Raidl (2019ms) as for

the evidential conditional analysed here, it is always this heuristics which I used to find

Ax(MB).

The careful reader has probably noted that the mentioned heuristics starts with finding

a backtranslation ∗ of ◦. Thus another central question remains: how do we find ∗? And
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is there always such a backtranslation? I do not have any answers to these questions.

For the first, I can only provide a heuristics: Consider the definition of B in terms of >,

say ϕBψ is of the form (ϕ > ψ) ∧ α (modulo translation). To define > in terms of B
(modulo translation) you could proceed as follows: Obviously ϕ > ψ could have the form

(ϕBψ) ∨ β, where β should express (ϕ > ψ) ∧ ¬α but in the language B. Sometimes

finding such a β directly is not possible. You can then try to strengthen or weaken the

component (ϕBψ) in the disjunction, for example to ϕB(ϕ ∧ ψ) or to (ϕ ∨ ¬ψ)Bψ or

something else (provided these imply ϕ > ψ), and repeat the procedure, i.e., find the β

which expresses the complementary case when ϕ > ψ holds. More generally, given the

axioms for >, figure out disjoint or covering cases when ϕ > ψ holds. Express them in

terms of > and then in terms of B. You see that this remains a rather vague heuristics,

and I must admit that I cannot give you more than this. In brief: be creative. As for

the existence of the backtranslation, I do not know the answer to this question. I do

not even have an idea how to attack it. If I had an idea, I could eventually either prove

that Spohn’s supererogatory reason relation is not axiomatisable or give you its complete

axiomatics, to mention one example. Luckily, ∗ exists for the evidential conditional (as

for many other strengthened conditionals), and I know how it looks like. Because of

this, sections 5 and 6 are straight forward implementations of the two above theorems

and provide the sound and complete logic for the evidential conditional defined in strong

Lewisean selection models.

4 Axioms

Before introducing the axioms for the evidential conditional, let me briefly introduce those

axioms for the basic conditional > which we will need here.

Lewis’ logic VC can be axiomatised by all substitution instances of classical proposi-

tional tautologies (PT), Modus Ponens (MoPo) for the material conditional →, and for

the conditional > we add the additional rules RCEA, RCEC, and the axioms RCM, ID,

CC, CA, CMon, CV, MP, CS as given below:

` ϕ↔ϕ′
(RCEA, LLE)5

` (ϕ > χ)↔(ϕ′ > χ)

` ϕ↔ϕ′
(RCEC, RLE)

` (χ > ϕ)↔(χ > ϕ′)

(ϕ > ψ)→ (ϕ > (ψ ∨ χ)) (RCM, RW)6

ϕ > ϕ (ID, Refl)

((ϕ > ψ) ∧ (ϕ > χ))→ (ϕ > (ψ ∧ χ)) (CC, AND)

((ϕ > χ) ∧ (ψ > χ))→ ((ϕ ∨ ψ) > χ) (CA, OR)

5In (X, Y), X refers to Chellas’ (1975) notation used here and Y to the KLM-tradition (Kraus,
Lehmann, & Magidor, 1990).

6The usual form is the rule: from ` ψ → χ infer ` (ϕ > ψ) → (ϕ > χ). In the presence of this rule,
RCEC is redundant. The rule also implies the mentioned axiom. Conversely, the axiom together with
RCEC implies the rule.

8



((ϕ > χ) ∧ (ϕ > ψ))→ ((ϕ ∧ ψ) > χ) (CMon)

(ϕ > χ) ∧ ¬(ϕ > ¬ψ))→ ((ϕ ∧ ψ) > χ) (CV, RM)

(ϕ > ψ)→ (ϕ→ ψ) (MP, If-to-Or)

(ϕ ∧ ψ)→ (ϕ > ψ) (CS)

It is known that VC is sound and complete for strong Lewisean selection models (Lewis,

1971). Thus VC is the logic henceforth assumed for the basic conditional >.

Some derivable principles in VC are (proof omitted):

ϕ > > (CN)

ϕ > (ϕ ∨ χ) (SC)7

(ϕ > ⊥)→ (ϕ > ψ) (IA)8

(¬ψ > ⊥)→ (ϕ > ψ) (NC)9

((ϕ ∨ ψ) > χ)→ ((ϕ > χ) ∨ (ψ > χ)) (DR)10

¬(> > ⊥) (P)11

The (conjectured) axiomatics EC for the evidential conditional B in strong Lewisean se-

lection models is: PT, MoPo, RCEA, RCEC, ID, CC, CMon, augmented by the following

additional axioms:

(ϕBψ)→ (¬ψB¬ϕ) (Contraposition)

(ϕB(ϕ ∧ ψ))→ (ϕ→ ψ) (MP*)

(ϕB(ϕ ∧ ψ))→ (ϕ ∨ (ϕB(ϕ ∧ (ψ ∨ χ)))) (RCM*)

