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Abstract. Rainfall observed on the ground is dependent onl Introduction

the four dimensional structure of precipitation aloft. Scan-

ning radars can observe the four dimensional structure of

precipitation. Neural network is a nonparametric method toRainfall on the ground is dependent on the four dimensional
represent the nonlinear relationship between radar measuréiructure of precipitation aloft. Scanning radar observations
ments and rainfall rate. The relationship is derived directlycan capture the four dimensional structure of precipitation.
from a dataset consisting of radar measurements and raiffowever, it is difficult to express the relation between the
gauge measurements. The performance of neural networt@dar observations and ground rainfall in a simple form. The
based rainfall estimation is subject to many factors, such a&€y challenge in radar rainfall estimation is the space-time
the representativeness and sufficiency of the training dataseYariability in precipitation microphysics, such as drop size
the generalization capability of the network to new data, seadistribution (DSD) and its impact on rainfall on the ground. It
sonal Changes’ and regiona| Changes' |mproving the perfori.s well established that an emplrlcﬂl-R relation is not suf-
mance of the neural network for real time applications is officient to capture the variability and has large uncertainty and
great interest. The goal of this paper is to investigate the perit Needs to be adaptively adjusted based on validation (Cifelli
formance of rainfall estimation based on Radial Basis Func-2nd Chandrasekar, 2010). Prior research has shown that neu-
tion (RBF) neural networks using radar reflectivity as input ral networks can be used to estimate ground rainfall from
and rain gauge as the target. Data from Melbourne, Floridgdadar measurements (Xiao and Chandrasekar, 1997; Xiao et
NEXRAD (Next Generation Weather Radar) ground radar@l., 1998; Liu et al., 2001; Orlandini and Morlini, 2000). The
(KMLB) over different years along with rain gauge measure- usefulness of the rainfall estimation using neural networks
ments are used to conduct various investigations related t& Subject to many factors such as the representativeness and
this problem. A direct gauge comparison study is done tosufficiency of the training dataset, the generalization capa-
demonstrate the improvement brought in by the neural netbility of the network to new data, seasonal changes, regional
works and to show the feasibility of this system. The prin- changes, and so on. An artificial neural network (ANN), of-
cipal components analysis (PCA) technique is also used téen Simply called a neural network (NN), is a nonparametric
reduce the dimensionality of the training dataset. Reducingnethod to establish the nonlinear mapping from input space
the dimensionality of the input training data will reduce the t0 @ target space. It consists of interconnected group of neu-

training time as well as reduce the network complexity which 'ons, each characterizing a simple function. .
will also avoid over fitting. Neural Network techniques have been used in weather

radar applications such as rainfall and snowfall estimation.
In addition they have been used for rain profile classifica-
tion. Neural network based radar snowfall estimation was
introduced first by Xiao and Chandrasekar (1996). Rainfall
estimation was introduced by the same authors (Xiao and
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Chandrasekar, 1995). An attempt to do rain type classifica-

tion using self-organizing maps (SOM) was introduced by f(x)
Zafar et al. (2003). /T\
Radial Basis neural network is capable of learning a com- (¥) Output layer

plex functional relation from high dimension input space to
the target space. It has been demonstrated in prior work the
RBF Neural Network is capable of learning the relation be- - hy(x)
tween ground radar measurements and rain gauge data (L &\‘ |/\\ «[/\\A,‘
et al., 2001; Orlandini and Morlini, 2000; Xu and Chan-
drasekar, 2005; Teschl et al., 2007). In this paper, an adag
tive relation between ground radar measurements and rai
gauge measurements will be developed in the training pro:
cess, and studies are conducted to improve the performanc
of the network. One of the major challenges in building es-
timators using neural network is to choose the appropriate
input. While it is clear that the rainfall estimate depends on
the full 3-D structure of precipitation aloft, using the full 3-D
data as input creates a demand for enormous training process.

