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Spectrum of the Aj-Laplacian Operator

A. Anane, O. Chakrone and M. Moussa

ABSTRACT: This work deals with the nonlinear boundary eigenvalue problem

V. P,p,1))

{ —Apu = Ap(x)|ulP"2u  in
u(a) = u(b) =0,

I =la, b],

where A}, is called the A -Laplacian operator and defined by Apu = (A(z)|u/|P~2u’) !

p > 1, X\ is a real parameter, p is an indefinite weight, a, b are real numbers and

A € CH(I)NCO(I) and it is nonnegative on 1.
We prove in this paper that the spectrum of the Ap-Laplacian operator is given

by a sequence of eigenvalues.

Moreover, each eigenvalue is simple, isolated and

verifies the strict monotonicity property with respect to the weight p and the do-
main I. The k—th eigenfunction corresponding to the k-th eigenvalue has exactly
k—1 zeros in (a,b). Finally, we give a simple variational formulation of eigenvalues.
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1. Introduction

The operator defined by Apu = (A(x)|u’|p’2u')/ in a real interval I =la, b[ is
called A,-Laplacian. The spectrum of the A, Laplacian operator is defined as
the set o,(Ap, A, p) of A = A(A, p,I) for which there exists a nontrivial solution
u € WyP(I) in a weak sense of problem

— = p—2 ; —
VPias) { Apu = dp(x)|ufP~*u in I =|a,b],

u(a) = u(b) =0, (1)

where p > 1, A is a positive real valued function such that A € C'(I) N C°(I) and
p € MT(I) is the weight. M*(I) is defined by

M™(I) = {p e L>®(I)/meas{x € I, p(x) > 0} # 0}. (2)
In the same way we define M~ (I) by
M=(I)={pe L>®(I)/meas{z € I, p(x) < 0} # 0}. (3)

The values A(A, p,I) for which there exists a nontrivial solution of problem (1)
are called eigenvalues and the corresponding solutions are the eigenfunctions. We
denote by o,f (Ap, A, p) the set of all positive eigenvalues and by o, (A, A, p) the
set of all negative ones.

2. Existence of eigenvalues by minimax techniques

In this section we study the existence of a sequence of eigenvalues for problem
(1). The method used is an adaptation of the Ljusternik-Shnirelmann theory. For
more details about the theory see [IJTOJT4JT6/17)20].

1
The Sobolev space W, (1) is endowed with the norm ||u|y .4 = (/A(x) u’(x)|pdx>
I

The equivalence between the previous norm and the usual one is obvious. (A €
CHI)NC%(I) and A(z) > 0 in I, then § < A(z) < M for all z € I).

The weight p is assumed to belong to M (I). Consider B : Wy (I) — R de-
fined by B(u) = % J; p(x)|uf? dz, that is the potential of b : WyP(I) — Wo_l’p/(l),
defined by b(u) = p(z)|u[P~2u. By the compactness of the Sobolev inclusion, b is
compact and uniformly continuous on bounded sets and as a consequence B is

compact. Moreover, b is odd and B is even. The idea is to obtain critical points of
B(u) on the manifold

M= {u e WhH(I)| % /IA(x)|u’|p _ a} . (@)

We introduce the classical genus function due to Krasnoselskii [13], we prefer the
definition given by Coffman [0]. Given X a Banach space, we consider the class
Y={AC X|Aclosed, A=—A}.
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Definition 2.1 (¢f [1J17]20] Consider the map, v, defined as follows

v: ¥ — NUo
A — ~(4)

where ¥(A) = min {k € N|3p € C(4,R* — {0}, p(z) = —p(—2z)} . If the infimum
does not ezist, then we define y(A) = +oo. We call v(A) the genus of A € ¥.

We will prove the existence of a sequence of critical values and critical points by
using a mini-max argument on the class of sets defined below. For each k € N
consider

Cr ={C Cc M |C compact, C =—-C, v(C) > k}. (5)

The main result on the existence of eigenvalues is the following

Theorem 2.1 (cf [2],[11]) Let Ci, be defined by (5), let p € M+ (I) and let By be
defined by
= sup min B(u). 6
8 = sup min B(w (6)
Then, B > 0, and there exists uy, € M such that B(u) = By, and uy is a solution
of problem (1) for A\, = 3

Proposition 2.1 (¢f [2],[11]) Let By be defined in (6). Then klilf Br =0. As

a consequence A\ = aﬁk_l — 400 as k — +0o0

Proof (cf [11]) Consider {E;};>1 sequence of linear subspaces in W,"*(I) such
that

