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Spectrum of the Ap-Laplacian Operator

A. Anane, O. Chakrone and M. Moussa

abstract: This work deals with the nonlinear boundary eigenvalue problem

(V.P(Λ,ρ,I))

{ −Apu = λρ(x)|u|p−2u in I =]a, b[,
u(a) = u(b) = 0,

whereAp is called the Ap-Laplacian operator and defined byApu =
(
Λ(x)|u′|p−2u′

)′
,

p > 1, λ is a real parameter, ρ is an indefinite weight, a, b are real numbers and
Λ ∈ C1(I) ∩ C0(Ī) and it is nonnegative on Ī.

We prove in this paper that the spectrum of the Ap-Laplacian operator is given
by a sequence of eigenvalues. Moreover, each eigenvalue is simple, isolated and
verifies the strict monotonicity property with respect to the weight ρ and the do-
main I. The k−th eigenfunction corresponding to the k-th eigenvalue has exactly
k−1 zeros in (a, b). Finally, we give a simple variational formulation of eigenvalues.
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1. Introduction

The operator defined by Apu =
(
Λ(x)|u′|p−2u′

)′ in a real interval I =]a, b[ is
called Ap-Laplacian. The spectrum of the Ap Laplacian operator is defined as
the set σp(Ap, Λ, ρ) of λ ≡ λ(Λ, ρ, I) for which there exists a nontrivial solution
u ∈ W 1,p

0 (I) in a weak sense of problem

(V.P(Λ,ρ,I))
{ −Apu = λρ(x)|u|p−2u in I =]a, b[,

u(a) = u(b) = 0,
(1)

where p > 1, Λ is a positive real valued function such that Λ ∈ C1(I) ∩ C0(Ī) and
ρ ∈ M+(I) is the weight. M+(I) is defined by

M+(I) = {ρ ∈ L∞(I)/meas{x ∈ I, ρ(x) > 0} 6= 0} . (2)

In the same way we define M−(I) by

M−(I) = {ρ ∈ L∞(I)/meas{x ∈ I, ρ(x) < 0} 6= 0} . (3)

The values λ(Λ, ρ, I) for which there exists a nontrivial solution of problem (1)
are called eigenvalues and the corresponding solutions are the eigenfunctions. We
denote by σ+

p (Ap,Λ, ρ) the set of all positive eigenvalues and by σ−p (Ap, Λ, ρ) the
set of all negative ones.

2. Existence of eigenvalues by minimax techniques

In this section we study the existence of a sequence of eigenvalues for problem
(1). The method used is an adaptation of the Ljusternik-Shnirelmann theory. For
more details about the theory see [1,10,14,16,17,20].

The Sobolev space W 1,p
0 (I) is endowed with the norm ‖u‖1,p,Λ =

(∫

I

Λ(x)|u′(x)|pdx

) 1
p

.

The equivalence between the previous norm and the usual one is obvious. (Λ ∈
C1(I) ∩ C0(Ī) and Λ(x) > 0 in Ī, then δ ≤ Λ(x) ≤ M for all x ∈ Ī).

The weight ρ is assumed to belong to M+(I). Consider B : W 1,p
0 (I) −→ R de-

fined by B(u) = 1
p

∫
I
ρ(x)|u|p dx, that is the potential of b : W 1,p

0 (I) −→ W−1,p′
0 (I),

defined by b(u) = ρ(x)|u|p−2u. By the compactness of the Sobolev inclusion, b is
compact and uniformly continuous on bounded sets and as a consequence B is
compact. Moreover, b is odd and B is even. The idea is to obtain critical points of
B(u) on the manifold

M =
{

u ∈ W 1,p
0 (I) | 1

p

∫

I

Λ(x)|u′|p = α

}
. (4)

We introduce the classical genus function due to Krasnoselskii [13], we prefer the
definition given by Coffman [6]. Given X a Banach space, we consider the class
Σ = {A ⊂ X |A closed, A = −A}.
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Definition 2.1 (cf [1,17,20] Consider the map, γ, defined as follows

γ : Σ −→ N ∪∞
A −→ γ(A)

where γ(A) = min
{
k ∈ N | ∃ϕ ∈ C(A,Rk − {0}, ϕ(x) = −ϕ(−x)

}
. If the infimum

does not exist, then we define γ(A) = +∞. We call γ(A) the genus of A ∈ Σ.

We will prove the existence of a sequence of critical values and critical points by
using a mini-max argument on the class of sets defined below. For each k ∈ N
consider

Ck = {C ⊂M|C compact, C = −C, γ(C) ≥ k} . (5)

The main result on the existence of eigenvalues is the following

Theorem 2.1 (cf [2] , [11]) Let Ck be defined by (5), let ρ ∈ M+(I) and let βk be
defined by

βk = sup
C∈Ck

min
u∈C

B(u). (6)

Then, βk > 0, and there exists uk ∈ M such that B(u) = βk, and uk is a solution
of problem (1) for λk = α

βk
.

Proposition 2.1 (cf [2] , [11]) Let βk be defined in (6). Then lim
k→+∞

βk = 0. As

a consequence λk = αβ−1
k → +∞ as k → +∞

Proof (cf [11]) Consider {Ej}j≥1 sequence of linear subspaces in W 1,p
0 (I) such

that
i)Ek ⊂ Ek+1; ii)L(∪Ek) = W 1,p

0 (I); iii) dim Ek = k.