The principal components analysis technique is usedto mod, 1  Rgg neural network architecture
ify the input to rainfall estimation neural network. Data from

Melbourne, Florida NEXRAD ground radar (KMLB) and a As mentioned above, the RBF NN has three layers (input,

network of gauges from the years 2006, 2007, 2008 and 2008jdden, and output layer). The input layer accepts the input
are used to demonstrate the neural network based radar raiQectorX = [x1, xo, ... ,x,17. The hidden layer consists of

fall estimation. The performance of radar rainfall estimation neurons withi(x) as transfer function. In this works(x)
will be analyzed and compared against rain gauge measurgyas chosen to be the Gaussian RBF given by
ments. The improvement due to PCA filtering is quantita-

tively analyzed. This paper is organized as follows: Sect. 2 [ P (x; — Cij)Z}

Hidden layer

‘ | |
X, Xi Xp Input layer

Fig. 1. The general structure of RBF network.

1)

introduces the radial basis function neural network for radar’; (¥) = €Xp| — Z 2
rainfall estimation, whereas Sect. 3 describes the correspond- i=1 W
ing adaptive network. In Sect. 4 the various options of theand the outputf (x) can be calculated by a linear combina-
vertical profiles are explored. The input structure to the neu+jon of the hidden layer outputs as follows:

ral network is discussed in Sect. 5, while Sect. 6 summarizes

the important results. i
P Fo = wih;x), @
=1

J
2 Radial basis function (RBF) neural network for rain-

fall estimation wherec; = [c1;, ¢z, ..., cp;]T is the center vector of neu-

ronj,rj =[rij, r2j,...,rp;j17 is the size or width vector of
The radial basis function (RBF) network is part of the mul- neuron;, m is the number of neurons in the hidden layer, and
tilayer feed forward neural network (MLF-NN) class. It gets w; is the weight from neurorj to the output layer.
its name from the use of the radial basis function as activa-
tion function in the hidden layer. Figure 1 shows the structure?-2  Input/target of the RBF neural network
of an RBF networ_k (Liuet al,, 200.1)' It contains three lay- EXRAD radars also known as WSR-88D (the Weather
ers which are the input layer, the hidden layer and the outpu

. ; urveillance Radar-1988 Doppler) radar operate at S-band
layer. The input vectors are fed to the input layer where they, .
. . : frequency with beam at around 0.88-0.96 degree. The an-
pass to the hidden layer. The hidden layer units or neuron

have nonlinear radial-basis functions where each has its owieunenni:fo:hgeeg iﬁfﬁﬁgzirri%?l‘: Zf?/rz:\sri;l?sntg:\?;[isc% I:nalesse-
center vector and width or size. The output of each neuron i d : gles.

calculated based on the Euclidean distance between the in-he antenna has two different scan patterns and they are done
alternatively based on the status of the atmosphere (Precip-
put vector and the center vector of that neuron. The outputs,

. . : itation/No Precipitation). KMLB radar is one of the WSR-
of the hidden layers are weighted and added linearly at th988D radars thaFt) Iocate)d at Melbourne. FL NEXRAD site
output layer. '

(28.113 N, 80.654 W). Radar data and rain gauge obser-

vations that are used to train and test this RBFNN were col-
lected during the years 2006, 2007, 2008 and 2009 over Mel-
bourne, Florida area. Averaged precipitation from year 2006
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Fig. 3. Data locations for 4 point input vector.

have new data available, we need to create a new model to
efficiently train the neural network. A neural network is de-
signed to estimate rainfall from the ground radars measure-
ments as input and the corresponding rain gauge measure-
ments as a target. This neural network is trained adaptively
and weights are updated on daily basis. The vertical reflec-
to 2009 shows similar trend over Melbourne, Florida site. ti\{ity profiles are taken stgrting atl k.m and going up to 4km
with 1-km vertical resolution. The rain gauge measurements

During summer time from June to September, rainfall rateWere averaged over six minutes and considered as a target for
was the largest in the year. The total precipitation was grad- 9 9

ually increasing from 42 to 55 inches in the period 2006 tothes?ne;;v%rllfr' oal is to estimate rainfall everv six minutes
2009. Radar data (radar reflectivity factor) will be used as an 9 ry '

input to the neural network and the rain gauge Correspondpver a year, the network might get very large and hard to

ing to that input will be the target of the neural network. train from the beginning if we keep adding neurons every