((ϕB(ϕ ∧ χ)) ∧ (ψB(ψ ∧ χ)))→ (ϕ ∨ ψ ∨ ((ϕ ∨ ψ)B((ϕ ∨ ψ) ∧ χ))) (CA*)

((ϕB(ϕ ∧ χ)) ∧ ¬ϕ ∧ ¬(ϕB(ϕ ∧ ¬ψ)))→ ((ϕ ∧ ψ)B(ϕ ∧ ψ ∧ χ)) (CV*)

(ϕ ∧ ψ ∧ ((ψ ∨ ϕ)Bψ))→ (ϕB(ϕ ∧ ψ)) (CS*)

((ϕB(ϕ ∧ ψ)) ∧ (¬ψB(¬ψ ∧ ¬ϕ)))→ (ϕBψ) (E)12

7For Super Classicality.
8For Impossible Antecedent.
9For Necessary Consequent.

10For Disjunctive Rationality.
11For Probabilistic Consistency. MP is needed here.
12I denote it ‘E’ for ’evidential conditional’, since, in addition to Contraposition, I consider it to be

essentially linked to the way the evidential conditional is defined in terms of the basic conditional >. See
(5) in the completeness proof, which is the only place where E is needed.
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The ∗-axioms are ugly, and it would be nice to simplify them.Let me make sense of them.

By ID and CC, ϕBψ implies ϕB(ϕ∧ψ). Thus MP* implies the usual MP. By this fact,

non-negated conditionals in the form ϕB(ϕ∧ψ) appearing in the antecedent of ∗-axioms

can be replaced by ϕBψ to yield a weaker axiom, i.e., with stronger antecedent. This

remark applies to MP*, RCM*, CA* and CV*. Additionally, consequents of the type

X ∨ (X BXY ) in ∗-axioms can also be strengthened into X ∨ (¬X ∧ (X BXY )). The

resulting axiom X** is equivalent to the original X*. This applies to RCM* and CA*.

Also, instead of having a consequent of type X ∨ θ, we can have as consequent θ provided

we put ¬X as one of the conjuncts in the antecedent.13 This applies to RCM* and CA*.

For the moment, I do not know, how to further simplify the axiomatics. Furthermore,

given ID, CC and Contraposition, we also have the reverse implication of E and thus an

equivalence restating ϕBψ in terms of two conditionals ϕB(ϕ∧ψ) and ¬ψB(¬ψ ∧¬ϕ).

Finally, the original CA can be obtained by CC and Contraposition. Some of these facts

are proven below.

A few remarks on the notation and terminology are also necessary. The star (∗)
appearing after an axiom term (X∗) refers to the fact that these new axioms (eg. CA∗)

are required to simulate the original axiom for the basic conditional > (CA(>)), except

for CS*. Note that each ∗-axiom (X∗) is derivable from the original axiom (X) in the

logic VC for the basic conditional >. This is essentially due to the fact that the conjunct

ϕ > (ϕ ∧ ψ) appearing in the antecedent implies ϕ > ψ (RCM) for the basic conditional,

and thus (the second disjunct of) the consequent of the ∗-axiom will (roughly) directly be

obtained by the original axiom, since ϕ > ψ also implies ϕ > (ϕ ∧ ψ) (given ID, CC).14

In this sense, the ∗-axioms are weaker than the original ones (given RCM). This is not

so for the defined conditional B, since although ϕBψ implies ϕB(ϕ ∧ ψ), the reverse is

not true: ϕB(ϕ∧ψ) does not imply ϕBψ. Thus the argument is blocked because of the

absence of RCM.

To collect what has been said, the following things are important to note, when we

move from the basic conditional > to the defined evidential conditional B:

(1) We loose exactly three axioms: right weakening (RCM), rational monotonicity (CV)

and and-to-if or conjunctive sufficiency (CS). CA and MP are not lost, since we can

recover them (MP from MP* and CA from CC and Contraposition).

(2) We gain new axioms: all ∗-axioms, Contraposition and E.

(3) Contraposition does not hold for the original conditional.

(4) All other ‘new’ axioms hold for the original conditional and are derivable in VC.

Modulo RCM, the ∗-axioms are weakenings of the original axioms.

Let me now prove some of the above mentioned facts, as well as certain derivable princi-

ples.

Lemma 2. In EC, the following are derivable:

ϕB(ϕ ∨ ψ) (SC)

13This holds because Z → (X∨Y ) is equivalent to Z → (¬X → Y ) which is equivalent to (Z∧¬X)→ Y .
14For CV*, the additional ID, CC are needed.
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(ϕ ∧ ψ)Bψ (-SC)15

(ϕBψ)→ (ϕ→ ψ) (MP)

((ϕBχ) ∧ (ψBχ))→ ((ϕ ∨ ψ)Bχ) (CA)

(ϕBψ)→ ((ϕB(ϕ ∧ ψ)) ∧ (¬ψB(¬ψ ∧ ¬ϕ))) (E-)16

¬(>B⊥) (P)

(ϕB⊥)→ (ϕBχ) (IA)

(¬ψB⊥)→ (ϕBψ) (NC)

ϕB> (CN)

⊥Bϕ (-CN)

((ϕBψ) ∧ (χBψ))→ (ϕB(ψ ∨ χ)) (RCMon)17

(¬(ϕ ∧ ψ)B⊥)→ (¬ψB⊥) (UC)18

(ϕ ∧ ψ ∧ ((ψ ∨ ϕ)Bψ))→ (ϕBψ) (CS**)

Proof. Using freely RCEA, RCEC.

