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Abstract. Rainfall observed on the ground is dependent on
the four dimensional structure of precipitation aloft. Scan-
ning radars can observe the four dimensional structure of
precipitation. Neural network is a nonparametric method to
represent the nonlinear relationship between radar measure-
ments and rainfall rate. The relationship is derived directly
from a dataset consisting of radar measurements and rain
gauge measurements. The performance of neural network
based rainfall estimation is subject to many factors, such as
the representativeness and sufficiency of the training dataset,
the generalization capability of the network to new data, sea-
sonal changes, and regional changes. Improving the perfor-
mance of the neural network for real time applications is of
great interest. The goal of this paper is to investigate the per-
formance of rainfall estimation based on Radial Basis Func-
tion (RBF) neural networks using radar reflectivity as input
and rain gauge as the target. Data from Melbourne, Florida
NEXRAD (Next Generation Weather Radar) ground radar
(KMLB) over different years along with rain gauge measure-
ments are used to conduct various investigations related to
this problem. A direct gauge comparison study is done to
demonstrate the improvement brought in by the neural net-
works and to show the feasibility of this system. The prin-
cipal components analysis (PCA) technique is also used to
reduce the dimensionality of the training dataset. Reducing
the dimensionality of the input training data will reduce the
training time as well as reduce the network complexity which
will also avoid over fitting.

1 Introduction

Rainfall on the ground is dependent on the four dimensional
structure of precipitation aloft. Scanning radar observations
can capture the four dimensional structure of precipitation.
However, it is difficult to express the relation between the
radar observations and ground rainfall in a simple form. The
key challenge in radar rainfall estimation is the space-time
variability in precipitation microphysics, such as drop size
distribution (DSD) and its impact on rainfall on the ground. It
is well established that an empiricalZ–R relation is not suf-
ficient to capture the variability and has large uncertainty and
it needs to be adaptively adjusted based on validation (Cifelli
and Chandrasekar, 2010). Prior research has shown that neu-
ral networks can be used to estimate ground rainfall from
radar measurements (Xiao and Chandrasekar, 1997; Xiao et
al., 1998; Liu et al., 2001; Orlandini and Morlini, 2000). The
usefulness of the rainfall estimation using neural networks
is subject to many factors such as the representativeness and
sufficiency of the training dataset, the generalization capa-
bility of the network to new data, seasonal changes, regional
changes, and so on. An artificial neural network (ANN), of-
ten simply called a neural network (NN), is a nonparametric
method to establish the nonlinear mapping from input space
to a target space. It consists of interconnected group of neu-
rons, each characterizing a simple function.

Neural Network techniques have been used in weather
radar applications such as rainfall and snowfall estimation.
In addition they have been used for rain profile classifica-
tion. Neural network based radar snowfall estimation was
introduced first by Xiao and Chandrasekar (1996). Rainfall
estimation was introduced by the same authors (Xiao and
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Chandrasekar, 1995). An attempt to do rain type classifica-
tion using self-organizing maps (SOM) was introduced by
Zafar et al. (2003).

Radial Basis neural network is capable of learning a com-
plex functional relation from high dimension input space to
the target space. It has been demonstrated in prior work that
RBF Neural Network is capable of learning the relation be-
tween ground radar measurements and rain gauge data (Liu
et al., 2001; Orlandini and Morlini, 2000; Xu and Chan-
drasekar, 2005; Teschl et al., 2007). In this paper, an adap-
tive relation between ground radar measurements and rain
gauge measurements will be developed in the training pro-
cess, and studies are conducted to improve the performance
of the network. One of the major challenges in building es-
timators using neural network is to choose the appropriate
input. While it is clear that the rainfall estimate depends on
the full 3-D structure of precipitation aloft, using the full 3-D
data as input creates a demand for enormous training process.
The principal components analysis technique is used to mod-
ify the input to rainfall estimation neural network. Data from
Melbourne, Florida NEXRAD ground radar (KMLB) and a
network of gauges from the years 2006, 2007, 2008 and 2009
are used to demonstrate the neural network based radar rain-
fall estimation. The performance of radar rainfall estimation
will be analyzed and compared against rain gauge measure-
ments. The improvement due to PCA filtering is quantita-
tively analyzed. This paper is organized as follows: Sect. 2
introduces the radial basis function neural network for radar
rainfall estimation, whereas Sect. 3 describes the correspond-
ing adaptive network. In Sect. 4 the various options of the
vertical profiles are explored. The input structure to the neu-
ral network is discussed in Sect. 5, while Sect. 6 summarizes
the important results.