D)Ey, C Eypyr; i) L(UEy) = WoP(D); i) dim By = k.
Define Bk = SUpgec, Milyecne;_, B(u), where Ef is the linear and topological
complementary of Ey. Obviously Br > B > 0. Now, if for some positive constant,

§ >0, Be > 6 > 0 for all k € N, then for each k € N there exists Cy, € Cj, such

that G > min  B(u) > §, and then there exists up € Cy N Ef_; such that
ueCrNE};_,

Br > B(uy) > 6. In this way {uz} € M, B(ug) > d > 0 for all k € N, hence for
some subsequences,

u, — v, as k — oo, weaklyin Wy"(I)
up, — v, as k — oo, in LP(I).

As a consequence B(v) > § and this is a contradiction because u, € Ef_, implies
v=0.

Remark 2.1 It is obvious to show the following Corollary

Corollary 2.1A Let Ci be defined by (5), let p € M~ (I) and let S_y be defined

by
_r = inf B(u).
P = deg, g P ™



118 A. ANANE, O. CHAKRONE AND M. MouSsa

Then, B_ < 0, and there exists u, € M such that B(u) = B_i, and uy, is a solution
of problem (1) for A_x = ﬁ Moreover, limg_.1 o f—r = 0. As a consequence

)\_k:aﬂ:é — —o0 as k — +oo

In [7] a similar result is given in the linear case i.e p =2 and A = 1. So, in the
next we are interesting by the positive eigenvalues, we will give a remark about the
negative eigenvalues at the end of the paper.

By Theorem 1, the values given by

p(a)|ul? dx
(8)

1
= sup min F———

(A P ) CECkuec/A |Ul|pdﬂj‘

are positive eigenvalues of problem (1). Put Sy = {u e Wyr(I) | /A(x)|u’|p dox = 1}
I

then, Sy is the unit sphere of (Wy*(I), ||ul|1.p.a). Next, define B, = {C € C |C C
Sa}. then (8) can be rewritten as

1 = sup mln/ p(x)|u|P dz (9)

>\k(A7P7 I) ceBy, wel

Remark 2.2 The main open problem is to show that the sequence given by relation
(9) contains all the eigenvalues of problem (1). This is true in the next situations
Az)=1 and p(z) =1 of [810/I2]75]. A(z) =1 and p(z) > 0 and continuous cf
l’.()].

The problem (1) is still open for A(x) # 1 and/or p € L*™(I). The authors
treated, in first time, the situation A(x) = 1 and p € L*°(I), after they remarked
that problem (1) can also be treated by the same reasonnement with some little
modifications. So, in this paper we will resolve problem (1) and, in particular,
recover the nonlinear Sturm-Liouville eigenvalue studied in [J]5]71/8]9J10/12]15].

3. Aj-Laplacian spectrum

3.1. MAIN RESULTS. The following theorem contains the main results of the paper

Theorem 3.1 Forallp > 1, p € M*+(I) and a positive function A € C*(I1)NC°(I),
the problem (1) has a nontrivial solution if and only if X belongs to an increasing
sequence (Ag)k>1. Moreover,

1. Each eigenvalue A (A, p,I) is simple and any corresponding eigenfunction
takes the form avy(x) with o € R; namely the multiplicity of each eigenvalue
is 1. Moreover v (x) has exactly k-1 simple zeros.

2. Each A\ (A, p,I) verifies the strict monotonicity property with respect to the
weight p and the domain I.
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3. U;(AP,A,p) ={ (A, p, 1), k=1,2,---}. The eigenvalues are ordered as
0<M(Ayp, 1) < Xa(A,p, I) < As(Ayp, I) <o - < Mg(A, p, I) = 00
as k — +o0.

As we will remark in the proof of Theorem 2, we have a simple variational formu-
lation for the eigenvalues.