Radar data were obtained from the radar Constant AItitudetlme we have new input. Another concerm 1s that the hew
data might not carry new information. Therefore, the idea

Plan Position Indicator (CAPPI) datasets. The PPI data were ; . . O
. . . f adaptively training the RBFNN on a daily basis is useful
collected in a volume and transformation technique was used . . . :
dIrlu et al., 2001). To include the information from the new

to map the data on a Cartesian grid. Subsequently, constal - .
altitude datasets were selected for the analysis. The low- ata, itis necessary to update the network not only by adding

est height level of the CAPPI scans is 1km and the high—Some neurons, b.Ut qlso by remov_ing SOme neurons. If the new

est level is 4km. The spacing between the CAPPI Ievelsdata carries S|m|_lar input data with _dlfferent outp_ut, there is

is chosen to be 1km. The gauge data were maintained by need to retrain _the network again, rather_ we just need to
¥ecalculate the weights from the hidden units to the output

NASA TRMM program. Around KMLB radar, the gauge unit. This process reduces the complexity of the network, and

networks that were considered are Kennedy Space Cent : o
(KSC), South Florida Water Management District (SFL), and%e redqnd:_;mcy of the data, and by doing this it |mpr9ves.the
generalization of the network, and reduces the training time

St. Johns Water Management District (STJ). Within a 100—b diusting the weights | Dl ration and that
km radius around KMLB site, these networks have 33, 46 ecause adjusting the weights 1S a simple operation a a
would make the operation faster (Liu et al., 2001). Figure 4

and 99 rain gauges, respectively, Whlch accumulated rain e\(/j%hows the concept of daily adapting the neural network.
ery 5min. Figure 2 shows a geographical map of radar an

rain gauges used in this study. The radar measurement of in-

terest in this work is only radar reflectivity factdh atthe 3 performance of the adaptive rbf neural network
horizontal polarization. CAPPI data containid@g values at

1km, 2km, 3km, and 4km in height with 1-km horizontal 3.1 Training the neural network

resolution as shown in Fig. 3.

Fig. 2. KMLB gauge network.

The radar data used in this evaluation was collected at the

2.3 Adaptive RBF neural network for ground radar Melbourne, Florida site. The neural network was trained

rainfall estimation adaptively at the end of every day. The target of the net-
work was the rain gauge measurements that were collected

The target in this paper is to estimate rainfall every volumefrom the tipping bucket rain gauge networks around those
scan or every six minutes. At the end of a day, and if wethree radars. The data were from years 2006, 2007, 2008 and
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Fig. 4. Dynamic Neural network.
Fig. 5.Neural Network training. Input ground radar reflectivity. Tar-
get: Rain gauge. Rain rate estimation (dashed line). Input ground
2009. Data were taken within 100 km around the radar. Inputadar reflectivity. Output: Rain rate estimation.
training data which was the radar measurements was taken at
1km 2km, 3km and 4 km in height as shown in Fig. 3. This
WO.UId make the size of the input vecto'r o .be fopr=t 4). where FracBias, Corr, NSE, and NRMSE are fractional bias,
Rain gauge data were averaged over six minutes to meet the . : .
. . : correlation, normalized standard error, and normalized root
radar sweep time. Figure 5 shows a representation of how the .
: ; mean square error, respectively. RFn and RFg denote the es-
neural network is trained. . : ) .
timated rainfall and the actual rain gauge, respectively, and
Ng is the size of the data. The network performance was also

compared with the simpl&€—R relation used in NEXRAD
At the end of any day, once the network is trained, and therfadars, and with the best-fit against gauge.
for the following day when we have new observations avail- Table 1 shows hourly rainfall accumulation scores of the
able, this data is used to estimate rain rate using the newadaptive neural network using data from 2006 to 2009 over
ral network that was trained. The estimation was validatedKMLB. As it can be seen in the table, the performance of the
against the rain gauge measurements of that day. The dash&gural network approach is much better than the performance
line of Fig. 5 shows a schematic diagram of the rain rate esof the Z—R relation = 300R"%). It is also shown that