Define β̃k = supC∈Ck
minu∈C∩Ec

k−1
B(u), where Ec

k is the linear and topological
complementary of Ek. Obviously β̃k ≥ βk > 0. Now, if for some positive constant,
δ > 0, β̃k > δ > 0 for all k ∈ N, then for each k ∈ N there exists Ck ∈ Ck such
that β̃k > min

u∈Ck∩Ec
k−1

B(u) > δ, and then there exists uk ∈ Ck ∩ Ec
k−1 such that

β̃k > B(uk) > δ. In this way {uk} ⊂ M, B(uk) > δ > 0 for all k ∈ N, hence for
some subsequences,

uk ⇀ v, as k → ∞, weakly in W 1,p
0 (I)

uk → v, as k → ∞, in Lp(I).

As a consequence B(v) > δ and this is a contradiction because uk ∈ Ec
k−1 implies

v = 0.

Remark 2.1 It is obvious to show the following Corollary

Corollary 2.1A Let Ck be defined by (5), let ρ ∈ M−(I) and let β−k be defined
by

β−k = inf
C∈Ck

max
u∈C

B(u). (7)
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Then, β−k < 0, and there exists uk ∈M such that B(u) = β−k, and uk is a solution
of problem (1) for λ−k = α

β−k
. Moreover, limk→+∞ β−k = 0. As a consequence

λ−k = αβ−1
−k → −∞ as k → +∞

In [7] a similar result is given in the linear case i.e p = 2 and Λ ≡ 1. So, in the
next we are interesting by the positive eigenvalues, we will give a remark about the
negative eigenvalues at the end of the paper.

By Theorem 1, the values given by

1
λk(Λ, ρ, I)

= sup
C∈Ck

min
u∈C

∫

I

ρ(x)|u|p dx
∫

I

Λ(x)|u′|p dx

(8)

are positive eigenvalues of problem (1). Put SΛ =
{

u ∈ W 1,p
0 (I) |

∫

I

Λ(x)|u′|p dx = 1
}

then, SΛ is the unit sphere of (W 1,p
0 (I), ‖u‖1,p,Λ). Next, define Bk = {C ∈ Ck |C ⊂

SΛ}. then (8) can be rewritten as

1
λk(Λ, ρ, I)

= sup
C∈Bk

min
u∈C

∫

I

ρ(x)|u|p dx (9)

Remark 2.2 The main open problem is to show that the sequence given by relation
(9) contains all the eigenvalues of problem (1). This is true in the next situations
Λ(x) ≡ 1 and ρ(x) ≡ 1 cf [8,10,12,15]. Λ(x) ≡ 1 and ρ(x) ≥ 0 and continuous cf
[9].

The problem (1) is still open for Λ(x) 6≡ 1 and/or ρ ∈ L∞(I). The authors
treated, in first time, the situation Λ(x) ≡ 1 and ρ ∈ L∞(I), after they remarked
that problem (1) can also be treated by the same reasonnement with some little
modifications. So, in this paper we will resolve problem (1) and, in particular,
recover the nonlinear Sturm-Liouville eigenvalue studied in [4,5,7,8,9,10,12,15].

3. Ap-Laplacian spectrum

3.1. Main results. The following theorem contains the main results of the paper

Theorem 3.1 For all p > 1, ρ ∈ M+(I) and a positive function Λ ∈ C1(I)∩C0(Ī),
the problem (1) has a nontrivial solution if and only if λ belongs to an increasing
sequence (λk)k≥1. Moreover,

1. Each eigenvalue λk(Λ, ρ, I) is simple and any corresponding eigenfunction
takes the form αvk(x) with α ∈ R; namely the multiplicity of each eigenvalue
is 1. Moreover vk(x) has exactly k-1 simple zeros.

2. Each λk(Λ, ρ, I) verifies the strict monotonicity property with respect to the
weight ρ and the domain I.
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3. σ+
p (Ap, Λ, ρ) = {λk(Λ, ρ, I), k = 1, 2, · · · }. The eigenvalues are ordered as

0 < λ1(Λ, ρ, I) < λ2(Λ, ρ, I) < λ3(Λ, ρ, I) < · · · < λk(Λ, ρ, I) → +∞
as k → +∞.

As we will remark in the proof of Theorem 2, we have a simple variational formu-
lation for the eigenvalues.

Corollary 3.1A The eigenvalues of problem (1) are given by the simple variational
formulation,

1
λk(Λ, ρ, I)

= sup
E∈Ek

min
E∩SΛ

∫ b

a

ρ(x)|v|p dx (10)

Ek =
{

E/E is a k dimensional subspace of
(
W 1,p

0 (I), ‖.‖1,p,Λ

)}
and SΛ is the

unit sphere of
(
W 1,p

0 (I), ‖.‖1,p,Λ

)

3.2. Technical Lemmas. Before starting the proof of Theorem 2, we give some
lemmas whose will be frequently used later.

Lemma 3.1 λ1(Λ, ρ, I) is the unique eigenvalue which has an eigenfunction with
constant sign. Simple; that is, if u and v are two eigenfunctions corresponding to
the eigenvalue λ1(Λ, ρ, I), then v = αu for some α. Isolated; that is, λ1(Λ, ρ, I)
is the unique eigenvalue in [0, a] for some a > λ1(Λ, ρ, I). Finally, λ1(Λ, ρ, I) is
given by the variational formulation

1
λ1(Λ, ρ, I)

= sup
v∈SΛ

∫

I

ρ(x)|v|p dx =
∫

I

ρ(x)|φ1|p dx

where φ1 ∈ SΛ is an eigenfunction corresponding to λ1(Λ, ρ, I)

Proof: The proof is an adaptation of the ones given in [2,11]. Let φ1 be a positive
eigenfunction corresponding to λ1(Λ, ρ, I), by the Maximum Principle (cf [19])
φ
′
1(a) > 0 and φ

′
1(b) < 0.