SC: We have ϕBϕ (ID), thus ϕB((ϕ ∧ ϕ) ∨ (ϕ ∧ ψ)) (RCEC). Hence ϕB(ϕ ∧ (ϕ ∨ ψ))

(RCEC). We also have (¬ϕ ∧ ¬ψ)B(¬ϕ ∧ ¬ψ) (ID). But ¬ϕ ∧ ¬ψ is equivalent to

¬(ϕ ∨ ψ) as well as to ¬(ϕ ∨ ψ) ∧ ¬ϕ. Thus by (RCEA, RCEC) ¬(ϕ ∨ ψ)B(¬(ϕ ∨
ψ) ∧ ¬ϕ). Therefore ϕB(ϕ ∨ ψ) by (E), where (ϕ ∨ ψ) plays the role of ψ.

-SC: We have ¬ψB(¬ψ ∨ ¬ϕ) (SC). Thus (ψ ∧ ϕ)Bψ (Contraposition).

MP: Suppose ϕBψ. Thus ϕB(ϕ ∧ ψ) (ID, CC). Hence ϕ→ ψ (MP*).

CA: assume ϕBχ and ψBχ. Thus ¬χB¬ϕ and ¬χB¬ψ (Contraposition). There-

fore (CC): ¬χB(¬ϕ ∧ ¬ψ), that is ¬χB¬(ϕ ∨ ψ) (RCEC) and hence (ϕ ∨ ψ)Bχ
(Contraposition).

E-: Suppose ϕBψ. Thus ϕB(ϕ∧ψ) (ID, CC). We also have ¬ψB¬ϕ (Contraposition).

Thus ¬ψB(¬ψ ∧ ¬ϕ) (ID, CC).

P: We have ¬(> → ⊥). Thus ¬(>B⊥), contraposing MP(B).

15-X for X transformed by Contraposition.
16E- for reverse implication of E.
17RCMon for a weakened version of RCM, obtained by CMon.
18UC for �X = ¬X B⊥ is upwards closed.
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IA: Suppose ϕB⊥. Thus ¬ϕ (MP) as well as ϕB(⊥ ∧ ϕ) (ID, CC). Hence by RCM*

ϕ ∨ (ϕB(ϕ ∧ (⊥ ∨ χ))). Therefore, since ¬ϕ, we obtain ϕB(ϕ ∧ (⊥ ∨ χ)). This is

equivalent to ϕB(ϕ ∧ χ) (RCEC). If we prove ¬χB(¬χ ∧ ¬ϕ), we are done, since

using (E), we obtain ϕBχ. So let us prove the mentioned formula. Given the

assumption ϕB⊥, we can also prove ϕB(ϕ∧¬χ) (same reasoning as above, since χ

was arbitrary). Thus (ϕ∧¬χ)B⊥. That is (¬χ∧ϕ)B(¬χ∧ϕ∧¬ϕ) (RCEC). We also

have (¬χ∧¬ϕ)B(¬χ∧¬ϕ∧¬ϕ) (ID, RCEC). Thus, by CA* (and RCEC, RCEA),

we obtain ¬χ or ¬χB(¬χ ∧ ¬ϕ). Thus, if χ, we obtain ¬χB(¬χ ∧ ¬ϕ). Let us

show that we obtain the same desired conclusion, if ¬χ: ϕB⊥ implies ϕ→ ⊥ (MP)

and thus ¬ϕ. Hence ¬χ and ¬ϕ. But we also have (¬ϕ ∨ ¬χ)B¬ϕ (contraposing

ϕB(ϕ ∧ χ)). Thus by (CS*) we can conclude ¬χB(¬χ ∧ ¬ϕ).

NC: Suppose ¬ψB⊥. Thus (IA) ¬ψB¬ϕ. Hence ϕBψ (Contraposition).

CN: We have ⊥B⊥ (ID). Thus ⊥B¬ϕ (IA). Hence ϕB> (Contraposition).

-CN: We have ¬ϕB> (CN) thus ⊥Bϕ (Contraposition).

RCMon: Suppose ϕBψ and χBψ. Thus ¬ψB¬ϕ and ¬ψB¬χ. Therefore (¬ψ ∧
¬χ)B¬ϕ (CMon). Hence ¬(ψ ∨ χ)B¬ϕ (RCEA). Thus ϕB(ψ ∨ χ) (Contraposi-

tion).