Corollary 3.1A The eigenvalues of problem (1) are given by the simple variational
formulation,

1 b
—————— = sup min z)|v|P dx 10
)\k(Aap7I) Ee}f)k Ems/\\/a p( )‘ | ( )

Er = {E/E is a k dimensional subspace of (Wol’p(I), ||.||1’p’A)} and Sy is the
unit sphere of (W&*’(I), H'”l,p,A)

3.2. TECHNICAL LEMMAS. Before starting the proof of Theorem 2, we give some
lemmas whose will be frequently used later.

Lemma 3.1 A\ (A, p,I) is the unique eigenvalue which has an eigenfunction with
constant sign. Simple; that is, if w and v are two eigenfunctions corresponding to
the eigenvalue A1 (A, p,I), then v = au for some «. Isolated; that is, A\ (A,p,I)
is the unique eigenvalue in [0,a] for some a > A\ (A, p,I). Finally, A\ (A, p,I) is
given by the variational formulation

Ry
————— = sup LEUde:/ )| 1 |P dx
MAp, D) vesy Ip( o Ip( 1]

where ¢1 € Sy is an eigenfunction corresponding to A (A, p,I)

Proof: The proof is an adaptation of the ones given in [2JI1]. Let ¢, be a positive
eigenfunction corresponding to A;(A, p,I), by the Maximum Principle (¢f [19])
¢1(a) > 0 and ¢ (b) < 0.

Lemma 3.2 The restriction of a solution (u, \(A, p,I)) of problem (1), on a nodal
interval J, is an eigenfunction of problem (V.P(A/Jﬁp/‘]”;)), and we have

)‘(Avp7l> :)\1<A/ny0/hJ) (11)
Proof: A nodal domain is a component of I\ Z(u), where u is a solution of problem
(1) and Z(u) = {x € I'|u(z) = 0}.
Let v € WyP(J) and let o be its extension by zero on I. Tt is obvious that
o € Wy (I). Multiply (V.Pa,.1)) by © we get

/A(m)|u’|p_2u’v' dr = )\(A,p,l)/p(x)\u|p_2uv dx
J J
for all v € W,P(J). Hence the restriction of u on J is a solution of prob-

lem (V.P(a,,,p,,.7)) with constant sign. We then have (lemma 1) A(A,p,J) =
Al(A/Jap/JN])' u
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Lemma 3.3 Each solution (u,\(A,p,I)) of problem (1) has a finite number of
simple zeros.

Proof: This Lemma plays an essential role in our work. We start by showing
that v has a finite number of nodal domains. Assume that there exists a sequence
I, k > 1, of nodal intervals, I; N I; = 0 for i # j. We deduce by lemma 2 that

oM (1,1,1)  6A:(1,1,]0,1])
C ~ C(meas(Iy))P’

where C' = ||p]|co and § = min 7 A(z). From equation (12) we deduce meas(I)) >
(824)7, for all k, Ay = A1(1,1,]0,1[) and A = A(A, p, ), so

meas(I) = Zmeas([k) = 4o0.
k>1

This yield a contradiction.

Let {I;, I3, - I} be the nodal domains of u. Put I; =]a;, b;[, where a < a1 <
by < as < by < --rap < b < b Itis clear that the restriction of u on ]a,b;]
is a nontrivial eigenfunction with constant sign corresponding to A(A,p,I). The
maximum principle (¢f [19]) yields either u(t) > 0 or u(t) < 0 for all ¢ €la, b],
so a = a1, and, v'(a1) # 0 and v/ (by) # 0. By a similar argument we prove that
b1 = ag, by = ag,---br = b, so u has a finite number of simple zeros. [ ]

Lemma 3.4 (cf [18]) Let u be a solution of problem (1) and u € WyP(I)n L (1)
then uw € CY*(I) N CY(I) for some « € (0,1).

3.3. PROOF OF THEOREM 2. For n = 1, as proved in lemma 1 A1 (A, p, I) is simple,
isolated and any corresponding eigenfunction has constant sign. Hence it has no
zero in (a,b). For the strict monotonicity property (SMP in brief) we state the
proposition

Proposition 3.1 A\ (A, p, I) verifies the strict monotonicity property with respect
to weight p and the domain I, i.e., if p1,pa € MT(I), p1(z) < pa(x) and p1(z) <
p2(x) in some subset of I of nonzero measure then,

>‘1(Aap271)<>‘1(A7p17]) (13)
and, if J is a strict sub interval of I such that p,; € M™*(J) then,
)\1(A7p7‘[) <)\1(A/J7P/J,J)‘ (14)

Proof: Let pi, po € MT(I) as in proposition 1, recall that the principal eigenfunc-
tion ¢1 € Sy corresponding to A1(A, p,I) hasno zeroin I i.e ¢1(t) # 0 forallt € I.
By (9) we get

A

[ i@ iz
swp [ pa(o)lol do (15)