Lemma 3.2 The restriction of a solution (u, λ(Λ, ρ, I)) of problem (1), on a nodal
interval J , is an eigenfunction of problem (V.P(Λ/J ,ρ/J ,J)), and we have

λ(Λ, ρ, I) = λ1(Λ/J , ρ/J , J). (11)

Proof: A nodal domain is a component of I\Z(u), where u is a solution of problem
(1) and Z(u) = {x ∈ I |u(x) = 0}.
Let v ∈ W 1,p

0 (J) and let ṽ be its extension by zero on I. It is obvious that
ṽ ∈ W 1,p

0 (I). Multiply (V.P(Λ,ρ,I)) by ṽ we get
∫

J

Λ(x)|u′|p−2u′v′ dx = λ(Λ, ρ, I)
∫

J

ρ(x)|u|p−2uv dx

for all v ∈ W 1,p
0 (J). Hence the restriction of u on J is a solution of prob-

lem (V.P(Λ/J ,ρ/J ,J)) with constant sign. We then have (lemma 1) λ(Λ, ρ, J) =
λ1(Λ/J , ρ/J , J).
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Lemma 3.3 Each solution (u, λ(Λ, ρ, I)) of problem (1) has a finite number of
simple zeros.

Proof: This Lemma plays an essential role in our work. We start by showing
that u has a finite number of nodal domains. Assume that there exists a sequence
Ik, k ≥ 1, of nodal intervals, Ii ∩ Ij = ∅ for i 6= j. We deduce by lemma 2 that

λ(Λ, ρ, I) = λ1(Λ/Ik
, ρ/Ik

, Ik) ≥ δλ1(1, 1, Ik)
C

=
δλ1(1, 1, ]0, 1[)
C(meas(Ik))p

, (12)

where C = ‖ρ‖∞ and δ = minx∈Ī Λ(x). From equation (12) we deduce meas(Ik) ≥
( δλ1

λC )
1
p , for all k, λ1 = λ1(1, 1, ]0, 1[) and λ = λ(Λ, ρ, I), so

meas(I) =
∑

k≥1

meas(Ik) = +∞.

This yield a contradiction.
Let {I1, I2, · · · Ik} be the nodal domains of u. Put Ii =]ai, bi[, where a ≤ a1 <

b1 ≤ a2 < b2 ≤ · · · ak < bk ≤ b. It is clear that the restriction of u on ]a, b1[
is a nontrivial eigenfunction with constant sign corresponding to λ(Λ, ρ, I). The
maximum principle (cf [19]) yields either u(t) > 0 or u(t) < 0 for all t ∈]a, b1[,
so a = a1, and, u′(a1) 6= 0 and u′(b1) 6= 0. By a similar argument we prove that
b1 = a2, b2 = a3, · · · bk = b, so u has a finite number of simple zeros.

Lemma 3.4 (cf [18]) Let u be a solution of problem (1) and u ∈ W 1,p
0 (I)∩L∞(I)

then u ∈ C1,α(I) ∩ C1(Ī) for some α ∈ (0, 1).

3.3. Proof of Theorem 2. For n = 1, as proved in lemma 1 λ1(Λ, ρ, I) is simple,
isolated and any corresponding eigenfunction has constant sign. Hence it has no
zero in (a, b). For the strict monotonicity property (SMP in brief) we state the
proposition

Proposition 3.1 λ1(Λ, ρ, I) verifies the strict monotonicity property with respect
to weight ρ and the domain I, i.e., if ρ1, ρ2 ∈ M+(I), ρ1(x) ≤ ρ2(x) and ρ1(x) <
ρ2(x) in some subset of I of nonzero measure then,

λ1(Λ, ρ2, I) < λ1(Λ, ρ1, I) (13)

and, if J is a strict sub interval of I such that ρ/J ∈ M+(J) then,

λ1(Λ, ρ, I) < λ1(Λ/J , ρ/J , J). (14)

Proof: Let ρ1, ρ2 ∈ M+(I) as in proposition 1, recall that the principal eigenfunc-
tion φ1 ∈ SΛ corresponding to λ1(Λ, ρ, I) has no zero in I i.e φ1(t) 6= 0 for all t ∈ I.
By (9) we get

1
λ1(Λ,ρ1,I) =

∫

I

ρ1(x)|φ1|p dx <

∫

I

ρ2(x)|φ1|p dx

≤ sup
v∈SΛ

∫

I

ρ2(x)|v|p dx

= 1
λ1(Λ,ρ2,I) .

(15)
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Then inequality (13) is proved, to prove inequality (14), let J be a strict sub interval
of I and ρ/J ∈ M+(J). Let u1 ∈ SΛ(J), the unit sphere of W 1,p

0 (J), be the positive
eigenfunction of (V.P(Λ,ρ,J)) corresponding to λ1(Λ, ρ/J , J), and denote by ũ1 the
extension by zero on I. Then,

1
λ1(Λ,ρ/J ,J) =

∫

J

ρ(x)|u1|p dx =
∫

I

ρ(x)|ũ1|p dx

< sup
v∈SΛ

∫

I

ρ(x)|v|p dx

= 1
λ1(Λ,ρ,I) .