2 Radial basis function (RBF) neural network for rain-
fall estimation

The radial basis function (RBF) network is part of the mul-
tilayer feed forward neural network (MLF-NN) class. It gets
its name from the use of the radial basis function as activa-
tion function in the hidden layer. Figure 1 shows the structure
of an RBF network (Liu et al., 2001). It contains three lay-
ers which are the input layer, the hidden layer and the output
layer. The input vectors are fed to the input layer where they
pass to the hidden layer. The hidden layer units or neurons
have nonlinear radial-basis functions where each has its own
center vector and width or size. The output of each neuron is
calculated based on the Euclidean distance between the in-
put vector and the center vector of that neuron. The outputs
of the hidden layers are weighted and added linearly at the
output layer.
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FIG. 1: The general structure of RBF network. 
 
 
 

 
              FIG. 2: KMLB gauge network. 
 

                   

Fig. 1.The general structure of RBF network.

2.1 RBF neural network architecture

As mentioned above, the RBF NN has three layers (input,
hidden, and output layer). The input layer accepts the input
vectorX = [x1,x2, . . . ,xp]

T . The hidden layer consists ofm

neurons withh(x) as transfer function. In this work,h(x)

was chosen to be the Gaussian RBF given by

hj (x) = exp

[
−

p∑
i=1

(xi − cij )
2

r2
ij

]
(1)

and the outputf (x) can be calculated by a linear combina-
tion of the hidden layer outputs as follows:

f (x) =

m∑
j=1

wjhj (x), (2)

wherecj = [c1j , c2j , . . . , cpj ]
T is the center vector of neu-

ronj , rj = [r1j , r2j , . . . , rpj ]
T is the size or width vector of

neuronj , m is the number of neurons in the hidden layer, and
wj is the weight from neuronj to the output layer.

2.2 Input/target of the RBF neural network

NEXRAD radars also known as WSR-88D (the Weather
Surveillance Radar-1988 Doppler) radar operate at S-band
frequency with beam at around 0.88–0.96 degree. The an-
tenna of the NEXRAD radar scans continuously in a se-
quence of 360◦ in the azimuth at various elevation angles.
The antenna has two different scan patterns and they are done
alternatively based on the status of the atmosphere (Precip-
itation/No Precipitation). KMLB radar is one of the WSR-
88D radars that located at Melbourne, FL NEXRAD site
(28.113◦ N, 80.654◦ W). Radar data and rain gauge obser-
vations that are used to train and test this RBFNN were col-
lected during the years 2006, 2007, 2008 and 2009 over Mel-
bourne, Florida area. Averaged precipitation from year 2006
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FIG. 1: The general structure of RBF network. 
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Fig. 2.KMLB gauge network.

to 2009 shows similar trend over Melbourne, Florida site.
During summer time from June to September, rainfall rate
was the largest in the year. The total precipitation was grad-
ually increasing from 42 to 55 inches in the period 2006 to
2009. Radar data (radar reflectivity factor) will be used as an
input to the neural network and the rain gauge correspond-
ing to that input will be the target of the neural network.
Radar data were obtained from the radar Constant Altitude
Plan Position Indicator (CAPPI) datasets. The PPI data were
collected in a volume and transformation technique was used
to map the data on a Cartesian grid. Subsequently, constant
altitude datasets were selected for the analysis. The low-
est height level of the CAPPI scans is 1 km and the high-
est level is 4 km. The spacing between the CAPPI levels
is chosen to be 1 km. The gauge data were maintained by
NASA TRMM program. Around KMLB radar, the gauge
networks that were considered are Kennedy Space Center
(KSC), South Florida Water Management District (SFL), and
St. Johns Water Management District (STJ). Within a 100-
km radius around KMLB site, these networks have 33, 46
and 99 rain gauges, respectively, which accumulated rain ev-
ery 5 min. Figure 2 shows a geographical map of radar and
rain gauges used in this study. The radar measurement of in-
terest in this work is only radar reflectivity factorZh at the
horizontal polarization. CAPPI data containingZh values at
1 km, 2 km, 3 km, and 4 km in height with 1-km horizontal
resolution as shown in Fig. 3.