UESAl I
A1(A,p2,1)°

SE Wy /IP1($)|¢1|pd:v

IN
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Then inequality (13) is proved, to prove inequality (14), let J be a strict sub interval
of I'and p,; € M*(J). Let uy € Sy(J), the unit sphere of W, P (J), be the positive
eigenfunction of (V. P4 ,, 7)) corresponding to A1(A, p,s,J), and denote by i, the
extension by zero on I. Then,

m Z/JP($)|U1|pd33 = /Ip(a:)|d1|pda:

< sup [ p(x)|v|Pdx (16)
'UES/i I

AL(A,p,0)”

The last strict inequality holds from the fact that @, vanishes in I/J so can not be
an eigenfunction of problem (1).
For n = 2 we start by proving that A\y(A, p, I) has a unique zero in (a,b).

Proposition 3.2 There exists a unique real co1 € I for which we have Z(u) =
{c2.1} for any eigenfunction u corresponding to A2(A, p,I). For this reason, we will
say co.1 is the zero of Aa(A, p, I).

Proof: Let u be an eigenfunction corresponding to A2 (A, p, I). u changes sign in [
(lemma 1). Consider I; =la,c¢1[ and Iz =]cg, b[ two nodal domains of «, by lemma
2, (N p/r, 1) = Aa(Ap, 1) = Mi(A,pyr,,I2). Assume that ¢; < co, choose
d €ley, co| and put Jy =la,d|, Jo =]d, b, hence JyNJy =0, and for i = 1,2, I, C J;
strictly, and p,;, € MT(J;), making use of proposition 2, by (14), we get

MDA prg,J1) <A pyrs 1) = Aa(Ap, ) (17)

and
AN, pygy, J2) < AN, pyys I2) = Aa(A, p, T). (18)

Let ¢; € Sa be an eigenfunction corresponding to A1(A, p,s,,Js), by lemma 1 we

have for i = 1,2
1

ST " / )6l de.

i

Put (;31 the extension by zero of ¢; on I and consider the two dimensional subspace
F = (¢1,0). Let Ky = F NSy, C WyP(I), obviously v(K3) = 2, remark that for
v =gy + B, [v]|l1pa =1 <= |a|? + |B|” = 1, hence by lemma 1 and (9), (17),
(18) we obtain,

Y

min / o(@)|o]P da
I

veKso

i (w [ sl as+ 1 [ p<x>|¢gpdaz)

v=ap1+Bp2E K2

/ p(@)|é P di + |Bol? / p(2)|gal? e
J-

pl p J2 p P
lao| + |Bo] > laol®+[Bol® _ 1
M(ApyaysJd1) D A(Apygy,d2) Az(m,I) A2(A,p, )

1
A2(A,p, 1)

Il
)
S
)
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contradiction, hence ¢; = ¢o. On the other hand, let v be another eigenfunction
corresponding to A2 (A, p, I), denote d its unique zero in (a, b). Assume, for example,
that ¢ < d, by lemma 2 and relation (18), we get

)\2(Aa 12 I) = A1(A7p/]a,d[7]aa d[) < )\1(A7 p/]a,c[v]ach = A2(A7107 I)

Contradiction so ¢ = d. So, we have proved that each eigenfunction corresponding
to A2(A, p, I) vanishes at a unique point in (a,b), and the (simple) zero is the same
of all eigenfunctions, which completes the proof of proposition 3. [ ]

Lemma 3.5 A\o(A, p,I) is simple, hence Aa(A, p, I) < As(A, p, I).

Proof: Let u and v be two eigenfunctions corresponding to Az (A, p, I), by lemma 2
the restrictions of u and v on Ja, c2 1| and |eg 1, b are eigenfunctions corresponding
to A1 (A, pfjaesn]@s c21]) and A1 (A, pjje, s Je2,1, ]), respectively. Making use of
the simplicity of the first eigenvalue, we get u = awv in Ja, ca1[ and u = fv in]ea 1, b],
but both of u and v are eigenfunctions, then by lemma 3, there are in C*(I), the
maximum principle (c¢f [19]) tell us that u/(cz1) # 0, so a = § i.e Xa(A,p,I) is
simple. Finally, by the simplicity of A2(A, p, I) and the theorem of multiplicity (cf
[17]) we conclude that A2(A, p,I) < As(A, p, I). ]

Proposition 3.3 A\y(A, p, I) verifies the SMP with respect to the weight p and the
domain 1.