(16)

The last strict inequality holds from the fact that ũ1 vanishes in I/J so can not be
an eigenfunction of problem (1).

For n = 2 we start by proving that λ2(Λ, ρ, I) has a unique zero in (a, b).

Proposition 3.2 There exists a unique real c2,1 ∈ I for which we have Z(u) =
{c2,1} for any eigenfunction u corresponding to λ2(Λ, ρ, I). For this reason, we will
say c2,1 is the zero of λ2(Λ, ρ, I).

Proof: Let u be an eigenfunction corresponding to λ2(Λ, ρ, I). u changes sign in I
(lemma 1). Consider I1 =]a, c1[ and I2 =]c2, b[ two nodal domains of u, by lemma
2, λ1(Λ, ρ/I1 , I1) = λ2(Λ, ρ, I) = λ1(Λ, ρ/I2 , I2). Assume that c1 < c2, choose
d ∈]c1, c2[ and put J1 =]a, d[, J2 =]d, b[, hence J1 ∩ J2 = ∅, and for i = 1, 2, Ii ⊂ Ji

strictly, and ρ/Ji
∈ M+(Ji), making use of proposition 2, by (14), we get

λ1(Λ, ρ/J1 , J1) < λ1(Λ, ρ/I1 , I1) = λ2(Λ, ρ, I) (17)

and
λ1(Λ, ρ/J2 , J2) < λ1(Λ, ρ/I2 , I2) = λ2(Λ, ρ, I). (18)

Let φi ∈ SΛ be an eigenfunction corresponding to λ1(Λ, ρ/Ji
, Ji), by lemma 1 we

have for i = 1, 2
1

λ1(Λ, ρ, Ji)
=

∫

Ji

ρ(x)|φi|p dx.

Put φ̃i the extension by zero of φi on I and consider the two dimensional subspace
F = 〈φ̃1, φ̃2〉. Let K2 = F ∩ SΛ ⊂ W 1,p

0 (I), obviously γ(K2) = 2, remark that for
v = αφ̃1 + βφ̃2, ‖v‖1,p,Λ = 1 ⇐⇒ |α|p + |β|p = 1, hence by lemma 1 and (9), (17),
(18) we obtain,

1
λ2(Λ,ρ,I) ≥ min

v∈K2

∫

I

ρ(x)|v|p dx

= min
v=αφ̃1+βφ̃2∈K2

(
|α|p

∫

J1

ρ(x)|φ1|p dx + |β|p
∫

J2

ρ(x)|φ2|p dx

)

= |α0|p
∫

J1

ρ(x)|φ1|p dx + |β0|p
∫

J2

ρ(x)|φ2|p dx

= |α0|p
λ1(Λ,ρ/J1 ,J1)

+ |β0|p
λ1(Λ,ρ/J2 ,J2)

> |α0|p+|β0|p
λ2(m,I) = 1

λ2(Λ,ρ,I) ,
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contradiction, hence c1 = c2. On the other hand, let v be another eigenfunction
corresponding to λ2(Λ, ρ, I), denote d its unique zero in (a, b). Assume, for example,
that c < d, by lemma 2 and relation (18), we get

λ2(Λ, ρ, I) = λ1(Λ, ρ/]a,d[, ]a, d[) < λ1(Λ, ρ/]a,c[, ]a, c[) = λ2(Λ, ρ, I).

Contradiction so c = d. So, we have proved that each eigenfunction corresponding
to λ2(Λ, ρ, I) vanishes at a unique point in (a, b), and the (simple) zero is the same
of all eigenfunctions, which completes the proof of proposition 3.

Lemma 3.5 λ2(Λ, ρ, I) is simple, hence λ2(Λ, ρ, I) < λ3(Λ, ρ, I).

Proof: Let u and v be two eigenfunctions corresponding to λ2(Λ, ρ, I), by lemma 2
the restrictions of u and v on ]a, c2,1[ and ]c2,1, b[ are eigenfunctions corresponding
to λ1(Λ, ρ/]a,c2,1[, ]a, c2,1[) and λ1(Λ, ρ/]c2,1,b[, ]c2,1, b[), respectively. Making use of
the simplicity of the first eigenvalue, we get u = αv in ]a, c2,1[ and u = βv in ]c2,1, b[,
but both of u and v are eigenfunctions, then by lemma 3, there are in C1(I), the
maximum principle (cf [19]) tell us that u′(c2,1) 6= 0, so α = β i.e λ2(Λ, ρ, I) is
simple. Finally, by the simplicity of λ2(Λ, ρ, I) and the theorem of multiplicity (cf
[17]) we conclude that λ2(Λ, ρ, I) < λ3(Λ, ρ, I).

Proposition 3.3 λ2(Λ, ρ, I) verifies the SMP with respect to the weight ρ and the
domain I.