UC: Suppose ¬(ϕ∧ψ)B⊥. Thus (¬ϕ∨¬ψ)B⊥ (RCEA). Hence (¬ϕ∨¬ψ)B¬ψ (IA).

Therefore ¬ψB⊥ (CMon, RCEA).

CS**: From CS* and E.

The reader may have remarked that contraposition makes IA and NC, as well as CN and

-CN be duals to each other. This is also the case for CC and CA:

Lemma 3. The following are inter-derivable given Contraposition.

(1) IA, NC.

(2) CN, -CN.

(3) CC, CA.

As a consequence, in the above axiomatics, we could replace CC by CA.

Proof. (1) Above we have shown that IA+Contraposition implies NC. Suppose now NC

and assume ϕB⊥. Thus ¬ψB¬ϕ (NC). Therefore ϕBψ (Contraposition).

(2) ϕB> iff ⊥B¬ϕ (Contraposition).

(3) CC to CA: see above. CA to CC: assume ϕBψ and ϕBχ. Thus ¬ψB¬ϕ and

¬χB¬ϕ (Contraposition). Therefore (¬ψ ∨ ¬χ)B¬ϕ (CA). Hence ¬(ψ ∧ χ)B¬ϕ
(RCEC) and thus ϕB(ψ ∧ χ) (Contraposition).
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5 Soundness

We consider the conditional translations:

• (ϕBψ)◦ = (ϕ◦ > ψ◦) ∧ (¬ψ◦ > ¬ϕ◦)

• (ϕ > ψ)∗ = (ϕ∗ ∧ ψ∗) ∨ (ϕ∗B(ϕ∗ ∧ ψ∗))

The translation ◦ obviously arises from the way B is defined semantically and is mentioned

in Crupi and Iacona (2019) after we exchanged on these matters. The backtranslation ∗ is

non-obvious. I obtained it as a simplification of an initial proposal by Crupi and Iacona19

which was of the form:

• (ϕ > ψ)∗ = (ϕ∗Bψ∗) ∨ (ϕ∗ ∧ ψ∗) ∨ ((ϕ∗ ∨ ¬ψ∗)B(ϕ∗ ∧ ψ∗))

The simplified backtranslation simplifies the axioms for B. The message is this: you can

have more than one backtranslation, but the simpler your backtranslation, the nicer your

generated axioms. This is not astonishing, given that the backtranslation is a looking-

glass. If the looking-glass is blurred, the image will be blurred or distorted. If the

looking-glass is clean, the image will be as well.

For the soundness result, the following equivalence will be important:

Lemma 4. In VC, ϕ > ψ is equivalent to (ϕ∧ψ)∨ ((ϕ > (ϕ∧ψ))∧ ((¬ϕ∨¬ψ) > ¬ϕ)).

Proof. ϕ ∧ ψ implies ϕ > ψ (CS). And ϕ > (ϕ ∧ ψ) also implies ϕ > ψ (RCM(>)).

Conversely, assume ϕ > ψ. Either ϕ or ¬ϕ. In the first case, we obtain ψ (MP) and thus

ϕ ∧ ψ. In the second case, we have ϕ > (ϕ ∧ ψ) (ID, CC) and since ¬ϕ, also ¬ϕ ∨ ¬ψ.

Thus (¬ϕ ∨ ¬ψ) > ¬ϕ (CS).

This also yields that ϕ > ψ is equivalent to (ϕ > ψ)∗◦.20 That is, the translation ◦
inverses ∗ in VC.21 We will need the above Lemma in the form ϕ◦ > ψ◦ is equivalent to

(ϕ◦ ∧ ψ◦) ∨ (ϕB(ϕ ∧ ψ))◦. We will later drop ◦ and just write (ϕ ∧ ψ) ∨ (ϕB(ϕ ∧ ψ)).

Theorem 3 (Soundness). EC is sound for B in Lewisean strongly centred selection models.

Proof. We know that VC is sound for M> the class of strongly centred Lewisean selection

models. We also know that ◦ is a conditional translation ◦ : LB−→L>. To prove that

the conjectured axiomatics for B is sound for the class of models MB (M> where B is

defined as evidential conditional instead of being defined as basic conditional), it suffices

to prove the following two facts (cf. Theorem 1):

3. MB ◦≈M>,

4. Ax(MB)
◦∝ Ax(M>).

19Private communication. Their initial proposal was of great help to finding the new one.
20See appendix for the recursive proof.
21In the completeness part we show that ∗ inverses ◦ in EC.
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3. is clear: For all ϕ ∈ LB we have w �MB ϕ iff w �M> ϕ◦. This can be shown by induction

using the above conditional translation. It suffices to verify it for ϕ = (ψBχ), using the

induction hypohtesis for ψ and χ:

w �MB ψBχ
iff F (w, [ψ]M

B
) ⊆ [χ]M

B
& F (w, [¬χ]M

B
) ⊆ [¬ψ]M

B
(Def.)

iff F (w, [ψ◦]M
>

) ⊆ [χ◦]M
>

& F (w, [¬χ◦]M>
) ⊆ [¬ψ◦]M>

(IH, ◦)
iff w �M>(ψ◦ > χ◦) ∧ (¬χ◦ > ¬ψ◦) (Def.)