2.3 Adaptive RBF neural network for ground radar
rainfall estimation

The target in this paper is to estimate rainfall every volume
scan or every six minutes. At the end of a day, and if we
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FIG. 3: Data locations for 4 point input vector. 
 
 
 

 

 
 

FIG. 4: Dynamic Neural network. 

Fig. 3.Data locations for 4 point input vector.

have new data available, we need to create a new model to
efficiently train the neural network. A neural network is de-
signed to estimate rainfall from the ground radars measure-
ments as input and the corresponding rain gauge measure-
ments as a target. This neural network is trained adaptively
and weights are updated on daily basis. The vertical reflec-
tivity profiles are taken starting at 1 km and going up to 4 km
with 1-km vertical resolution. The rain gauge measurements
were averaged over six minutes and considered as a target for
the network.

Since our goal is to estimate rainfall every six minutes,
over a year, the network might get very large and hard to
train from the beginning if we keep adding neurons every
time we have new input. Another concern is that the new
data might not carry new information. Therefore, the idea
of adaptively training the RBFNN on a daily basis is useful
(Liu et al., 2001). To include the information from the new
data, it is necessary to update the network not only by adding
some neurons, but also by removing some neurons. If the new
data carries similar input data with different output, there is
no need to retrain the network again; rather we just need to
recalculate the weights from the hidden units to the output
unit. This process reduces the complexity of the network, and
the redundancy of the data, and by doing this it improves the
generalization of the network, and reduces the training time
because adjusting the weights is a simple operation and that
would make the operation faster (Liu et al., 2001). Figure 4
shows the concept of daily adapting the neural network.

3 Performance of the adaptive rbf neural network

3.1 Training the neural network

The radar data used in this evaluation was collected at the
Melbourne, Florida site. The neural network was trained
adaptively at the end of every day. The target of the net-
work was the rain gauge measurements that were collected
from the tipping bucket rain gauge networks around those
three radars. The data were from years 2006, 2007, 2008 and

www.nat-hazards-earth-syst-sci.net/13/535/2013/ Nat. Hazards Earth Syst. Sci., 13, 535–544, 2013
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FIG. 4: Dynamic Neural network. Fig. 4. Dynamic Neural network.

2009. Data were taken within 100 km around the radar. Input
training data which was the radar measurements was taken at
1 km 2 km, 3 km and 4 km in height as shown in Fig. 3. This
would make the size of the input vector to be four (p = 4).
Rain gauge data were averaged over six minutes to meet the
radar sweep time. Figure 5 shows a representation of how the
neural network is trained.

3.2 Testing and validating the neural network

At the end of any day, once the network is trained, and then
for the following day when we have new observations avail-
able, this data is used to estimate rain rate using the neu-
ral network that was trained. The estimation was validated
against the rain gauge measurements of that day. The dashed
line of Fig. 5 shows a schematic diagram of the rain rate es-
timation using the trained neural network.

3.3 Performance evaluation

The performance of the network was calculated using the fol-
lowing metrics:

FracBias=

1
Ng

Ng∑
i=1

(RFn(i) − RFg(i))

RFg
(3)

Corr=

1
Ng

Ng∑
i=1

(RFg(i) − RFg)(RFn(i) − RFn)

σ (RFg)σ (RFn)
(4)

NSE=

1
Ng

Ng∑
i=1

|RFg(i) − RFn(i)|

RFg
(5)

NRMSE=

(
1

Ng

Ng∑
i=1

(RFg(i) − RFn(i))2

)1/2

RFg
, (6)
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FIG. 5: Neural Network training. Input ground radar reflectivity. Target: Rain gauge. Rain 
rate estimation (dashed line). Input ground radar reflectivity. Output: Rain rate 
estimation. 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Fig. 5.Neural Network training. Input ground radar reflectivity. Tar-
get: Rain gauge. Rain rate estimation (dashed line). Input ground
radar reflectivity. Output: Rain rate estimation.

where FracBias, Corr, NSE, and NRMSE are fractional bias,
correlation, normalized standard error, and normalized root
mean square error, respectively. RFn and RFg denote the es-
timated rainfall and the actual rain gauge, respectively, and
Ng is the size of the data. The network performance was also
compared with the simpleZ–R relation used in NEXRAD
radars, and with the best-fit against gauge.