3.2 Testing and validating the neural network

timation using the trained neural network. the performance of the neural technigue is very close or bet-
ter than the performance of the best-fit method even though
3.3 Performance evaluation the fitting was done “after the fact”. The best-fit method

was based on finding the coefficients b) of Z = aR” that
The performance of the network was calculated using the folywould best-fitZ and R. The fitting was done based on least

lowing metrics: square approximations. As we see, theR relation has
Ng sig_nificant bias compared to the rain gauge .measurements,
Nig Y (RFN() — RFQ(i)) while the neural network product very small bias.
FracBiase — =% 3) Table 1 also shows that the correlation and the NRMSE
RFg scores of the neural networks are better than that foZthe
Ng R relation. The neural networks score higher correlation and
Nig 3" (RFQi) — RFg)(RFN(i) — RFn) lower NRMSE, while theZ—R scores lower correlation and
Corr= =1 (4) higher NRMSE which means a lower variation from truth
o (RFgo (RFN) (rain gauge) in the favor of the neural network technique. The
. Ng ‘ ‘ proposed technigue has good scores compared to the best-fit
Ng Z IRFg(i) — RFNG)| method as well. As we see, the neural network scores are ei-
NSE= —=L (5) ther very close or sometimes better than the best-fit scores
RFg taking into consideration again that the best-fit was done af-
. Ng . o 12 ter the fact. Figures 6, 7, 8, 9 and 10 show the same conclu-
Ng Z (RFQ) — RFNG)) sions that can be inferred from the table. The figures show
NRMSE = i=1 _ , (6) better scatter and standard deviation plots of the neural net-
RFg work performance when compared to the best- fit plots. The
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Table 1. Performance evaluation of the NN rain rate estimation,Zh® estimation, and the best-fit estimation against rain gauge. Data
from year 2006 to 2009 over KMLB. (Hourly rainfall accumulation).

Algorithm FracBias (%) NRMSE (%)
2006 2007 2008 2009 2006 2007 2008 2009
NN Est. vs. Rain Gauge 2.4 3.1 2.7 2.4 442 459 409 389
Z-R Est. vs. Rain Gauge —449 —44.0 —445 -39.6 68.8 684 744 583
Best-fit Est. vs. Rain Gauge —26.5 -16.6 —19.9 —-17.3 515 46.8 458 40.1
Corr. NSE

NN Est. vs. Rain Gauge 0.81 0.82 0.84 0384 0.30 0.31 0.27 0.27
Z—R Est. vs. Rain Gauge 0.72 0.75 0.65 0.80 050 0.51 0.52 0.45

Best-fit Est. vs. Rain Gauge  0.80 0.82 0.83 0.85 036 0.32 0.30 0.29

Table 2. Annual correlation between rain gauge and radar reflectiv-Table 3. The effect of using radar measurements from different
ity at different heights (1 to 10 km). heights on the performance of the NN rain rate estimator. Data from
year 2006 to 2009 over KMLB. (Hourly rainfall accumulation).

Height KMLB KMLB KMLB KMLB
(km) 2006 2007 2008 2009 Height FracBias (%) NRMSE (%)

(km)
1 0.62 0.57 0.50 0.52
5 0.63 0.56 0.49 0.51 2006 2007 2008 2009 2006 2007 2008 2009
3 0.60 0.56 0.45 0.46 4 2.4 3.1 2.7 2.4 442 459 409 38.9
5 16 31 43 42 448 461 442 416
4 0.55 0.52 0.39 0.38 6 27 17 39 52 46,7 46.4 50.3 456
5 0.52 0.49 0.37 0.39 7 34 19 46 -81 506 502 518 66.2
6 0.55 0.50 0.42 0.44 8 98 59 107 112 589 543 569 56.3
7 0.50 0.45 0.40 0.42 9 15.1 55 149 20.3 68.2 60.9 622 715
8 045 042 035 040 Corr NSE
9 0.42 0.38 0.34 0.39
10 039 036 032 037 0.81 0.82 0.84 084 030 0.31 0.27 0.27