4. We now show that the Logic Ax(MB) = EC for B can be simulated by the Axioms

Ax(M>) = VC for >, modulo the translation ◦. We will do this, without restating the

translation every time. That is, we will often write ϕBψ where in fact we should write

(ϕBψ)◦ or equivalently (ϕ◦ > ψ◦) ∧ (¬ψ◦ > ¬ϕ◦). In agreement with this abbreviation,

we write ϕ > ψ where we should write ϕ◦ > ψ◦. Also note that we extensively use the

fact that in VC, ϕ > ψ is equivalent to the disjunction (ϕ∧ψ)∨ (ϕB(ϕ∧ψ)) (see Lemma

4 above). Thus, based on the left to right implication, ϕ > ψ also implies the weaker

ϕ ∨ (ϕB(ϕ ∧ ψ)).

RCEA(B): Suppose `ϕ↔ψ. And ϕBχ. Thus ϕ > χ and ¬χ > ¬ϕ. Hence, by

RCEA(>) and RCEC(>), we have ψ > χ and ¬χ > ¬ψ. Thus ψBχ.

RCEC(B): Suppose `ψ↔χ. And ϕBψ. Thus ϕ > ψ and ¬ψ > ¬ϕ. Hence by

RCEC(>) and RCEA(>), we have ϕ > χ and ¬χ > ¬ϕ. Thus ϕ > χ.

ID(B): Since ϕ > ϕ and ¬ϕ > ¬ϕ (ID(>)).

CC(B): Assume ϕBψ and ϕBχ. Thus ϕ > ψ and ϕ > χ. Thus ϕ > (ψ ∧ χ) (CC).

But we also have ¬ψ > ¬ϕ and ¬χ > ¬ϕ. Thus (¬ψ ∨ ¬χ) > ¬ϕ (CA), that is

¬(ψ ∧ χ) > ¬ϕ (RCEA). And thus ϕB(ψ ∧ χ).

CMon(B): Assume ϕBχ and ϕBψ. That is, ϕ > χ and ϕ > ψ, from which we obtain

(ϕ ∧ ψ) > χ (CMon). Additionally, we also have ¬χ > ¬ϕ. From this it follows

already that ¬χ > (¬ϕ ∨ ¬ψ) (RCM). Thus ¬χ > ¬(ϕ ∧ ψ) (RCEC). Therefore

(ϕ ∧ ψ)Bχ.

Contraposition: Suppose ϕBψ thus ϕ > ψ and ¬ψ > ¬ϕ. Hence ¬ψB¬ϕ.

RCM*: (ϕB(ϕ∧ψ))→ (ϕ∨ (ϕB(ϕ∧ (ψ∨χ)))): ϕB(ϕ∧ψ) implies ϕ > ψ (Def., RCM)

which implies ϕ > (ψ ∨ χ) (RCM) which implies ϕ ∨ (ϕB(ϕ ∧ (ψ ∨ χ))) (remark

above).

MP*: (ϕB(ϕ ∧ ψ))→ (ϕ→ ψ): ϕB(ϕ ∧ ψ) implies ϕ > ψ. Hence ϕ→ ψ (MP).

CA*: ((ϕB(ϕ ∧ χ)) ∧ (ψB(ψ ∧ χ))) → (ϕ ∨ ψ ∨ ((ϕ ∨ ψ)B((ϕ ∨ ψ) ∧ χ))): The first

antecedent conjunct implies ϕ > χ, the second implies ψ > χ, thus (ϕ ∨ ψ) > χ

(CA) which implies the consequent disjunction (remark above).
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CV*: First note that (¬X ∧ Y )→ Z is equivalent to ((¬X ∨D)∧ Y )→ (X ∨Z). Thus

((ϕB(ϕ ∧ χ)) ∧ ¬ϕ ∧ ¬(ϕB(ϕ ∧ ¬ψ)))→ ((ϕ ∧ ψ)B(ϕ ∧ ψ ∧ χ))

is equivalent to

((ϕB(ϕ ∧ χ)) ∧ (¬ϕ ∨ ψ) ∧ ¬(ϕB(ϕ ∧ ¬ψ)))→ (ϕ ∨ ((ϕ ∧ ψ)B(ϕ ∧ ψ ∧ χ))).

The first antecedent conjunct implies ϕ > χ. The two remaining antecedent con-

juncts imply (modulo logical transformations) ¬(ϕ > ¬ψ). Thus (ϕ ∧ ψ) > χ

(CV(>)). But this implies (ϕ ∧ ψ) ∨ ((ϕ ∧ ψ)B(ϕ ∧ ψ ∧ χ)) (above Lemma) which

implies the weaker ϕ ∨ ((ϕ ∧ ψ)B(ϕ ∧ ψ ∧ χ)) (compare the above remark).