Proof: Let ρ1 and ρ2 ∈ M+(I) such that, ρ1(x) ≤ ρ2(x) a.e in I and ρ1(x) < ρ2(x)
in some subset of nonzero measure, c2,1 and c′2,1 are the zeros of λ2(Λ, ρ1, I) and
λ2(Λ, ρ2, I) respectively. We have to treat three situations

1. c2,1 = c′2,1 = c, then meas ({x ∈ I/ ρ1(x) < ρ2(x)}∩]a, c[) 6= 0, or meas({x ∈
I/ ρ1(x) < ρ2(x)}∩]c, b[) 6= 0, by lemma 2 and (13) we obtain

λ2(Λ, ρ2, I) = λ1(Λ, ρ2/]a,c[ , ]a, c[)
< λ1(Λ, ρ1/]a,c[ , ]a, c[)
= λ2(Λ, ρ1, I),

or
λ2(Λ, ρ2, I) = λ1(Λ, ρ2/]c,b[ , ]c, b[)

< λ1(Λ, ρ1/]c,b[ , ]c, b[)
= λ2(Λ, ρ1, I).

2. c2,1 < c′2,1, by lemma 2 and (14), we get

λ2(Λ, ρ2, I) = λ1(Λ, ρ2/]a,c′2,1[
, ]a, c′2,1[)

≤ λ1(Λ, ρ1/]a,c′2,1[
, ]a, c′2,1[)

< λ1(Λ, ρ1/]a,c2,1[ , ]a, c2,1[)
= λ2(Λ, ρ1, I).
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3. c′2,1 < c2,1, also by lemma 2 and (14) we obtain

λ2(Λ, ρ2, I) = λ1(Λ, ρ2/]c′2,1,b[
, ]c′2,1, b[)

≤ λ1(Λ, ρ1/]c′2,1,b[
, ]c′2,1, b[)

< λ1(Λ, ρ1/]c2,1,b[ , ]c2,1, b[)
= λ2(Λ, ρ1, I).

For the SMP with respect to the domain, put J =]c, d[ a strict sub interval of I
with ρ/J ∈ M+(J), and denote c′2,1 the zero of λ2(Λ, ρ/J , J), as in the SMP with
respect to the weight, three situations are presented

1. c2,1 = c′2,1 = l, then ]c, l[ is a strict sub interval of ]a, l[ or ]l, d[ is a strict sub
interval of ]l, b[, by lemma 2 and (14), we get

λ2(Λ, ρ, I) = λ1(Λ, ρ/]a,l[, ]a, l[)
< λ1(Λ, ρ/]c,l[, ]c, l[)
= λ2(Λ, ρ/J , J)

or
λ2(Λ, ρ, I) = λ1(Λ, ρ/]l,b[, ]l, b[)

< λ1(Λ, ρ/]l,d[, ]l, d[)
= λ2(Λ, ρ/J , J)

2. c2,1 < c′2,1, again by lemma 2 and (14) we get

λ2(Λ, ρ, I) = λ1(Λ, ρ/]c2,1,b[, ]c2,1, b[)
< λ1(Λ, ρ/]c′2,1,d[, ]c′2,1, b[)
= λ2(Λ, ρ/J , J)

3. c′2,1 < c2,1, for the same reason as in the last case, we get

λ2(Λ, ρ, I) = λ1(Λ, ρ/]a,c2,1[, ]a, c2,1[)
< λ1(Λ, ρ/]c,c′2,1[

, ]c, c2,1[)
= λ2(Λ, ρ/J , J),

The proof is complete.

Lemma 3.6 For each eigenfunction u corresponding to λ(Λ, ρ, I) such that Z(u) =
{c} for some real number c, then

λ(Λ, ρ, I) = λ2(Λ, ρ, I).

Proof: We will prove that c = c2,1. Suppose, for example, c < c2,1. By lemma 2
and (14) we get,

λ(Λ, ρ, I) = λ1(Λ, ρ/]c,b[, ]c, b[)
< λ1(Λ, ρ/]c2,1,b[, ]c2,1, b[)
= λ2(Λ, ρ, I)
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on the other hand,

λ2(Λ, ρ, I) = λ1(Λ, ρ/]a,c2,1[, ]a, c2,1[)
< λ1(Λ, ρ/]a,c[, ]a, c[)
= λ(Λ, ρ, I),

contradiction. Hence, c = c2,1 and λ(Λ, ρ, I) = λ2(Λ, ρ, I). The proof is complete.
For n > 2, we use a recurrence argument. Suppose that for all k, 1 ≤ k ≤ n,

the following hypothesis holds

H.R.1 For any eigenfunction u corresponding to λk(Λ, ρ, I), there exists a unique
ck,i, 1 ≤ i ≤ k − 1, such that Z(u) = {ck,i, 1 ≤ i ≤ k − 1}.

H.R.2 λk(Λ, ρ, I) is simple.

H.R.3 λ1(Λ, ρ, I) < λ2(Λ, ρ, I) < · · · < λn+1(Λ, ρ, I).

H.R.4 If (u, λ(Λ, ρ, I)) is a solution of (V.P(Λ,ρ,I)) such that Z(u) = {ci, 1 ≤ i ≤
k − 1} (i.e with k − 1 simple zeros), then λ(Λ, ρ, I) = λk(Λ, ρ, I).

H.R.5 λk(Λ, ρ, I) verifies the Strict Monotonicity Property (SMP) with respect to
the weight ρ and the domain I.

and prove them for n + 1.

Proposition 3.4 There exists a unique family {cn+1,i, 1 ≤ i ≤ n} such that

Z(u) = {cn+1,i, 1 ≤ i ≤ n}

for any eigenfunction u corresponding to λn+1(Λ, ρ, I).