Table 1 shows hourly rainfall accumulation scores of the
adaptive neural network using data from 2006 to 2009 over
KMLB. As it can be seen in the table, the performance of the
neural network approach is much better than the performance
of the Z–R relation (Z = 300R1.4). It is also shown that
the performance of the neural technique is very close or bet-
ter than the performance of the best-fit method even though
the fitting was done “after the fact”. The best-fit method
was based on finding the coefficients (a, b) of Z = aRb that
would best-fitZ andR. The fitting was done based on least
square approximations. As we see, theZ–R relation has
significant bias compared to the rain gauge measurements,
while the neural network product very small bias.

Table 1 also shows that the correlation and the NRMSE
scores of the neural networks are better than that for theZ–
R relation. The neural networks score higher correlation and
lower NRMSE, while theZ–R scores lower correlation and
higher NRMSE which means a lower variation from truth
(rain gauge) in the favor of the neural network technique. The
proposed technique has good scores compared to the best-fit
method as well. As we see, the neural network scores are ei-
ther very close or sometimes better than the best-fit scores
taking into consideration again that the best-fit was done af-
ter the fact. Figures 6, 7, 8, 9 and 10 show the same conclu-
sions that can be inferred from the table. The figures show
better scatter and standard deviation plots of the neural net-
work performance when compared to the best- fit plots. The

Nat. Hazards Earth Syst. Sci., 13, 535–544, 2013 www.nat-hazards-earth-syst-sci.net/13/535/2013/
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Table 1. Performance evaluation of the NN rain rate estimation, theZ–R estimation, and the best-fit estimation against rain gauge. Data
from year 2006 to 2009 over KMLB. (Hourly rainfall accumulation).

Algorithm FracBias (%) NRMSE (%)

NN Est. vs. Rain Gauge
Z–R Est. vs. Rain Gauge
Best-fit Est. vs. Rain Gauge

2006 2007 2008 2009 2006 2007 2008 2009

2.4
−44.9
−26.5

3.1
−44.0
−16.6

2.7
−44.5
−19.9

2.4
−39.6
−17.3

44.2
68.8
51.5

45.9
68.4
46.8

40.9
74.4
45.8

38.9
58.3
40.1

NN Est. vs. Rain Gauge
Z–R Est. vs. Rain Gauge
Best-fit Est. vs. Rain Gauge

Corr. NSE

0.81
0.72
0.80

0.82
0.75
0.82

0.84
0.65
0.83

0.84
0.80
0.85

0.30
0.50
0.36

0.31
0.51
0.32

0.27
0.52
0.30

0.27
0.45
0.29

Table 2.Annual correlation between rain gauge and radar reflectiv-
ity at different heights (1 to 10 km).

Height
(km)

KMLB
2006

KMLB
2007

KMLB
2008

KMLB
2009

1
2
3
4
5
6
7
8
9
10

0.62
0.63
0.60
0.55
0.52
0.55
0.50
0.45
0.42
0.39

0.57
0.56
0.56
0.52
0.49
0.50
0.45
0.42
0.38
0.36

0.50
0.49
0.45
0.39
0.37
0.42
0.40
0.35
0.34
0.32

0.52
0.51
0.46
0.38
0.39
0.44
0.42
0.40
0.39
0.37

figures also show a comparative performance of the neural
network approach when compared to theZ–R approach.

4 Effect of radar measurement height profiles on rain
rate estimation using neural networks

In the previous results, the neural networks were designed
and tested based on radar measurements taken up to 4 km in
height starting at 1 km with 1-km spacing. In this section,
we investigate the effect of the height going from 4 km up to
9 km keeping the same spacing. In other words, we need to
find the answer to whether radar measurements for heights
lower or higher than 4 km would improve the performance
of the network or not?

To answer this question, we first calculated the correlation
between the rain gauge measurements and the radar reflectiv-
ity factor measured at different heights starting at 1 km and
up to 10 km. It can be seen from Table 2 that the correlation
is higher for heights less than or equal to 4 km for most of
the years. This result is not surprising considering the aver-
age melting level in Melbourne area is between 4 to 5 km.