CS*: Assume ϕ ∧ ψ and (ψ ∨ ϕ)Bψ. Thus ϕ > (ϕ ∧ ψ) (CS). But we also have ¬ψ >

¬(ψ ∨ϕ), that is ¬ψ > (¬ψ ∧¬ϕ) (RCEC). Hence ¬ψ > ¬ϕ (RCM). But ¬ϕ > ¬ϕ
(ID). Hence (¬ψ ∨ ¬ϕ) > ¬ϕ (CA). Thus ¬(ϕ ∧ ψ) > ¬ϕ (RCEA). Therefore

ϕB(ϕ ∧ ψ).

E: Assume ϕB(ϕ ∧ ψ) and ¬ψB(¬ψ ∧ ¬ϕ). Thus ϕ > (ϕ ∧ ψ) and ¬ψ > (¬ψ ∧ ¬ϕ).

Hence ϕ > ψ and ¬ψ > ¬ϕ (RCM(>)). Therefore ϕBψ.

6 Completeness

We consider the same conditional translations ◦ and ∗.

Theorem 4 (Completeness). EC is complete for B defined as evidential conditional in

strong Lewisean selection models.

Proof. We know that VC = Ax(M>) is complete for M> the class of strongly Lewisean

selection models. Additionally ◦ and ∗ are conditional translations ◦ : LB−→L> and

∗ : L>−→LB. And we have already proven MB ◦
≈ M> (Theorem 3). Thus, to prove

completeness (by Theorem 2), it suffices to show:

4. Ax(M>)
∗∝ Ax(MB),

5. ∗ inverts ◦ in Ax(MB), i.e., Ax(MB) ` ϕ◦∗↔ϕ.

We show 5 and then 4:

5: By the translation, the induction hypothesis of invertibility (IH), RCEA and RCEC

for B, we obtain:

(ϕBψ)◦∗

≡ (ϕ◦ > ψ◦)∗ ∧ (¬ψ◦ > ¬ϕ◦)∗ (◦)
≡ ((ϕ ∧ ψ) ∨ (ϕB(ϕ ∧ ψ))) ∧ ((¬ψ ∧ ¬ϕ) ∨ (¬ψB(¬ψ ∧ ¬ϕ))) (∗, IH, RCEA, RCEC)

The big conjunction in the last line is equivalent to the following disjunctive cases
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(1) ϕ, ψ,¬ψ,¬ϕ,

(2) ϕ, ψ,¬ψB(¬ψ ∧ ¬ϕ),

(3) ϕB(ϕ ∧ ψ),¬ψ,¬ϕ,

(4) ϕB(ϕ ∧ ψ),¬ψB(¬ψ ∧ ¬ϕ).

It suffices to show that this big disjunction is equivalent to ϕBψ (in EC). It is clear that

ϕBψ implies this disjunction: since ϕBψ implies ϕB(ϕ ∧ ψ) (ID, CC) and ¬ψB¬ϕ
(Contraposition), thus also ¬ψB(¬ψ ∧ ¬ϕ) (ID, CC). This is the last disjunct of the

above disjunction.

Conversely: we need to show that each disjunction implies ϕBψ. (1) is a contradiction

and thus implies ϕBψ. (2) Assume ϕ, ψ and ¬ψB(¬ψ ∧ ¬ϕ). Thus ¬(¬ψ ∧ ¬ϕ)Bψ
(Contraposition). Hence (ψ ∨ ϕ)Bψ (RECA). But together with ϕ ∧ ψ this implies

ϕB(ϕ ∧ ψ) (CS*). This, together with ¬ψB(¬ψ ∧ ¬ϕ) implies ϕBψ (E). (3) same

reasoning (exchanging ϕ with ¬ψ and simultaneously ψ with ¬ϕ). (4) implies ϕBψ by

E.

4: Now we prove that the axioms and rules for >, i.e., VC, can be simulated by those for B,

i.e., EC, modulo the backtranslation ∗. We translate relatively freely and use RCEA(B)

and RCEC(B) often without mentioning it.

MoPo(→): is simulated by MoPo(→).

RCEA(>): Its translate is: From ` ϕ↔ψ infer that (ϕ ∧ χ) ∨ (ϕB(ϕ ∧ χ)) implies

(ψ ∧ χ) ∨ (ψB(ψ ∧ χ)). It suffices to show the following two inferences, under the

assumption (+) that ` ϕ↔ψ.

• ` (ϕ ∧ χ)→ ((ψ ∧ χ) ∨ (ψB(ψ ∧ χ))): From ϕ ∧ χ, we obtain ψ ∧ χ (by +)

• ` (ϕB(ϕ ∧ χ)) → ((ψ ∧ χ) ∨ (ψB(ψ ∧ χ))): From ϕB(ϕ ∧ χ) we obtain

ψB(ψ ∧ χ), (+, RECA(B), RCEC(B)).