Proof: Let p; and ps € M+ (I) such that, p;(x) < pa(z) a.e in I and p1(x) < pa(z)
in some subset of nonzero measure, cz; and cj ; are the zeros of Aa(A, p1, 1) and
A2(A, pa, I) respectively. We have to treat three situations

L. ca1 = ¢y = ¢, then meas ({x € I/ p1(x) < p2(x)}N]a, c[) # 0, or meas({x €
I/ p1(x) < p2(z)}N]e, b)) # 0, by lemma 2 and (13) we obtain

A2(A, p2, 1) = Al(AaPQ/]a,C[v]ach
< )\I(A’pl/]a,c[7]a7c[)
- )\Q(Aa plaI)a
or
A2(A, p2, 1) = )‘1(A7p2/]u,b[7}cab[)
< Al(Avpl/]c,b[’}vaD

)\Q(A,pl,f).

2. c21 < ¢y, by lemma 2 and (14), we get

)\2(A,p271) = )\1(A7p2/]a,C/Z l[ﬂ]a’ﬂ Cl2,1D
< Al(Avpl/]a,Cé 1[5](156/2,1[)
< Al(Avpl/]a,szl[a]aa62,1[)

(

)\2 A,pl,I).
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3. ¢y < c2,1, also by lemma 2 and (14) we obtain

Ao(Aspo, 1) = M(Asp2, 0], b])
< )\1(A7ﬂl/]c/2 1,b[a]Clz,pr
< )\I(A7p1/]c2‘1,b[’]c271’b[)
= XA, p1,1).

For the SMP with respect to the domain, put J =]¢,d[ a strict sub interval of I
with p/; € M*(J), and denote ¢} ; the zero of A\2(A, p/s,J), as in the SMP with
respect to the weight, three situations are presented

1. 2,1 = ¢y =1, then ¢, I[ is a strict sub interval of |a, [ or ]I, d[ is a strict sub
interval of ]I, b[, by lemma 2 and (14), we get

)\2(A7p7]) - Al(Aap/]a,l[a]aalD
< )\I(Avp/}c,l[a]cﬂl[)
= )\2(A7p/J7J>

or

)\2(Aapa1) = /\l(A P/1Lb[s ]lvb[)

< M, ppap ) df)

/\Q(A P)Js J)

2. c2,1 < ¢y, again by lemma 2 and (14) we get

A2(A, p, 1) 1A p/1es s )5 ] 02,15 D))

(A p/]62 1,d[a ]02 15 b[)
)\2(A P> )

>/>/

<

3. ¢4y < cg1, for the same reason as in the last case, we get

)\Q(Avpa I) = )\1(A7p/]a,cz,1[7]aac271[)
< M ppee, e e2al)
- )\Q(Aap/JaJ)7
The proof is complete. [ ]

Lemma 3.6 For each eigenfunction u corresponding to (A, p, I) such that Z(u) =
{c} for some real number c, then

)\(A7P7 I) = >\2(Aap7 I)

Proof: We will prove that ¢ = c31. Suppose, for example, ¢ < ¢3;. By lemma 2
and (14) we get,

)‘(Avpa I) /\l(Avp/]c,b[v]cvbD
/\1(/\7[’/]@,1,1)[7]02,1, bD
)\2 (Av Ps I)

A
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on the other hand,

)\Q(A,p,I) )\I(A p/aczl }a’ 6271[)
)\1(A ,O/ac ]CL CD
A(A,

Al

contradiction. Hence, ¢ = ¢ 1 and A(A, p,I) = A2(A, p,I). The proof is complete.m
For n > 2, we use a recurrence argument. Suppose that for all k, 1 < k < n,
the following hypothesis holds

H.R.1 For any eigenfunction u corresponding to Ag(A, p, ), there exists a unique
Cris 1 <i<k—1,such that Z(u) = {cgi, 1 <i <k —1}.

H.R.2 M\, (A,p,I) is simple.
HR.3 M(Ap, D) < Xa(Ap,I) <o < A1 (Ayp, I).

H.R.4 If (u,A(A,p,I)) is a solution of (V. P 1)) such that Z(u) = {c;, 1 <i <
k —1} (i.e with k — 1 simple zeros), then A(A, p, I) = A (A, p, I).

H.R.5 A\;(A, p,I) verifies the Strict Monotonicity Property (SMP) with respect to
the weight p and the domain I.

and prove them for n + 1.