Proof: Let u be an eigenfunction corresponding to λn+1(Λ, ρ, I), by H.R.3 and
H.R.4, u has at least n zeros. According to lemma 3, we can consider the n + 1
nodal domains of u, I1 =]a, c1[, I2 =]c1, c2[, ... , In =]cn−1, cn[, In+1 =]c, b[. We
will prove that c = cn. Remark that the restrictions of u on ]a, ci[, 1 ≤ i ≤ n,
are eigenfunctions with i − 1 zeros, by H.R.4 λn+1(Λ, ρ, I) = λi(Λ, ρ/]a,ci[, ]a, ci[).
Assume that cn < c, choose d in ]cn, c[ and put, J1 =]a, d[, J2 =]d, b[, remark that
J1∩J2 = ∅, ]a, cn[ is a strict sub interval of J1 ⊂ I, and ]c, b[ is a strict sub interval
of J2 ⊂ I, it is clear that ρ/Ji

∈ M+(Ji) for i = 1, 2, by H.R.4 and H.R.5 we have

λn(Λ, ρ/J1 , J1) < λn(Λ, ρ/]a,cn[, ]a, cn[)
= λn+1(Λ, ρ, I),

and
λ1(Λ, ρ/J2 , J2) < λ1(Λ, ρ/]c,b[, ]c, b[) = λn+1(Λ, ρ, I).

Denote by
(
φn+1, λ1(Λ, ρ/J2 , J2)

)
a solution of (V.P(Λ,ρ,J2)), (v, λn(Λ, ρ/J1 , J1)) a

solution of (V.P(Λ,ρ,J1)), φi,,1 ≤ i ≤ n, the restrictions of v on Ii and φ̃i, their



Spectrum of the Ap-Laplacian Operator 125

extensions, by zero, on I. Let Fn+1 = 〈φ̃1, φ̃2, · · · , φ̃n+1〉 and Kn+1 = Fn+1 ∩ Sλ,
then γ(Kn+1) = n + 1. We obtain by (9) and the same proof as in proposition 3

1
λn+1(Λ, ρ, I)

≥ min
Kn+1

∫

I

ρ(x)|v|p dx >
1

λn+1(Λ, ρ, I)

contradiction, so c = cn. On the other hand, let v be an eigenfunction corre-
sponding to λn+1(Λ, ρ, I). Denote by d1, d2, · · · , dn the zeros of v. If d1 6= c1,
then

λn+1(Λ, ρ, I) = λ1(Λ, ρ/]a,d1[, ]a, d1[)
6= λ1(Λ, ρ/]a,c1[, ]a, c1[)
= λn+1(Λ, ρ, I),

so d1 = c1, by the same argument we conclude that di = ci for 1 ≤ i ≤ n.

Lemma 3.7 λn+1(Λ, ρ, I) is simple, hence.

λn+1(Λ, ρ, I) < λn+2(Λ, ρ, I).

Proof Let u and v be two eigenfunctions corresponding to λn+1(Λ, ρ, I). The re-
strictions of u and v on ]a, cn+1,1[ and ]cn+1,1, b[ respectively, are eigenfunctions as-
sociated to λ1(Λ, ρ/]a,cn+1,1[, ]a, cn+1,1[) and λn(Λ, ρ/]cn+1,1,b[, ]cn+1,1, b[). By H.R.2
and H.R.4 we have u = αv in ]a, cn+1,1[ and u = βv in ]cn+1,1, b[, on the other
hand, u and v are C1(I) and u′(cn+1,1) 6= 0, then α = β. From the simplicity of
λn+1(Λ, ρ, I) and theorem of multiplicity [17] we conclude that

λn+1(Λ, ρ, I) < λn+2(Λ, ρ, I).

Proposition 3.5 λn+1(Λ, ρ, I) verifies the SMP with respect to the weight ρ and
the domain I.

Proof Let ρ1, ρ2 ∈ M(I), such that ρ1(x) ≤ ρ2(x) with ρ1(x) < ρ2(x) in some
subset of nonzero measure. Denote cn+1,i and c

′
n+1,i for 1 ≤ i ≤ n, the zeros of

λn+1(Λ, ρ2, I) and λn+1(Λ, ρ2, I) respectively, three situations are presented

1. cn+1,1 = c′n+1,1 = c, one of the subsets is of nonzero measure,

{x ∈ I/ ρ1(x) < ρ2(x)}∩]a, c[ and {x ∈ I/ ρ1(x) < ρ2(x)}∩]c, b[,

by lemma 2 and (14), we have

λn+1(Λ, ρ2, I) = λ1(Λ, ρ2/]a,c[ , ]a, c[)
< λ1(Λ, ρ1/]a,c[, ]a, c[)
= λn+1(Λ, ρ1, I)

or
λn+1(Λ, ρ2, I) = λn(Λ, ρ2/]c,b[ , ]c, b[)

< λn(Λ, ρ1/]c,b[ , ]c, b[)
= λn+1(Λ, ρ2, I).
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2. cn+1,1 < c′n+1,1, also by lemma 2 and (14) we obtain

λn+1(Λ, ρ2, I) = λ1(Λ, ρ2/]a,c′
n+1,1[

, ]a, c′n+1,1[)

≤ λ1(Λ, ρ1/]a,c′
n+1,1[

, ]a, c′n+1,1[)

< λ1(Λ, ρ1/]a,cn+1,1[ , ]a, cn+1,1[)
= λn+1(Λ, ρ1, I).