RCEC(>): Its translate is: From ` ψ↔χ infer that (ϕ ∧ ψ) ∨ (ϕB(ϕ ∧ ψ)) implies

(ϕ∧χ)∨ (ϕB(ϕ∧χ)). Using RECA(B) and RCEC(B) a similar argument as above

shows this.

RCM(>): The translate is that (ϕ∧ψ)∨ (ϕB(ϕ∧ψ)) implies the disjunction (ϕ∧ (ψ ∨
χ)) ∨ (ϕB(ϕ ∧ (ψ ∨ χ))). It suffices to show the following principles:

• ϕ ∧ ψ implies the disjunction: since ϕ ∧ ψ implies ϕ ∧ (ψ ∨ χ)

• ϕB(ϕ∧ψ) implies the disjunction: By RCM* ϕ∨ (ϕB(ϕ∧ (ψ∨χ))). By MP*

we also have ϕ→ ψ thus ϕ→ (ϕ ∧ ψ) as well as ϕ→ (ϕ ∧ (ψ ∨ χ)). Thus we

have (ϕ ∧ (ψ ∨ χ)) ∨ (ϕB(ϕ ∧ (ψ ∨ χ))).

ID(>): The translate is (equivalent to) ϕ ∨ (ϕBϕ). But this follows from ID(B).

CC(>): The translation is that (ϕ∧ψ)∨(ϕB(ϕ∧ψ)) together with (ϕ∧χ)∨(ϕB(ϕ∧χ))

imply the disjunction (ϕ ∧ ψ ∧ χ) ∨ (ϕB(ϕ ∧ ψ ∧ χ)). We prove 4 principles, which

jointly entail this:
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• ϕ ∧ ψ, ϕ ∧ χ implies the disjunction: Since they imply ϕ ∧ ψ ∧ χ.

• ϕ ∧ ψ, ϕB(ϕ ∧ χ) implies the disjunction: MP* yields ϕ ∧ ψ ∧ χ.

• ϕB(ϕ ∧ ψ), ϕ ∧ χ implies the disjunction: MP* yields ϕ ∧ ψ ∧ χ.

• ϕB(ϕ∧ψ), ϕB(ϕ∧χ) implies the disjunction: Since this implies ϕB(ϕ∧ψ∧χ)

(CC(B)).

CS(>): The translation of CS, (ϕ ∧ ψ)→ ((ϕ ∧ ψ) ∨ (ϕB(ϕ ∧ ψ))), is trivially true.

MP(>): The translation of MP is ((ϕ∧ψ)∨(ϕB(ϕ∧ψ)))→ (ϕ→ ψ). (ϕ∧ψ)→ (ϕ→ ψ)

is trivially true and (ϕB(ϕ ∧ ψ))→ (ϕ→ ψ) is MP*.

CA(>): The translation of CA is that (ϕ ∧ χ) ∨ (ϕB(ϕ ∧ χ)) together with (ψ ∧ χ) ∨
(ψB(ψ∧χ)) implies the disjunction: ((ϕ∨ψ)∧χ)∨ ((ϕ∨ψ)B((ϕ∨ψ)∧χ)). We do

not have to bother about the first terms ϕ ∧ χ or ψ ∧ χ, since each of them implies

(ϕ ∨ ψ) ∧ χ. Thus it suffices to prove that ϕB(ϕ ∧ χ) together with ψB(ψ ∧ χ)

implies the disjunction. CA* yields (ϕ ∨ ψ) ∨ ((ϕ ∨ ψ)B((ϕ ∨ ψ) ∧ χ)). But note

that under our assumption of ϕB(ϕ ∧ χ) and ψB(ψ ∧ χ), we have ϕ → χ and

ψ → χ (MP*), thus (ϕ ∨ ψ) → χ. Therefore we can strengthen the disjunct ϕ ∨ ψ
to (ϕ ∨ ψ) ∧ χ. That is, we obtain ((ϕ ∨ ψ) ∧ χ) ∨ ((ϕ ∨ ψ)B((ϕ ∨ ψ) ∧ χ)).

CMon(>): The translation is (ϕ∧χ)∨ (ϕB(ϕ∧χ)) together with (ϕ∧ψ)∨ (ϕB(ϕ∧ψ))

implies the disjunction (ϕ∧ψ∧χ)∨ ((ϕ∧ψ)B(ϕ∧ψ∧χ)). Thus it suffices to prove

the following principles:

• ϕ ∧ χ, ϕ ∧ ψ, implies the disjunction: since it implies ϕ ∧ ψ ∧ χ.

• ϕ ∧ χ, ϕB(ϕ ∧ ψ), implies the disjunction: MP* yields ϕ ∧ ψ ∧ χ.

• ϕB(ϕ ∧ χ), ϕ ∧ ψ, implies the disjunction: MP* yields ϕ ∧ ψ ∧ χ.

• ϕB(ϕ∧χ), ϕB(ϕ∧ψ), implies the disjunction: By CMon(B) (ϕ∧ψ)B(ϕ∧χ).