Proposition 3.4 There exists a unique family {cp41,i, 1 <1 < n} such that
Z(u) = {cpy14, 1 <i<n}

for any eigenfunction u corresponding to A1 (A, p,I).

Proof: Let u be an eigenfunction corresponding to A,41(A, p,I), by H.R.3 and
H.R.4, u has at least n zeros. According to lemma 3, we can consider the n + 1
nodal domains of u, Iy =la,c1|, Is =|c1, ¢, ..., In =]cn—1,¢nl, Iny1 =]c,b[. We
will prove that ¢ = ¢,. Remark that the restrictions of u on Ja,¢;[, 1 < i < n,
are eigenfunctions with ¢ — 1 zeros, by H.R.4 Ay 1(A, p, I) = Xi(A, pjja,e.[s |a, cif)-
Assume that ¢, < ¢, choose d in |e,, ¢ and put, Jy =|a,d[, Jo =|d, b, remark that
JiNJs =0, |a, c,[ is a strict sub interval of J; C I, and ]c, b] is a strict sub interval
of Jo C I, it is clear that p,;, € Mt (J;) for i = 1,2, by HR.4 and H.R.5 we have

)\n(Aap/JmJl) < )‘H(Aap/]a,cn[v]avcn[)
= )‘+1(A7p7])7

and
Al(Aap/Jga J2) < Al(Aap/]c,b[a]Cv b[) = >‘n+1(Aap7 I)

Denote by (¢n11,A1(A, p,s,,J2)) a solution of (V.P(a p 1)) (v,/\n(A,p/JL, J1)) a
solution of (V. P(a,p,1))s ®irl < i < n, the restrictions of v on I; and ¢;, their
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extensions, by zero, on I. Let Fj,1q = ((51,(/32, e ,én_ﬂ) and K11 = F,y1 NSy,
then v(K,+1) =n+ 1. We obtain by (9) and the same proof as in proposition 3
o = in [ el de >
— > min )P de > ———
/\n+1(A7p7I) T Knpa Ip )‘n+1(Aa Ps I)

contradiction, so ¢ = ¢,. On the other hand, let v be an eigenfunction corre-
sponding to A,11(A, p,I). Denote by di, da, -+ ,d, the zeros of v. If di # ¢,

then
)\n+1(A,,0, I) = )‘1(Aa p/]a,d1[7]aad1[)
# M pjjaepsas )
= )‘n+1(Aapa I)a
so dy = ¢1, by the same argument we conclude that d; = ¢; for 1 <1i < n. [ |

Lemma 3.7 A\, 11(A, p,I) is simple, hence.
>‘n+1(Aa Ps I) < >‘n+2(Aa P, I)'

Proof Let u and v be two eigenfunctions corresponding to A,+1(A, p,I). The re-
strictions of v and v on |a, ¢p41,1[ and |ep41,1, b respectively, are eigenfunctions as-
sociated to A1(A, p/ja.cnir 1)@ Cat11]) and An(A, p/1e,ir 100 Ient1,1,0)). By HR.2
and H.R.4 we have u = av in |a,cp41,1[ and w = fv in |ept1,1,b], on the other
hand, « and v are C'(I) and «'(c,41,1) # 0, then a = 3. From the simplicity of
An+1(A, p, I) and theorem of multiplicity [17] we conclude that

)\n+1(Aa P, I) < /\n+2 (A, P, I).

Proposition 3.5 \,11(A, p, I) verifies the SMP with respect to the weight p and
the domain I.

Proof Let p1, po € M(I), such that pi(z) < po(x) with p;(z) < p2(z) in some
subset of nonzero measure. Denote c,41,; and Crt1,i for 1 < i < n, the zeros of
Ant1(A, p2, I) and A,11(A, p2, I) respectively, three situations are presented

1. ¢ny1,1 = €411 = ¢, one of the subsets is of nonzero measure,
{z €1/ pi(a) < po(@)}la,el and {z € I/ pi(x) < pale) e b,

by lemma 2 and (14), we have

)\nJrl (A7p27[) )‘l(Avp2/]a,c[a]a7cD

Al

/\1(A7 P1/1a,c[> }av CD
Ant1(A, p1, 1)
or
Ant1(As p2, 1) = An(A, p2/]c,b[7}c’ bl)
< An(A,pl/]c,b[,}C,bD

Ans1(A, p2, ).
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2. Cny1,1 < Cpyq 1, also by lemma 2 and (14) we obtain