Table 3. The effect of using radar measurements from different
heights on the performance of the NN rain rate estimator. Data from
year 2006 to 2009 over KMLB. (Hourly rainfall accumulation).

Height
(km)

FracBias (%) NRMSE (%)

4
5
6
7
8
9

2006 2007 2008 2009 2006 2007 2008 2009

2.4
1.6
2.7
3.4
9.8
15.1

3.1
3.1
1.7
1.9
5.9
5.5

2.7
4.3
3.9
4.6
10.7
14.9

2.4
4.2
5.2
−8.1
11.2
20.3

44.2
44.8
46.7
50.6
58.9
68.2

45.9
46.1
46.4
50.2
54.3
60.9

40.9
44.2
50.3
51.8
56.9
62.2

38.9
41.6
45.6
66.2
56.3
71.5

4
5
6
7
8
9

Corr. NSE

0.81
0.80
0.80
0.77
0.73
0.68

0.82
0.81
0.80
0.77
0.74
0.69

0.84
0.82
0.77
0.76
0.76
0.75

0.84
0.82
0.79
0.54
0.74
0.69

0.30
0.30
0.31
0.33
0.40
0.45

0.31
0.31
0.32
0.33
0.35
0.39

0.27
0.29
0.31
0.33
0.37
0.41

0.27
0.29
0.30
0.42
0.38
0.47

In continuation of answering the previous question, the
neural networks were trained and tested using rain gauges
and radar measurements up to different heights (4 km to
9 km). Table 3 shows the results of this test over KMLB site.
The neural networks were trained and tested starting at 1 km
and going up to the height shown in the first column in the ta-
bles, with km vertical spacing. The table shows that when the
radar measurements were taken from 1 km and up to 4 km in
height, the performance was better than that if we take radar
measurements up to heights higher than 4 km for most of the
cases. This result was also observed by Li et al. (2003). It
was found that equispaced input from 1 km to 4 km in height
above the gauge would give the best result.

The reason why the correlation was higher for heights up
to 4 km is that the rain region was within 4 km in height as
shown in Fig. 11 of radar data from year 2009, and going
higher to the melting layer and to the ice region will make the
correlation between the gauge on the ground and the melting
layer and the ice region (which are represented by the radar

www.nat-hazards-earth-syst-sci.net/13/535/2013/ Nat. Hazards Earth Syst. Sci., 13, 535–544, 2013
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(a)          (b) 

 
                (c) 

FIG. 6: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 
from year 2006 over KMLB. (Hourly Rainfall Accumulation). 

 

  
(a)          (b) 

 
               (c) 

Fig. 6.Actual rain gauge vs.(a) Z–R estimate,(b) best-fit estimate and(c) NN estimate. Data from year 2006 over KMLB. (Hourly rainfall
accumulation).

 25

  
(a)          (b) 

 
                (c) 

FIG. 6: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 
from year 2006 over KMLB. (Hourly Rainfall Accumulation). 

 

  
(a)          (b) 

 
               (c) 

Fig. 7. Actual rain gauge vs.(a) Z–R estimate(b) best-fit estimate and(c) NN estimate. Data from year 2007 over KMLB. (Hourly rainfall
accumulation).

Nat. Hazards Earth Syst. Sci., 13, 535–544, 2013 www.nat-hazards-earth-syst-sci.net/13/535/2013/
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 26

FIG. 7: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 
from year 2007 over KMLB. (Hourly Rainfall Accumulation). 

 
(a)          (b) 

 
        (c) 

FIG. 8: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 
from year 2008 over KMLB. (Hourly Rainfall Accumulation). 

 

 
(b)          (b) 

 

Fig. 8. Actual rain gauge vs.(a) Z–R estimate(b) best-fit estimate and(c) NN estimate. Data from year 2008 over KMLB. (Hourly rainfall
accumulation).

 26

FIG. 7: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 
from year 2007 over KMLB. (Hourly Rainfall Accumulation). 

 
(a)          (b) 

 
        (c) 

FIG. 8: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 
from year 2008 over KMLB. (Hourly Rainfall Accumulation). 