But (ϕ ∧ ψ)B(ϕ ∧ ψ) (ID(B)). Thus (ϕ ∧ ψ)B(ϕ ∧ ψ ∧ χ) (CC(B)).

CV(>): The translation is: (ϕ∧χ)∨(ϕB(ϕ∧χ)) together with ¬((ϕ∧¬ψ)∨(ϕB(ϕ∧¬ψ)))

implies the disjunction (ϕ∧ψ∧χ)∨((ϕ∧ψ)B(ϕ∧ψ∧χ)). The antecedent conjunctive

assumption is equivalent to (ϕ∧χ)∨ (ϕB(ϕ∧χ)) conjoined with the conjunction of

ϕ→ ψ and ¬(ϕB(ϕ ∧ ¬ψ)). Thus it suffices to show the following two principles:

• ϕ ∧ χ, ϕ → ψ,¬(ϕB(ϕ ∧ ¬ψ)) implies the disjunction: since ϕ, χ, ϕ → ψ

implies ϕ ∧ ψ ∧ χ.

• ϕB(ϕ ∧ χ), ϕ → ψ,¬(ϕB(ϕ ∧ ¬ψ)) implies the disjunction: First note, if we

have ¬ϕ then CV* yields (ϕ∧ψ)B(ϕ∧ψ∧χ). Else, if ϕ, then ψ (since ϕ→ ψ).

Furthermore ϕB(ϕ ∧ χ) yields ϕ → χ (MP*). Thus, under our assumption

that ϕ, we have ϕ ∧ ψ ∧ χ.
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7 Conclusion

This article proved completeness for the evidential conditional B which can be thought of

as a strengthening of a basic> conditional. For this a general method was developed which

allows to transfer completeness results from > to B, provided one has a back-translation of

> in terms of B. The careful reader will have recognised, that the assumption of cautious

monotonicity (CMon) and rational monotonicity (CV) for the basic conditional are not

‘essential’, in the sense of the heuristics to figure out the axioms for B (given on p. 7).

Thus, the conjecture is that the whole procedure could be carried out for a weaker base

logic, without CMon and without CV. This would yield a weaker evidential conditional

logic, presumably without CMon and without CV*. For this, one would need to consider

selection models which are weaker than the Lewisean ones, i.e., without the assumption

of (cmon) and (cv).

A Invertibility in VC

Lemma 5. VC ` χ∗◦↔χ.22

Proof. By induction. It suffices to verify this for χ = ϕ > ψ, assuming the induction

hypothesis ϕ∗◦ ≡ ϕ and ψ∗◦ ≡ ψ (in VC). Using the translations, RCEA and RCEC, as

well as the IH for ϕ, ψ, we obtain

(ϕ > ψ)∗◦

= ((ϕ∗ ∧ ψ∗) ∨ (ϕ∗B(ϕ∗ ∧ ψ∗)))◦ (∗)
≡ (ϕ∗ ∧ ψ∗)◦ ∨ (ϕ∗B(ϕ∗ ∧ ψ∗))◦ (◦)
≡ (ϕ∗◦ ∧ ψ∗◦) ∨ ((ϕ∗◦ > (ϕ∗◦ ∧ ψ∗◦)) ∧ (¬(ϕ∗◦ ∧ ψ∗◦) > ¬ϕ∗◦)) (◦)
≡ (ϕ∗◦ ∧ ψ∗◦) ∨ ((ϕ∗◦ > (ϕ∗◦ ∧ ψ∗◦)) ∧ ((¬ϕ∗◦ ∨ ¬ψ∗◦) > ¬ϕ∗◦)) (RCEA)

≡ (ϕ ∧ ψ) ∨ ((ϕ > (ϕ ∧ ψ)) ∧ ((¬ϕ ∨ ¬ψ) > ¬ϕ)) (IH,RCEC,RCEA)

We show that ϕ > ψ is equivalent to this last disjunction.

Right to Left: ϕ ∧ ψ implies ϕ > ψ (CS). ϕ > (ϕ ∧ ψ) also implies ϕ > ψ (RCM,

RCEC).

Left to Right: Suppose ϕ > ψ. If ϕ, we obtain ϕ ∧ ψ by MP. Thus let us assume

¬ϕ. Thus ¬ϕ. Hence ¬ϕ ∨ ¬ψ. Thus (¬ϕ ∨ ¬ψ) > ¬ϕ (CS). Yet ϕ > ψ implies

ϕ > (ϕ ∧ ψ) (ID, CC). This proves the second disjunct.

Note that one should read ϕB(ϕ ∧ ψ) as meaning (1) ϕ > ψ and (2) (¬ϕ ∨ ¬ψ) > ¬ϕ,

where (2) really means that ¬ψ does not come before ¬ϕ and if ¬ψ and ¬ϕ are equally

close then ¬ψ > ¬ϕ. Else, whether or not ¬ψ > ¬ϕ is left undetermined by (2).

22A monotone logic (RCEA, RCEC, RCM), with ID, CC, CS suffices.
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