)\n+1(A,P27[) )‘1(A’p2/]a,c;+1 1[,]&,6;4’_171[)
A1(4A, pl/lavcml 0 Ja, C/n+1,1D
)\I(A? pl/]ayanrl’lw ]aa Cn-‘rLl D

)‘n+1(A7p171)'

VANRVAN

3. ¢p1 < ¢n1, from the same reason as before, we get

>\n+1(A7p271) ATL(Arp2/]cil+1‘1,b[7] n+1,1» [
)\n(Aapl/]c;L+ ,b[7] n+1, 1[ b)
AYL(Ay Pl/]L"H 1,607 D

)‘n (A P1, )

A A

]Cn+1 15

By similar argument as in proof of proposition 3, we prove the SMP with respect
to the domain 1. m

Lemma 3.8 If (u, A(A, p, 1)) is a solution of (V. P(a,p,1)) such that
Z(u) = {d17 d27 o dn}a

then
AA p, ) = Aps1 (A, p, D).

Proof: It is sufficient to prove that d; = cpy1; forall1 < i < n. If cpy11 < dy
then, by lemma 2, (10), H.R.4 and H.R.5,

)\(A,p,l) = )‘1(A7p/]a,d1[a]a7 dl[)
< )\I(A?p/]a,cn+1)1[7]a’7C7L+1,1[)
= Ant1(Ap 1)
= )‘n(A7p/]cn+1,1,b[7}cn+1’17b[)
< An(Asp1d s 1da, b))

A p, I)

contradiction, and if dy < ¢,41,1 again by lemma 2, (10), H.R.4 and H.R.5 we have

)\n+1(Aapa [) (A7P/]a,cn+1[7]a70n+1[)

1
1(As p/1a,d.15 )@, di)
(

Al

n(A’ P/1dy,b[ ]dla b[)
”(A’ P/lent1,1,b) ]Cn+1, bD
n+1(A, P, I)

contradiction, the proof is then complete. Theorem 1 is proved. [ ]

A
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3.4. PROOF OF COROLLARY 2. Since for F € &, the compact F' N Sy € Cg, by
(9) we have:

1
sup min /p(x)|v\pdx§ (19)
I Ak(

Fc&, vEFNSA A,p7I)
On the other hand, for a k£ dimensional subspace F' of VVO1 P(I), the compact set
K =FnNSy €Cg. Let ¢y for 1 < i < k—1 be the zeros of A\p(A,p,I). Put
ck0 = a and cg , = b, let u be an eigenfunction corresponding to Ax(A, p, I). Put
d1(¢k. iy ckiv1)s 0 < i < k—1, the restrictions of u on |cg ;, ¢k i41] respectively and
b (Jek,is ck i+1]) their extensions by zero on I. Then put

Fr = <¢~51(}aack,1[)»le(]ck,lvckﬂ[)v'" 7&1(]Ck,k717bD>7
to conclude Fx NSy € Cr. By an elementary computation as in proposition 3

1
. P ] 2)
Ae(A,p, 1) FII’?%I*‘}A/Ip(m”v| - ( 0

Then combine (19) with (20) to get (10). [

3.5. REMARKS. The spectrum of the A,-Laplacian is entirely determined by the
sequence (Ag(A, p, I))k>1 if p(x) > 0 a.e in I. By the same way if p(z) <0 a.ein I,
then —p € M ™ (I). Then, by theorem 2 the spectrum of the operator is constituted
by a negative eigenvalues (A_x(A, p, I))k>1 50 0(Ap, A, p) = —oF (Ap, A, —p). The
main problem is when p € L>(I) and p change sign, i.e p € M+ ()N M~ (I). By
theorem 2 and corollary 1, the spectrum of the A,-Laplacian is constituted by two
sequence of eigenvalues one is an increasing positive sequence and the other is a
decreasing negative sequence. The spectrum is given by

op(Ap, A, p) = U;_(-Ap’ A, p)U oy (Ap, A, p). (21)
4. Applications
4.1. P-LAPLACIAN SPECTRUM WITH INDEFINITE WEIGHT.

Definition 4.1 The p-Laplacian spectrum with indefinite weight o,(Ap, m) is the
set of all real numbers X solutions of problem

—Apu = dm(z)|ulP?u in Q,
(V-P(m,1) { u = 0 on 0N

m a weak sense.