4
5 0.80 0.81 0.82 0.82 0.30 0.31 0.29 0.29
6 0.80 0.80 0.77 0.79 0.31 0.32 0.31 0.30
7
8
9

077 077 076 054 033 033 033 042
, : 073 074 076 074 040 0.35 0.37 0.38
figures also show a comparative performance of the neural 068 069 075 069 045 039 041 047

network approach when compared to #eR approach.

4 Effect of radar measurement height profiles on rain In continuation of answering the previous question, the
rate estimation using neural networks neural networks were trained and tested using rain gauges
and radar measurements up to different heights (4 km to
In the previous results, the neural networks were designe® km). Table 3 shows the results of this test over KMLB site.
and tested based on radar measurements taken up to 4 kmrhe neural networks were trained and tested starting at 1 km
height starting at 1 km with 1-km spacing. In this section, and going up to the height shown in the first column in the ta-
we investigate the effect of the height going from 4 km up to bles, with km vertical spacing. The table shows that when the
9km keeping the same spacing. In other words, we need toadar measurements were taken from 1 km and up to 4 km in
find the answer to whether radar measurements for heightbeight, the performance was better than that if we take radar
lower or higher than 4 km would improve the performance measurements up to heights higher than 4 km for most of the
of the network or not? cases. This result was also observed by Li et al. (2003). It
To answer this question, we first calculated the correlationwas found that equispaced input from 1 km to 4 km in height
between the rain gauge measurements and the radar reflectigbove the gauge would give the best result.
ity factor measured at different heights starting at 1 km and The reason why the correlation was higher for heights up
up to 10km. It can be seen from Table 2 that the correlationto 4 km is that the rain region was within 4 km in height as
is higher for heights less than or equal to 4 km for most of shown in Fig. 11 of radar data from year 2009, and going
the years. This result is not surprising considering the averhigher to the melting layer and to the ice region will make the
age melting level in Melbourne area is between 4 to 5km.correlation between the gauge on the ground and the melting
layer and the ice region (which are represented by the radar

www.nat-hazards-earth-syst-sci.net/13/535/2013/ Nat. Hazards Earth Syst. Sci., 13, 53842013
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Fig. 10. Standard deviation plot of actual rain gauge (&.Z—R estimate(b) best-fit estimate anft) NN estimate. Data from year 2009
over KMLB. (Hourly rainfall accumulation).

profiles that can be used to train the network; this is be-
cause of low rain rate measurements are mostly related to
weak storms, which usually do not have measured reflectiv-
ity at higher altitudes. Therefore, considering measurements
at higher altitudes would eliminate weak storms from being
included in the analysis.

5 Using principal component analysis to reduce the
input size to the rainfall NN

Height (km)

5.1 Principal component analysis

i - In this section, the input radar reflectivity fact@r along
2 = X * 50 4 CAPPI levels is explored by applying the principal compo-
Reflectivity (dBZ nent analysis (PCA) over the standardized valueg;of =
1,...,4), whereZ; represents the radar reflectivity factor
measured at heiglit The standardized values @f (Z;) are
given by

Fig. 11.Radar Reflectivity Factor vs. Height. Data from year 2009.

reflectivity factor) to be smaller than that for lower heights. Zi= (Zi — E[Zi])/v/VarlZ;], (7

Therefore, it will be easier for the neural network to find the

relation between the rain gauges and the radar reflectivit)}'\’here‘?z[z"]s?nd dVa(;[Z,-]t_den_ote the samp(lje mfatnhandqﬁvarl-t
factor if measurements at height up to 4 km are used. ance olz;. standardization IS necessary due 1o the ditieren

It is worth mentioning that taking radar measurements' &9 values F'ghtﬁha\.’teﬁ Iflwe detf'n§1 0 _be thbe sample
higher than 4km will reduce the number of good (valid) cOvarance matrix ok, with elemen s£2)ij given by
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Table 4. The performance of the RBF NN using radar data versus 2 PCs as input. (Hourly rainfall accumulation).