3. c′n,1 < cn,1, from the same reason as before, we get

λn+1(Λ, ρ2, I) = λn(Λ, ρ2/]c′
n+1,1,b[

, ]c′n+1,1, b[

≤ λn(Λ, ρ1/]c′
n+1,1,b[

, ]c′n+1,1[, b)

< λn(Λ, ρ1/]cn+1,1,b[ , ]cn+1,1, b[)
= λn+1(Λ, ρ1, I).

By similar argument as in proof of proposition 3, we prove the SMP with respect
to the domain I.

Lemma 3.8 If (u, λ(Λ, ρ, I)) is a solution of (V.P(Λ,ρ,I)) such that

Z(u) = {d1, d2, · · · dn},

then
λ(Λ, ρ, I) = λn+1(Λ, ρ, I).

Proof: It is sufficient to prove that di = cn+1,i for all 1 ≤ i ≤ n. If cn+1,1 < d1

then, by lemma 2, (10), H.R.4 and H.R.5,

λ(Λ, ρ, I) = λ1(Λ, ρ/]a,d1[, ]a, d1[)
< λ1(Λ, ρ/]a,cn+1,1[, ]a, cn+1,1[)
= λn+1(Λ, ρ, I)
= λn(Λ, ρ/]cn+1,1,b[, ]cn+1,1, b[)
< λn(Λ, ρ/]d1,b[, ]d1, b[)
= λ(Λ, ρ, I)

contradiction, and if d1 < cn+1,1 again by lemma 2, (10), H.R.4 and H.R.5 we have

λn+1(Λ, ρ, I) = λ1(Λ, ρ/]a,cn+1[, ]a, cn+1[)
< λ1(Λ, ρ/]a,d1[, ]a, d1[)
= λ(Λ, ρ, I)
= λn(Λ, ρ/]d1,b[, ]d1, b[)
< λn(Λ, ρ/]cn+1,1,b[, ]cn+1, b[)
= λn+1(Λ, ρ, I)

contradiction, the proof is then complete. Theorem 1 is proved.
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3.4. Proof of Corollary 2. Since for F ∈ Ek, the compact F ∩ SΛ ∈ Ck, by
(9) we have:

sup
F∈Ek

min
v∈F∩SΛ

∫

I

ρ(x)|v|p dx ≤ 1
λk(Λ, ρ, I)

. (19)

On the other hand, for a k dimensional subspace F of W 1,p
0 (I), the compact set

K = F ∩ SΛ ∈ Ck. Let ck,i for 1 ≤ i ≤ k − 1 be the zeros of λk(Λ, ρ, I). Put
ck,0 = a and ck,k = b, let u be an eigenfunction corresponding to λk(Λ, ρ, I). Put
φ1(]ck,i, ck,i+1[), 0 ≤ i ≤ k−1, the restrictions of u on ]ck,i, ck,i+1[ respectively and
φ̃1(]ck,i, ck,i+1[) their extensions by zero on I. Then put

FK = 〈φ̃1(]a, ck,1[), φ̃1(]ck,1, ck,2[), · · · , φ̃1(]ck,k−1, b[)〉,
to conclude FK ∩ SΛ ∈ Ck. By an elementary computation as in proposition 3

1
λk(Λ, ρ, I)

= min
FK∩SΛ

∫

I

ρ(x)|v|p dx. (20)

Then combine (19) with (20) to get (10).

3.5. Remarks. The spectrum of the Ap-Laplacian is entirely determined by the
sequence (λk(Λ, ρ, I))k≥1 if ρ(x) ≥ 0 a.e in I. By the same way if ρ(x) ≤ 0 a.e in I,
then −ρ ∈ M+(I). Then, by theorem 2 the spectrum of the operator is constituted
by a negative eigenvalues (λ−k(Λ, ρ, I))k≥1 so σp(Ap,Λ, ρ) = −σ+

p (Ap,Λ,−ρ). The
main problem is when ρ ∈ L∞(I) and ρ change sign, i.e ρ ∈ M+(I) ∩M−(I). By
theorem 2 and corollary 1, the spectrum of the Ap-Laplacian is constituted by two
sequence of eigenvalues one is an increasing positive sequence and the other is a
decreasing negative sequence. The spectrum is given by

σp(Ap,Λ, ρ) = σ+
p (Ap, Λ, ρ) ∪ σ−p (Ap, Λ, ρ). (21)

4. Applications

4.1. p-Laplacian spectrum with indefinite weight.

Definition 4.1 The p-Laplacian spectrum with indefinite weight σp(∆p, m) is the
set of all real numbers λ solutions of problem

(V.P(m,I))
{ −∆pu = λm(x)|u|p−2u in Ω,

u = 0 on ∂Ω

in a weak sense.

We know that the spectrum contains a sequence (resp. a double sequence) of
eigenvalues if the weight m is positive (resp. positive and negative) somewhere.
But any more information about the spectrum when p 6= 2 (the nonlinear problem).
In the following, we will prove that the p-Laplacian spectrum with indefinite weight
in one dimension is entirely given by a sequence (resp. a double sequence). For
this, put Λ ≡ 1 and ρ(x) = m(x) ∈ L∞(I) in theorem 2 to obtain,

σp(∆p,m) = σ+
p (∆p,m) ∪ σ−p (∆p,m)
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with σ+
p (∆p, m) = {λk(m, I), k = 1, 2, · · · } . The eigenvalues are ordered as 0 <

λ1(m, I) < λ2(m, I) < λ3(m, I) < · · · < λk(m, I) → +∞. and

σ−p (∆p, m) = {λ−k(m, I), k = 1, 2, · · · } .