 

 
(b)          (b) 

 

Fig. 9. Actual rain gauge vs.(a) Z–R estimate(b) best-fit estimate and(c) NN estimate. Data from year 2009 over KMLB. (Hourly rainfall
accumulation).

www.nat-hazards-earth-syst-sci.net/13/535/2013/ Nat. Hazards Earth Syst. Sci., 13, 535–544, 2013
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 27

        (c) 
FIG.9: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 

from year 2009 over KMLB. (Hourly Rainfall Accumulation). 
 

 
(a)                (b) 

 
     (c)  

FIG. 10: Standard deviation plot of actual rain gauge vs. a) Z-R estimate b) Best Fit 
estimate c) NN estimate. Data from year 2009 over KMLB. (Hourly Rainfall 

Accumulation). 
 
 

 

Fig. 10.Standard deviation plot of actual rain gauge vs.(a) Z–R estimate(b) best-fit estimate and(c) NN estimate. Data from year 2009
over KMLB. (Hourly rainfall accumulation).

 27

        (c) 
FIG.9: Actual rain gauge vs. a) Z-R estimate b) Best Fit estimate c) NN estimate. Data 

from year 2009 over KMLB. (Hourly Rainfall Accumulation). 
 

 
(a)                (b) 

 
     (c)  

FIG. 10: Standard deviation plot of actual rain gauge vs. a) Z-R estimate b) Best Fit 
estimate c) NN estimate. Data from year 2009 over KMLB. (Hourly Rainfall 

Accumulation). 
 
 

 

Fig. 11.Radar Reflectivity Factor vs. Height. Data from year 2009.

reflectivity factor) to be smaller than that for lower heights.
Therefore, it will be easier for the neural network to find the
relation between the rain gauges and the radar reflectivity
factor if measurements at height up to 4 km are used.

It is worth mentioning that taking radar measurements
higher than 4 km will reduce the number of good (valid)

profiles that can be used to train the network; this is be-
cause of low rain rate measurements are mostly related to
weak storms, which usually do not have measured reflectiv-
ity at higher altitudes. Therefore, considering measurements
at higher altitudes would eliminate weak storms from being
included in the analysis.

5 Using principal component analysis to reduce the
input size to the rainfall NN

5.1 Principal component analysis

In this section, the input radar reflectivity factorZ along
4 CAPPI levels is explored by applying the principal compo-
nent analysis (PCA) over the standardized values ofZi(i =

1, . . . ,4), whereZi represents the radar reflectivity factor
measured at heighti. The standardized values ofZi(Z̃i) are
given by

Z̃i= (Zi − E[Zi])/
√

Var[Zi], (7)

whereE[Zi ] and Var[Zi ] denote the sample mean and vari-
ance ofZi . Standardization is necessary due to the different
range valuesZi might have. If we defineSz̃ to be the sample
covariance matrix of̃Z, with elements (Sz̃)ij given by
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Table 4.The performance of the RBF NN using radar data versus 2 PCs as input. (Hourly rainfall accumulation).

Site/Year FracBias (%) Corr. NSE NRMSE (%) Network Size (Centers)

Radar
data

2 PCs Radar
data

2 PCs Radar
data

2 PCs Radar
data

2 PCs Radar
data

2 PCs

KMLB 2006
KMLB 2007
KMLB 2008
KMLB 2009

2.4
3.1
2.7
2.4

0.9
2.6
1.9
3.4

0.81
0.82
0.84
0.84

0.82
0.80
0.83
0.84

0.30
0.31
0.27
0.27

0.29
0.33
0.28
0.27

44.2
45.9
40.9
38.9

43.7
47.9
42.1
38.1

34
62
37
22

15
19
15
18

(Sz̃)ij = Cov[Z̃i, Z̃j ]

=

M∑
s=1

(Z̃i)s(Z̃j )s/M : (i = 1, . . . ,4;j = 1, . . . ,4) (8)

whereM is the number of input patterns, then we need to find
the eigenvectorse and the eigenvaluesDii of the covariance
matrix as seen below:

e−1Sz̃e = Dii . (9)

After that we calculate the principal components (PCs)
that are associate with the eigenvalues using

PC1 = eT
1 Z̃,PC2 = eT

2 Z̃, . . . ,PC4 = eT
4 Z̃. (10)

The goal of using the PCA concept in this context is to re-
duce the dimensionality of the training data to a level where
we still can get good performance. In this section, we train
the neural network using the principal components rather
than the radar reflectivity factorZ. To get benefit from this
concept and to reduce the dimensionality of the training data,
we are going to neglect those principal components with
small eigenvalues. There are two methods to decide which
principal components to neglect. The first one is to sum the
eigenvalues from the largest to the lowest, and when the sum
exceeds a certain threshold we stop adding eigenvalues, and
we use only those whose eigenvalues were considered in the
addition. Another way to find out which principal compo-
nents to include is to use the Fisher’s Maximum Coverage
Test (Mielke and Berry, 2007).