We know that the spectrum contains a sequence (resp. a double sequence) of
eigenvalues if the weight m is positive (resp. positive and negative) somewhere.
But any more information about the spectrum when p # 2 (the nonlinear problem).
In the following, we will prove that the p-Laplacian spectrum with indefinite weight
in one dimension is entirely given by a sequence (resp. a double sequence). For
this, put A =1 and p(z) = m(z) € L>°(I) in theorem 2 to obtain,

op(Ap,m) = ag(Ap,m) U ag(Ap,m)
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with UZ‘,"(Ap,m) = {Ax(m,I), k=1,2,---}. The eigenvalues are ordered as 0 <
A(m,I) < Xo(m, I) < Ag(m,I) < -+ < Ag(m,I) — +oo. and

o, (Ap,m) ={Ak(m, 1), k=1,2,---}.

The eigenvalues are ordered as —oo «— A_g(m,I) < --- < A_a(m,I) < A_1(m,I) <
0. The problem is still open for N > 1.
4.2. P-LAPLACIAN SPECTRUM OF ORDER ONE.

Definition 1 The p-Laplacian spectrum of order one o1(Ap,,m) is the set of all
surfaces (o, 3) € R x RN solutions of problem

—Apu = am(z)ulP?ut < B,|VulP2Vu > in Q,
(V'P(’”’I)) { u = 0 on 0N (22)

in a weak sense, (,) is the scalar product in the euclidean space RV.

As the usual p-Laplacian spectrum we know that spectrum of order one of p-
Laplacian operator contains a sequence (resp. a double sequence) of eigen-surfaces
if the weight m is positive (resp. positive and negative) somewhere in I [3]. No
more results are given for p # 2 (the nonlinear problem). The following proposition
gives a solution for the problem.

Theorem 4.1 For N =1 and p > 1 we have for all m € M*(I)
1.

o1 (Ap,m) = UpZ, G (T, (m, B)) (23)
resp.
o1 (Ap,m) = Up2, G (T2, (m, B)) (24)
where G is the graph of the function T2 (m,.) defined for all 3 € RN by
m = ;,g]p_}?Lver%imnSA/Ieﬁ'zm(x)|v|p dz (25)
resp.

1
—_—— = 1 ﬂz P
7 (m B)  Fok, o 2R, /, erm()fvl” de (26)
where A(z) = .

2. For all B € R, lirf I'?(m,B) = +oo (resp. lim I, (m,B) = —c0).

n—-+4oo
3. The sequence T2 (m, 3) (resp. T?,(m,[3)) is such that
Y(m,B8) <Th(m,B) <---<T2(m,B) <-+— 400 for BER
IfTh(m,B) <a<Th,(m,B) then (a,B) ¢ of (Ap,m).
resp.

'’ (m,B8) >T",(m,B8)>--->T" (m,8)>---— —cc forBeR
{ Ifr*, (m,p) <a <I"i(n+1)(m,ﬂ) then (o, B) & o1 (Ap,m).
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4. If (o, B) € T2 (m, B)UTE, (m, B) then («, B) is simple and each eigenfunction
corresponding to it has exactly n — 1 simple zeros in I.

5. For allm > 1, T2(m, ) (resp. T%, (m,[)) verifies the strict monotonicity
property (PSM) with respect to the weight m and the domain I.

Proof Consider the following problem

(~A(@) | [P=2) = ap(a)ul—2u

(VPwp) { u(a) = u(b) = 0.

Put A(z) = 7% and p(z) = e’*m(z). It is obvious that A € C'(I) N C(I) and
non negative in I, p € L>(I). Problem (V.P(a, ) is then equivalent to the
problem (V.P(m’l)) (equation 22). So, making use of theorem 2 to obtain the
results mentionned in theorem 3. ]

4.3. SPECTRUM OF ORDER ONE WITH WEIGHTS

OF THE P-LAPLAPCIAN OPERATOR. In this section we introduce a new notion
about the spectrum. We call spectrum of order one with weights (m1,msa) of the
p-Laplapcian operator the set o1(A,, m1, mg) of all curves («, #) € R x R solutions
of problem

(—A(m)|u’|p_2u')/ = amy(z)|ulP~2u + Bma(x)|u/ [P~ in T

with my € L>(I) and my € C(I).

(27)

x
To solve this problem we put o(z) = / mo(t) dt and consider the problem
(V.Pap.), with p(z) = my(2)e’® and A(z) = e?(*). The problem (27) is then
equivalent to problem (1), so making use of theorem 2 to conclude the same results
as in theorem 3. [
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