The eigenvalues are ordered as −∞← λ−k(m, I) < · · · < λ−2(m, I) < λ−1(m, I) <
0. The problem is still open for N > 1.

4.2. p-Laplacian spectrum of order one.

Definition 1 The p-Laplacian spectrum of order one σ1(∆p,m) is the set of all
surfaces (α, β) ∈ R× RN solutions of problem

(V.P(m,I)

) { −∆pu = αm(x)|u|p−2u+ < β, |∇u|p−2∇u > in Ω,
u = 0 on ∂Ω (22)

in a weak sense, 〈, 〉 is the scalar product in the euclidean space RN .

As the usual p-Laplacian spectrum we know that spectrum of order one of p-
Laplacian operator contains a sequence (resp. a double sequence) of eigen-surfaces
if the weight m is positive (resp. positive and negative) somewhere in I [3]. No
more results are given for p 6= 2 (the nonlinear problem). The following proposition
gives a solution for the problem.

Theorem 4.1 For N = 1 and p > 1 we have for all m ∈ M+(I)

1.
σ+

1 (∆p,m) = ∪∞n=1G (Γp
n(m,β)) (23)

resp.
σ−1 (∆p,m) = ∪∞n=1G

(
Γp
−n(m,β)

)
(24)

where G is the graph of the function Γp
n(m, .) defined for all β ∈ RN by

1
Γp

n(m, β)
= sup

F∈Fn

min
v∈F∩SΛ

∫

I

eβ.xm(x)|v|p dx (25)

resp.
1

Γp
−n(m,β)

= inf
F∈Fn

max
v∈F∩SΛ

∫

I

eβ.xm(x)|v|p dx (26)

where Λ(x) = eβ.x.

2. For all β ∈ R, lim
n→+∞

Γp
n(m,β) = +∞ (resp. lim

n→+∞
Γp
−n(m,β) = −∞).

3. The sequence Γp
n(m,β) (resp. Γp

−n(m,β)) is such that
{

Γp
1(m,β) < Γp

2(m,β) < · · · < Γp
n(m,β) < · · · → +∞ for β ∈ R

If Γp
n(m,β) < α < Γp

n+1(m, β) then (α, β) 6∈ σ+
1 (∆p,m).

resp.
{

Γp
−1(m, β) > Γp

−2(m,β) > · · · > Γp
−n(m,β) > · · · → −∞ for β ∈ R

If Γp
−n(m,β) < α < Γp

−(n+1)(m,β) then (α, β) 6∈ σ−1 (∆p,m).
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4. If (α, β) ∈ Γp
n(m,β)∪Γp

−n(m,β) then (α, β) is simple and each eigenfunction
corresponding to it has exactly n− 1 simple zeros in I.

5. For all n ≥ 1, Γp
n(m,β) (resp. Γp

−n(m,β)) verifies the strict monotonicity
property (PSM) with respect to the weight m and the domain I.

Proof Consider the following problem

(V.P(Λ,ρ,I)

) { (−Λ(x)|u′|p−2u′
)′ = αρ(x)|u|p−2u

u(a) = u(b) = 0.

Put Λ(x) = eβ.x and ρ(x) = eβ.xm(x). It is obvious that Λ ∈ C1(I) ∩ C(Ī) and
non negative in Ī, ρ ∈ L∞(I). Problem

(V.P(Λ,ρ,I)

)
is then equivalent to the

problem
(V.P(m,I)

)
(equation 22). So, making use of theorem 2 to obtain the

results mentionned in theorem 3.

4.3. Spectrum of order one with weights
of the p-Laplapcian operator. In this section we introduce a new notion
about the spectrum. We call spectrum of order one with weights (m1,m2) of the
p-Laplapcian operator the set σ1(∆p,m1,m2) of all curves (α, β) ∈ R×R solutions
of problem

(V.P(m1,m2)

){ (−Λ(x)|u′|p−2u′
)′ = αm1(x)|u|p−2u + βm2(x)|u′|p−2u′ in I

u(a) = u(b) = 0.
(27)

with m1 ∈ L∞(I) and m2 ∈ C(Ī).

To solve this problem we put σ(x) =
∫ x

a

m2(t) dt and consider the problem
(V.P(Λ,ρ,I)

)
, with ρ(x) = m1(x)eσ(x) and Λ(x) = eσ(x). The problem (27) is then

equivalent to problem (1), so making use of theorem 2 to conclude the same results
as in theorem 3.
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Hermann, Paris (1934).

[15] M. Otani, A remark on certain nonlinear elliptic equations, Proc. Fac. Sci. Tokai Univ. 19,
(1984), pp. 23-28.

[16] P. Rabinowitz, Minimax methods in critical point theory with applications to differential
equations, CBMS, Regional Conference N 65, Amer. Math .Soc., Providence, R.I., (1986).

[17] A. Szulkin, Ljusternik-Schnirelmann theory on C1-manifolds, Ann. I. H. Poincaré, Anal.
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