Site/Year FracBias (%) Corr. NSE NRMSE (%) Network Size (Centers)
Radar 2 PCs Radar 2 PCs Radar 2 PCs Radar 2 PCs Radar 2 PCs
data data data data data

KMLB 2006 2.4 0.9 0.81 0.82 0.30 0.29 44.2 43.7 34 15

KMLB 2007 3.1 2.6 0.82 0.80 0.31 0.33 45.9 47.9 62 19

KMLB 2008 2.7 1.9 0.84 0.83 0.27 0.28 40.9 42.1 37 15

KMLB 2009 2.4 3.4 0.84 0.84 0.27 0.27 38.9 38.1 22 18

~ o~ Ground ;
~ Rain G
(82)ij = CoM Z;, Zj] Radar we
Reflectivity

Factor

M
:Z(Z,‘)S(Zj)s/M i=1,...,4j=1,....49 (8)
s=1

whereM is the number of input patterns, then we need to find
the eigenvectors and the eigenvaludl;; of the covariance
matrix as seen below:

Fig. 12. Schematic of NN trained with input configuration 2.

time and the network size is to see the effect of the size of
the input data and to see how feasible the network can be in

After that we calculate the principal components (PCs)©°rder to be applied in real time.
that are associate with the eigenvalues using

e 1S7e =Dj;. 9)

5.2.1 Input configuration 1
PCi=elZ,PG=elZ,....PC=¢}Z. (10) n , o , _
This input configuration is the same one used in the previous
The goal of using the PCA concept in this context is to re-évaluations. The network was trained using radar measure-
duce the dimensionality of the training data to a level wherements at 1, 2, 3 and 4km in height, and rain gauges were
we still can get good performance. In this section, we trainthe target. The purpose of including this configuration is to
the neural network using the principal components ratherestimate the training time and the network size at each case
than the radar reflectivity factaz. To get benefit from this in order to find out the improvement brought by PCA tech-
concept and to reduce the dimensionality of the training datanique. Figure 4 shows the configuration of the input where
we are going to neglect those principal components withradar reflectivity factor at four different heights was used to
small eigenvalues. There are two methods to decide whicfirain the network. The performance of the neural network us-
principal components to neglect. The first one is to sum theing this input configuration is shown in Table 4 and it will be
eigenvalues from the largest to the lowest, and when the surBompared to the performance of the next input configuration.
exceeds a certain threshold we stop adding eigenvalues, and
we use only those whose eigenvalues were considered in the2-2  Input configuration 2

addition. Another way to find out which principal compo- . . . . .
nents to include is to use the Fisher's Maximum Coverage'n this configuration, the network was trained using the PCs

Test (Mielke and Berry, 2007). calculated from the radar measurements at 1, 2, 3 and 4km
' in height. Only two principal components were used in the
5.2 Performance evaluation of RBF NN using PCA training together with their corresponding rain gauges. The

chosen PCs were those whose eigenvalues accumulation is
The PCA technique was applied to the data from years 2006more than the threshold value chosen. Figure 12 shows a
2007, 2008 and 2009 over the KMLB site. It was found that schematic of this configuration and Table 4 also shows the
two principal components were enough to provide reasonneural networks performance when using this input config-
able performance than that using four levels of radar reflecuration. As we see in Table 4, the performance of the neu-
tivity factor values to train the network. Two input configura- ral networks based rainfall estimate is improved. Although
tions were tested in this regard, in each one the performanceaining time is dependent on the computer, the major re-
of the neural network was measured as well as the time iduction was seen in the training time with almost 50 % less
takes the neural network to train, and the number of neuronshan the time spent using the previous input configuration.
needed (network size). The purpose of including the trainingln addition, the other performance metrics, such as FracBias,
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