5.2 Performance evaluation of RBF NN using PCA

The PCA technique was applied to the data from years 2006,
2007, 2008 and 2009 over the KMLB site. It was found that
two principal components were enough to provide reason-
able performance than that using four levels of radar reflec-
tivity factor values to train the network. Two input configura-
tions were tested in this regard, in each one the performance
of the neural network was measured as well as the time it
takes the neural network to train, and the number of neurons
needed (network size). The purpose of including the training
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 FIG. 11: Radar Reflectivity Factor vs. Height. Data from year 2009. 

 

 

 

  FIG. 12: Schematic of NN trained with input configuration 2. Fig. 12.Schematic of NN trained with input configuration 2.

time and the network size is to see the effect of the size of
the input data and to see how feasible the network can be in
order to be applied in real time.

5.2.1 Input configuration 1

This input configuration is the same one used in the previous
evaluations. The network was trained using radar measure-
ments at 1, 2, 3 and 4 km in height, and rain gauges were
the target. The purpose of including this configuration is to
estimate the training time and the network size at each case
in order to find out the improvement brought by PCA tech-
nique. Figure 4 shows the configuration of the input where
radar reflectivity factor at four different heights was used to
train the network. The performance of the neural network us-
ing this input configuration is shown in Table 4 and it will be
compared to the performance of the next input configuration.

5.2.2 Input configuration 2

In this configuration, the network was trained using the PCs
calculated from the radar measurements at 1, 2, 3 and 4 km
in height. Only two principal components were used in the
training together with their corresponding rain gauges. The
chosen PCs were those whose eigenvalues accumulation is
more than the threshold value chosen. Figure 12 shows a
schematic of this configuration and Table 4 also shows the
neural networks performance when using this input config-
uration. As we see in Table 4, the performance of the neu-
ral networks based rainfall estimate is improved. Although
training time is dependent on the computer, the major re-
duction was seen in the training time with almost 50 % less
than the time spent using the previous input configuration.
In addition, the other performance metrics, such as FracBias,
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Corr., NSE, and NRMSE, were almost the same in most of
the cases. Another improvement of using this configuration
is the reduction of the network complexity; the previous net-
work was designed using 4-D input vectors, while this net-
work is designed using 2-D input vectors. As can be seen
from the table, the network size got reduced by about 50 %
in most of the cases. This reduction is very important espe-
cially when the network is going to be implemented in real
time.

6 Summary

The main goal of this paper is to investigate neural network
based rainfall estimation from ground radar. Radial basis
function neural network was the main neural network ar-
chitecture applied to do the estimation. The main approach
was based on a neural network that is designed based on
rain gauges and vertical profile of ground radar measure-
ments. The ground radar was used in this regard is KMLB
NEXRAD radar. Three rain gauge networks around this
radar, namely KSC, SFL, STJ, were used in comparison. The
following points summarize the results of this paper:

– A neural network technique was used to estimate rain-
fall from ground radar measurements. The effect of the
radar vertical profile height on rainfall estimation was
examined. It was found that measurements up to 4 km
were giving better performance in most of the cases, for
the Melbourne region

– The neural network performance was compared with
theZ–R relation and with a statistical approach (best-
fit) against the rain gauge. It was found that the neural
network performance was better in most of the cases.
TheZ–R relation was underestimating the rain rate and
was unable to capture the storm variations in most of the
cases.

– The “principal component analysis” (PCA) was used
to reduce the input size. Two principal components
were used to train the neural network. Significant im-
provements were achieved in computation time while
maintaining the statistical metrics (FracBias, correla-
tion, NSE, and NRMSE) in comparison to full training.
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